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Abstract: We show that there is an intrinsic link between the use of Walsh aberration modes in
adaptive optics (AO) and the mathematics of lattices. The discrete and binary nature of these modes
means that there are infinite combinations of Walsh mode coefficients that can optimally correct the
same aberration. Finding such a correction is hence a poorly conditioned optimisation problem that
can be difficult to solve. This can be mitigated by confining the AO correction space defined in Walsh
mode coefficients to the fundamental Voronoi cell of a lattice. By restricting the correction space in
this way, one can ensure there is only one set of Walsh coefficients that corresponds to the optimum
correction aberration. This property is used to enable the design of efficient estimation algorithms to
solve the inverse problem of finding correction aberrations from a sequence of measurements in a
wavefront sensorless AO system. The benefit of this approach is illustrated using a neural-network-
based estimator.

Keywords: lattice geometry; Walsh functions; adaptive optics

1. Introduction

Many adaptive optics (AO) methods have been developed to compensate phase aberra-
tions in a range of applications including astronomy, ophthalmology and microscopy [1–3].
All AO systems are limited, in some way, by the capabilities of the adaptive element,
typically a deformable mirror (DM) or a spatial light modulator (SLM), that corrects
the aberrations. One such limitation is in the range of phase functions that the element
can correct. The correction space of an AO element is defined by the range of phase func-
tions that can be imparted by the device. For a pixelated AO device, such as a SLM or
segmented DM, the correction space is defined by the set of accessible pixel states, which
could be represented by the set of phase values for each pixel.

In many AO systems, it is preferable to design the system around a set of orthogonal
modes for representation and control of the wavefront, rather than localized wavefront
modulations. For example, wavefont-sensorless AO systems usually use a modal basis [4,5].
This method involves the sequential application of predetermined bias aberrations, the
acquisition of a set of measurements of an appropriate quality metric, and then estimation
of the required correction aberration. The conventional approach to sensorless AO is to
use knowledge of the forward problem—that is how the quality metric is affected by input
aberrations—to inform the design of an efficient estimation scheme that, in effect, solves
the inverse problem of finding the optimal correction aberrations from the set of metric
measurements. Such estimation can be performed using optimisation algorithms or neural
networks (NN) to solve the inverse problem [6,7].

It is known that control using modes defined across the whole pupil provides stronger
modulation of the optimisation metric than individual pixels or subregions of the pupil [5].
Such whole-pupil modulation hence provides more robust operation, particularly in low-
light level imaging scenarios when the signal-to-noise ratio (SNR) is low. For such pixel-
based sensorless AO systems, Walsh modes are an appropriate choice. Walsh modes are a
set of orthogonal functions that represent phase patterns across a pixelated pupil, where
the number of pixels is equal to a power of 2 [8,9]. Each Walsh mode consists of an equal
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number of pixels taking each of the binary values +1 or −1. For the different modes, a
different combination of pixels takes the positive and negative values.

The binary nature of Walsh modes means that the range of each mode that must
be searched to find the optimum correction is finite. This contrasts with other modal
bases built upon continuous functions, such as Zernike polynomials, which would have
unbounded range (albeit limited by the stroke of the adaptive correction element).

However, care needs to be taken when considering combinations of Walsh modes, as
multiple combinations of modes can have the same effect on the system. This means that
there are multiple potential solutions to the inverse problem of finding the optimal set of
Walsh mode coefficients that optimise aberration correction. These multiple solutions can
cause complications in defining an estimator to solve the inverse problem. Solving the
inverse problem would be considerably simplified if we could ensure that there was only
one optimal solution in the search space.

We show that there are properties of the Walsh modes that link the operation of
these sensorless AO systems to the mathematics of lattices [10]. We discuss how these
mathematical properties can aid the design of aberration estimation algorithms by con-
straining the search space. Specifically, we show heuristically that through understanding
of the lattice geometry, we can define a unique finite search space, in terms of combina-
tions of Walsh mode coefficients, that contains a single optimum correction. This permits
the implementation of an efficient NN-based optimisation scheme that can measure and
correct any combination of N Walsh modes of any coefficient value using only 2N + 1
metric measurements. We show that a simple NN can be trained to solve the inverse
problem if the search space is constrained using the lattice model, whereas the correct
combination of Walsh mode coefficients cannot reliably be found for a nonconstrained
search space.

2. Optical System Model

For the purposes of modelling, we considered the simple sensorless adaptive optics
system shown in Figure 1. Such a model has been extensively used for analysis of such sen-
sorless systems [11,12], as the principle of operation is readily extendable to similar optical
systems, including applications in laser material processing, free-space communications,
and laser scanning microscopy.

Figure 1. Optical system used for modelling. The input wavefront contains a phase aberration Φ,
which passes through a correction device imparting an additional phase Ψ. The beam is focussed
onto a vanishingly small pinhole detector on the optical axis that admits the intensity I.

The input beam to the system is collimated and has uniform amplitude. The input
phase aberration is Φ(r) and the phase Ψ(r) is added by the adaptive element (AE), which
could be a pixelated SLM or a segmented DM. These are both considered to be added at the
pupil P, which is taken to have unit radius; r is the normalised coordinate vector in the pupil.
The lens performs a Fourier transform of the pupil field to provide a focal field. A vanishingly
small pinhole detector is placed on axis at the centre of the focus and detects a signal I that
corresponds to the on-axis intensity at the focus. This is equivalent to the power of the
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zero-frequency component of the Fourier transform, which is equivalent to the squared
modulus of the mean value of the pupil field. Mathematically, this can be expressed as

I =
∣∣∣∣ 1
π

∫∫
P

exp i[Φ(r) + Ψ(r)]d2r
∣∣∣∣2 (1)

where the maximum, aberration-free signal is normalised to 1.

3. Representation of Aberrations as Walsh Modes

For simplicity, let us assume Φ(r) = 0 so that all aberrations can be represented within
Ψ(r). Let us also assume that the adaptive element is a pixelated device, where each of the
N pixels can introduce a piston phase. The phase introduced by the adaptive element could
be expressed as

Ψ(r) =
N

∑
l=1

αlηl(r) (2)

where ηl(r) are the phase influence functions of each pixel, which have value 1 within
the pixel area and 0 elsewhere; αl are the coefficients of these influence functions, which
correspond to the pixel phase value. Alternatively, we could represent the AE phase as

Ψ(r) =
N−1

∑
k=0

βkωk(r) (3)

where ωk(r) are functions that take binary values of −1 or +1 in each pixel region, such
that the lth pixel takes on the lth value of the kth Walsh function of length N, WN

k [l] [8].
βk are the coefficients of these functions ωk(r). For a given sequence length N = 2γ, where
γ is an integer, there are N orthogonal Walsh functions, each of which consists of N/2
elements of value −1 or +1, except for the first function that consists entirely of 1 s (see
examples in Figure 2). We follow the convention that the Walsh function index starts at
k = 0. From the above relationships, it is clear that each pixel phase can be represented as

αl =
N−1

∑
k=0

βkWN
k [l] (4)

or alternatively in matrix–vector format as

a = WTb (5)

where a is a vector of length N that contains the phase value of each pixel, b is a vector of
length N that contains the coefficient of each Walsh function and W is an N × N Walsh–
Hadamard matrix consisting of values ±1 [13,14]. The rows of this matrix correspond
to each of the Walsh functions. The matrix W provides the mapping between the Walsh
coefficients and the pixel values. For Hadamard matrices, WWT = NIN , where IN is the
identity matrix of size N [13,14]. Hence, we can invert Equation (5) as

b =
1
N

Wa (6)

Note that for a set of Walsh functions to be defined, we require N = 2γ, where γ is
an integer. We assume throughout this paper therefore that N = 2γ. However, Hadamard
matrices also exist for N = 4γ, where γ is an integer [13,14]. For simplicity, these other
matrices will not be considered in this current analysis.
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Figure 2. Illustrations of Walsh modes. (a) The Walsh functions W8
k [l] shown in numerical form.

(b) The Walsh modes W16
k [l] shown as aberration basis modes over a square aperture. (c) The polar

Walsh modes, equivalent to W16
k [l] shown as aberration basis modes over a circular aperture. In both

(b) and (c), index k = 0 for the first mode is in the top left, and k increments in row-major order to
k = 15 in the bottom right.

4. Lattice Symmetry of Aberration States

We can define the aberration state fully as the vector of pixel values a. Thus, we
can consider that a point at position a in the N-dimensional space of pixel values is
equivalent to an aberration state where any coefficient αl is replaced by αl + 2πq, where
q is an arbitrary integer. This reveals a repetitive structure in each coordinate of the
N-dimensional space that results in a lattice type symmetry. Hence, in this space, there is
an infinite number of points that represent a given aberration state and these points are
arranged in a transformed integer lattice ZN that is scaled by a factor of 2π and offset by
the pixel value αl along each dimension. Furthermore, the lattice structure is based around
a fundamental unit that is an N-dimensional cube of side length 2π; this fundamental unit
is known as a Voronoi cell [10].

The matrix–vector operation of Equation (6) can now be interpreted as a rotation (as
W is an orthogonal matrix) and scaling by 1/N of the vector a to give the Walsh coefficient
vector b. The lattice symmetry is hence maintained in a rotated and scaled form when the
state is described by b. When represented by the vector a, any Walsh function consists of
equal magnitude amounts (+1 or −1) of each pixel value, so the vector must be directed
along certain body diagonals of the cubic Voronoi cell. After transformation, these body
diagonals lie along the axes of the vector space containing b. This lattice symmetry will be
used for derivations later in this article.

5. Effects of Pixels and Modes on Signal Modulation

Let us assume that each pixel of the AE has equal area (the pixels should have equal
area if the amplitude profile at the pupil is uniform. For nonuniform illumination, the pixel
area should be varied to provide the same total power in each pixel (e.g., the pixels could be
large near the edge of the pupil for a Gaussian illumination profile.) No constraint is placed
here on the position or shape of the pixels.), so that the integration used in Equation (1) can
be replaced by a summation, assuming here that Φ(r) = 0:

I =

∣∣∣∣∣ 1
N

N

∑
l=1

exp (iαl)

∣∣∣∣∣
2

=

∣∣∣∣∣ 1
N

N

∑
l=1

exp

(
i

N−1

∑
k=0

βkWN
k [l]

)∣∣∣∣∣
2

(7)

If the arbitrarily chosen lth pixel is varied and all other pixel values have the same
value (here arbitrarily set to zero), then

I(αl) =

(
1− D

2

)
+

D
2

cos αl (8)

where the modulation depth D = 4(N − 1)/N2. For all other Walsh functions other than
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WN
0 [l], the signal is also cyclic as a function of βk:

I(βk) = cos2 βk (9)

where the modulation depth has the maximum possible value of 1 and the period in terms
of βk is π. The effects of single pixel and modal variations are shown in Figure 3.

Figure 3. (a) Variation of signal for a 16-pixel system with a single pixel modulation showing low
modulation depth and period 2π. (b) variation of a Walsh mode in the same system showing full
modulation and period π.

If a combination of Walsh modes is present with small coefficients, we can use a
Maclaurin expansion of the exponential in Equation (7) to give

I ≈ 1−∑
j

∑
k

β jβk

(
1
N ∑

l
WN

j [l]WN
k [l]

)
+

[
∑
k

βk

(
1
N ∑

l
WN

k [l]

)]2

(10)

The term in the final bracket 1
N ∑l WN

k [l] is equal to zero except for when k = 0,
in which case it has value 1. The orthogonality property of the Walsh functions means
that 1

N ∑l WN
j [l]WN

k [l] in the second term is equivalent to the Kronecker delta function δjk.
Hence, the signal is approximately

I ≈ 1−
N−1

∑
k=1

βk
2 (11)

This is equivalent to the well-known approximation of the Strehl ratio as 1− φ2
rms, where

φrms is the root mean square value of the aberration, which in this case is equal to
√

∑k βk
2.

6. Defining a Well-Corrected System

If we define our system to be “well-corrected” when the root-mean-square (rms) phase
error is below a chosen value, such that φrms ≤ ε, then the system will be well-corrected
when I ≥ 1− ε2. We can also express the second term in Equation (11) as a length N − 1
vector b′, which is equivalent to b with the piston coefficient removed, as

I ≈ 1−
∣∣b′∣∣2 (12)

Our condition for being well-corrected is hence equivalent to requiring that |b′| ≤ ε.
Interpreted geometrically, this means that any point within an (N − 1)-dimensional spherical
volume of radius ε centred on the point where I = 1 will be considered well-corrected.

In practice, the total aberration in a system will be the sum of the input aberration and
that introduced by the AE, that is Φ(r) + Ψ(r). The values of b′ discussed here consolidate
these two sources of aberrations to represent the residual aberrations, such that we seek
a perfect correction for which b′ = 0. We will also assume for this analysis that the input
aberration consists entirely of modes that can be corrected by the AE.
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7. Vector Space Representation of Well-Corrected States

The signal variation as a function of pixel values was given in Equation (7) and can be
expressed alternatively as

I =

∣∣∣∣∣ 1
N

N

∑
l=1

exp (iαl)

∣∣∣∣∣
2

=
1

N2

∣∣∣∣∣1 + N

∑
l=2

exp
(
iα′l
)∣∣∣∣∣

2

(13)

where α′l = αl − α1. From this, we find the value I = 1 can only be obtained if α′l mod 2π = 0
for all l. We derive this result by considering the phasor sum of each of the terms in the
final modulus expression: the maximum signal is only obtained when all of the exponential
terms in the summation are real.

In a more general case where all pixels are offset by a mean pixel phase value c rather
than the first pixel phase value, we could state that I = 1 only if each element of the
vector a has a value αl = c + 2nπ where n is an arbitrary integer. We can also express
the signal explicitly as I(a); this is a function of the vector a, which describes a point in
an N-dimensional space. In this way, we can see that I(a) has maximum value 1 at the
origin of this space when c is zero. Furthermore, we see that there is an infinite number
of points in this space at which I(a) = 1. For example, on each of the axes, there are
points where I(a) = 1 that are equally spaced at steps of 2π. Varying the value of c is
equivalent to adding a constant phase to every pixel (or equivalent to adding the piston
mode to the whole pupil) and thus has no effect on the signal. We deduce therefore that
there are infinite lines of I(a) = 1 parallel to the vector (1, 1, . . . , 1)T . As the value of c has
no effect on the signal, we can set this arbitrarily to zero without affecting further analysis.
This is equivalent to removing the piston mode. It is also equivalent to taking the (N − 1)
dimensional subspace including the origin in an orientation orthogonal to the direction
(1, 1, . . . , 1)T . The position of the maxima in this slice would be equivalent to the positions
of a scaled version of the integer lattice ZN , as explained in Section 3, projected along the
direction (1, 1, . . . , 1)T . An illustration is provided in Figure 4.

Figure 4. Illustration of the lattice geometry for intensity variation with pixel phase value. As it is not
possible to represent higher order systems in a three-dimensional rendering, the example shown is
for a three-pixel system. While this system does not use Walsh modes, it shows the same phenomena
of piston invariance and lattice-like behaviour. The axes represent each of the pixel phase values
in radians. The same volume rendering is shown from two different angles. The visible contours
are set at I = 0.01 (blue) and I = 0.8 (orange) to show the positions of the zeros and the maxima,
respectively. The function I is invariant with the piston mode, hence the elongation of the contours
along the direction (1, 1, 1). The lattice like structure of the function is apparent, in this case in the
form of the hexagonal lattice. This shows that there are many different combinations of aberration
mode coefficients that provide a similar well-corrected state. Analogous behaviour is found in higher
dimensions for the Walsh-mode-based systems.
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8. Lattice Representation of States after Removal of Piston

The removal of the piston mode is equivalent to the removal of the first row of the
matrix W to create the reduced matrix W′ and removing the corresponding element of b to
obtain a reduced vector b′ so that

a = W′Tb′ (14)

As row–column products represent dot products between Walsh vectors, the following
relationship is valid: W′W′T = NIN−1, so Equation (14) can be inverted as

b′ =
1
N

W′a (15)

We can interpret Equation (15) as a transformation from an N-dimensional vector of
pixel values a to an (N − 1)-dimensional vector of Walsh modal coefficients b′.

The matrix W′ is, however, a redundant representation, as the column space has
dimension greater than its rank. This is rectified by removal of any one of the columns to
create the matrix W′′; we choose arbitrarily to remove the first column. In order to maintain
the form of Equation (15), we remove the first element of the vector a to produce a new
vector a′. From a practical perspective, this means that the pixel value a1 is a dependent
parameter determined by the other pixel values because of removal of the piston mode.

b′ =
1
N

W′′a′ (16)

The operation performed by matrix W′′ is to map the vector a′ to the corresponding
vector b′. Similarly, the operation of W′′ would be to transform (project) the positions of the
maxima of I(a) = 1, which were located on lines passing through a scaled integer lattice ZN
(as illustrated in Figure 4), to another lattice in the (N − 1)-dimensional space spanned by b′.

We can determine the properties of this new lattice by considering its Gram matrix,
which is the matrix of the inner products between its lattice vectors [10]. The Gram matrix
is hence given by

G =
1
N

W′′TW′′ =
1
N

N − 1 −1 · · ·
−1 N − 1 · · ·

...
...

. . .

 (17)

where the factor of 1/N has been chosen so that the basis vectors are equivalent to Walsh
functions with normalised vector magnitudes. G is equivalent to the Gram matrix of the
so-called A∗N−1 lattice [10], which is an (N − 1)-dimensional analogue of the body centred
cubic (BCC) lattice in three dimensions. It follows that the maxima in the (N − 1)-dimensional
space spanned by b′ must be located at the lattice points of a scaled A∗N−1 lattice.

Understanding the symmetries of this lattice thus provides an understanding of the
symmetries of the function I(b′). For example, the response of the signal around each
lattice point should be identical. In other words, I(b′ − dm) = I(b′) for all m, where
dm represents an arbitrary lattice point. As there is an infinite number of lattice points,
there is an infinite combination of the (N − 1) Walsh coefficients that can provide the
optimal correction. Furthermore, correction to a precision of φrms ≤ ε can be achieved by
finding a setting for the adaptive correction device that places b′ within a sphere of radius
ε centred upon any of the lattice points.

9. Fundamental Correction Space

The lattice model allows us to define a fundamental correction space—that is, the
range of b′ we must search to find an optimal correction. This fundamental correction
space is smaller than the correction space covered by all pixel values in the range 0 to 2π
radians. The lattice symmetry of the function I(b′) indicates that we need only search the
Voronoi cell of the lattice in order to cover all possible states. Therefore, the search space is



Photonics 2022, 9, 547 8 of 18

the Voronoi cell of the scaled A∗N−1 lattice, whose properties are known [10]. The position
of the cell’s vertices can be readily calculated. For example, the Voronoi cell of the A∗3 (or
BCC) lattice is a truncated octahedron; this would be the Voronoi cell for a N = 4 pixel
system and is illustrated in Figure 5.

Using the symmetries of the Voronoi cell, further general properties of this funda-
mental correction space can be derived. Moving along any of the axes from a lattice point
at which I(b′) = 1, we encounter another lattice point at a distance b = π (noting that
this corresponds to the variation of a single Walsh function, the pixel values of which will
be ±π for this value of b; see Equation (9)). Therefore, the halfway point between lattice
points along the axis is at a distance b = π/2. Hence, the distance between two faces of the
Voronoi cell along such an axis is π. By looking solely along the axes, one might assume
that the search space is an (N − 1)-dimensional cube of side length π, which would have a
volume of πN−1. However, the Voronoi cell’s volume is given by

πN−1
√

det G =
πN−1
√

N
(18)

which is a factor 1/
√

N smaller than the encompassing hypercube [10]. Hence, for large
numbers of pixels, the search space is considerably smaller than might be assumed if
considering the pixel phases directly.

Figure 5. (a) Illustration of the lattice geometry for the fundamental correction space of a four-pixel
system, which corresponds to three Walsh modes after neglecting the piston mode. The axes represent
each of the Walsh coefficient values in radians. The same volume rendering is shown from two
different angles. The visible contours are set at I = 0.01 (blue) and I = 0.8 (orange) to show the
positions of the zeros and the maxima, respectively. The BCC lattice geometry is apparent. (b) The
Voronoi cell for the A∗3 (or BCC) lattice, a truncated octahedron, is shown within an encompassing
cube of side length π radians.

10. Implications of the Lattice Structure for Sensorless AO

We have shown that searching the Voronoi cell of the A∗N−1 lattice is sufficient to
find the optimal correction in the whole Walsh coefficient space of the adaptive element.
The lattice structure also means that this same cell repeats over the whole space.
Consequently, if the aberration in the system can be accurately represented by a finite
number of Walsh modes, then the necessary search space is finite. This contrasts with
an aberration represented by a finite number of continuous modes, such as Zernike poly-
nomials, where the search space would have to be infinite in extent to cover all possible
coefficient values.

In modal sensorless AO correction schemes, a sequence of predetermined bias aberra-
tions for fixed set of correction modes is applied to the adaptive element and the correspond-
ing signal values are recorded. From this set of measurements, the correction aberration is
estimated using an appropriately chosen optimisation algorithm. When using continuous
modes, such estimation can provide accurate correction for aberrations over a limited
magnitude range but usually provides poor estimation outside this range. Using Walsh
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modes, however, the finite search space within one Voronoi cell of the lattice structure for a
fixed set of modes means that it is possible to design a correction scheme that is accurate
across all possible aberrations within the Walsh mode set. For the continuous modes, the
bias aberrations span a finite range, such as in the typical configuration for sensorless AO
of having equal magnitude positive and negative biases for each mode. However, the same
configuration for Walsh modes in effect spans an infinite range, as the bias positions are
also repeated in the lattice structure across the whole coefficient space.

If a sequence of intensity measurements is taken with bias aberrations defined as
each Walsh mode with an amplitude of π/2, the set of measurements is related to the
Walsh transform of the pixel values (see Appendix B). The sum of these measurements is
equal to the intensity after aberration correction. This has important implications for the
normalisation of measurements for use in aberration estimation algorithms.

11. Neural Network for Solution of the Inverse Problem

We used the knowledge of the fundamental correction space to design estimators
for a sensorless AO scheme. Specifically, the estimation process should solve the inverse
problem to obtain aberration coefficients from the set of biased intensity measurements.
We choose to demonstrate this with a NN estimator, whose design incorporates physical
knowledge of the system. This method was chosen as it is more readily extendable to more
advanced AO systems than conventional optimisation algorithms.

In this demonstration, we compare two similar NN-based methods for which the
search space is defined differently. In the first case, it was assumed that each of the Walsh
mode coefficients ak can take any value −π/2 < ak ≤ π/2. This was equivalent to
taking any point in a (N − 1)-dimensional cube in coefficient space (we refer to this as
the “hypercube cell”). In the second case, the coefficients were chosen so that they lie only
within the Voronoi cell centred at the origin (we refer to this as the “primary Voronoi cell”).
This primary Voronoi cell would be a sub-region of the hypercube used in the first case. Based
upon the previous analysis, it was known that there would be a single point corresponding to
optimum correction in the primary Voronoi cell but multiple such points in the hypercube cell.

Having multiple global optima in the search space can be detrimental when using
neural networks to perform such an optimisation. This is because such ill-conditioned
problems have no unique answer and thus prevent convergence of the network training.
We employed a bespoke NN architecture that was developed to take advantage of the
particular physical process used in the sensorless AO scheme. The overall process and the
NN architecture are outlined here. More details about the NN can be found in Appendix D.
In order to adequately sample the space, a biasing scheme was chosen that used 2N − 1
measurements. This corresponded to the application of positive and negative biases of
magnitude π/3 for each of the (N − 1) Walsh modes, excluding piston; an additional
nonbiased measurement was also included. For the kth mode, we denote the negatively
bias measurement as I−1

k , the positively biased measurement as I+1
k and the unbiased

measurement as I0.
The NN process was constructed as shown in Figure 6; a more detailed description of

the architecture is given in Appendix D. The NN takes two separate sets of inputs, both of
which rely on biased intensities (generated using Equation (1)): the first (Input1) directly
uses these normalised intensity values, while the second (Input2) analytically processes
the intensities based upon sinusoidal estimation to acquire a set of preliminary aberration
coefficient estimates. The first input is passed into a convolutional neural network (CNN)
followed by fully connected layers (FCL). It is then concatenated with the second input
(Input2) and passed into fully connected layers to generate the outputs that correspond
to the estimated Walsh coefficients. The rationale behind this dual input approach was
that the learning task would be easier if based, in effect, on the differences between rough
estimates and actual measurements rather than on the raw measurements themselves.
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Figure 6. Outline of the NN architecture and preprocessing of data. CNN: convolutional neural
network; FCL: fully connected layer; OL: output layer.

Input1 was structured in the instance of N = 8, as a matrix in the following form

Input1 =



I0 I0 I0
I0 I+1

1 I−1
1

I0 I+1
2 I−1

2
I0 I+1

3 I−1
3

I0 I+1
4 I−1

4
I0 I+1

5 I−1
5

I0 I+1
6 I−1

6
I0 I+1

7 I−1
7


(19)

This structure was chosen so that the CNN block could interpret known correlations
from biased measurement values. Indeed, the first CNN layer was structured so that it
operated first on the 3-tuples of intensity values contained in each row of Input1, which
were each expected to depend primarily on the corresponding coefficient ak. Further CNN
layers sought to operate on correlations between the different coefficients.

The rough estimation used for Input2 was based upon the knowledge that variations
in a single Walsh mode coefficient led to a sinusoidal relationship with detected signal (see
Appendix C). The value of each coefficient in Input2 was set to the value that provided
the maximum value of this sinusoidal variation. This estimation provides only a rough
value for correction, as it treats each coefficient separately and hence does not deal with the
coupling effect between combinations of modes.

Separate instances of this NN architecture were trained for the two scenarios. In the
first case of the hypercube cell, the training and validation data were obtained by assigning
a random value to each input coefficient in the range −π/2 < ak ≤ π/2. For the second
case, the same combinations of coefficients were “wrapped” so that they lay only within
the primary Voronoi cell (see Appendix D). In each case, the same calculated intensity
measurements were used at the input. The difference between the two training processes
lies in the coefficient labels that were used to calculate the loss function during network
training—in the first case, the coefficient labels were defined throughout the hypercube
cell; in the second case, the corresponding labels were wrapped into the primary Voronoi cell.
Full details of the training procedure are provided in Appendix D.

Results are shown in Figure 7 for the case of N = 8, which corresponds to the correction
of 7 Walsh modes. The loss function curves showed that only the scenario of confining the
coefficient to within the primary Voronoi cell permitted the NN to converge. The mean
squared phase error was reduced to 0.063 radians after correction, which corresponded
to a Strehl ratio of approximately 0.6. In comparison, the loss for the hypercube case
was significantly higher and the validation loss did not reduce while deviating from the
training loss. This demonstrated the effectiveness of using prior knowledge about the
lattice symmetries. It is expected that similar trends would be seen in scenarios with large
pixel numbers, alongside more complicated NN architectures.

These results show clearly that the prior knowledge of the lattice geometry, and hence
the need to confine the estimation to the primary Voronoi cell, is essential to effective
training of the NN. When training using coefficients selected from the hypercube cell, the
loss functions (which are related to wavefront estimation errors) do not converge sufficiently
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to provide good aberration correction. This is attributed to the existence of multiple optimal
solutions within the hypercube cell that complicate the training process. However, this
problem is avoided when using a training set where the labels were “wrapped” and
the resulting labels were within the primary Voronoi cell, and thus only one optimal
combination of Walsh mode coefficients is present.

Figure 7. (a) NN training and validation loss functions as mean square error (MSE) for the scenarios
where the coefficient labels were defined throughout the hypercube cell (HC) or the primary Voronoi
cell (VC) for N = 8. The insets on the right show a schematic representation in three dimensions
the difference between the two types of cells. (b) An illustrative example of correction of an initial
aberration consisting of 8 pixels, equivalently 7 polar Walsh modes. The residual error of the VC-based
correction was far lower than that of the HC based correction. (c) Statistical summary of correction
results from the NN validation set: Initial—distribution of initial input aberrations; Sinus—after
estimation using sinusoidal model; HC—after correction using the hypercube cell method; VC—after
correction with the Voronoi cell method. Error bars show the standard deviation of the distribution.

12. Conclusions

The insight provided by the mathematical link between Walsh mode AO and lattices
informs the design of efficient sensorless AO schemes. This is relevant to the solution of the
inverse problem of how to estimate the aberration coefficients from metric measurements
with different applied bias aberrations. The new insights are particularly important when
using NNs to solve this inverse problem, as otherwise we suffer from the challenges caused
by having multiple solutions for a given set of metric measurements, which requires more
complicated networks.

Although the Walsh modes are pixelated, when sufficient pixels are used, they can
provide a suitably accurate representation of low order aberrations. While continuous modes,
such as the Zernike polynomials, are commonly used, they are not guaranteed to provide
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a good fit to high-order aberrations in the system, nor to the correction device, which may
well be pixelated in nature. The results presented here have relevance not just for correction
of low-order aberrations but also for high-order scattering compensation, where previously
schemes have been based around control of Walsh modes (or similar) [15–17].

The analysis presented in this paper was based around a simple AO focussing system.
However, as the overall lattice geometry arises from the nature of the aberration repre-
sentation, and not the AO system or the optimisation metric, a similar repetitive lattice
structure and primary Voronoi cell will hold for any other AO system using Walsh modes
as the basis. These results should therefore have relevance to any application of AO using
pixelated correction devices.
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Abbreviations
The following abbreviations are used in this manuscript:

AO Adaptive optics
DM Deformable mirror
SLM Spatial light modulator
NN Neural networks
SNR Signal to noise ratio
AE Adaptive element
CNN Convolutional neural network
FCL Fully connected layers
WT Walsh transform

Appendix A. Observations Based upon the Lattice Geometry

Various connections can be made between the operation of the Walsh mode-based AO
system and the lattice representation outlined above. The following points address certain
relationships between variations of individual pixels and the Walsh functions.

• A single pixel variation is put into effect by a combination of all N Walsh modes, which
can be obtained using Equation (5). As is clear from this equation, the coefficients in
the vector b are themselves given by the elements of a Walsh mode.

• As we have removed the first (piston) mode, we can see that each reduced Walsh mode
(i.e., without its first element) is a vector of length N − 1 that points in the direction
corresponding to the variation of a single pixel. As these vectors each include all the
N − 1 basis vectors in equal magnitude (±1), then these directions must correspond
to some of the body diagonals between opposite vertices through the centre of the
fundamental cubic cell that encloses the Voronoi cell.

• For N pixels, there are 2N body diagonals that correspond to single pixel variations
(counting positive and negative directions separately). For N > 4, this is less than the
total number of body diagonals, which is 2N. Hence, for N > 4, there are diagonals that
do not correspond to single pixel variations, but would involve multiple changing pixels.

• The “kissing number” τ is a characteristic of a lattice that indicates how many nearest
neighbours there are to any lattice point. The kissing number for the A∗n lattice is
τ = 2n + 2 (for n ≥ 2), so for A∗N−1 we expect τ = 2N (p155 of [10]). This is equal to
the number of body diagonals noted above as corresponding to single pixel variations.
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These single pixel variations correspond to the kissing directions, which are the closest
spacing between lattice points.

• Equation (8) shows how I varies with single pixel modulation. However, removal
of the piston mode leads to some differences. Ensuring zero piston means that all
pixels are modulated, but N − 1 pixels are shifted by the same value −ξ, whereas the
single desired pixel will be shifted by the value (N − 1)ξ. The peak-to-peak amplitude
would be ψ = Nξ.

• The mean square amplitude of such a mode must be given by[
(N − 1)ξ2 + (N − 1)2ξ2

]
N

= (N − 1)ξ2 =
N − 1

N2 ψ2 (A1)

Hence, the rms phase related to the peak-to-peak phase by φrms =
√

N−1
N ψ.

• The distance between these closest lattice points is equivalent to the rms phase required
to shift one pixel so that it is 2π radians different to the others. Setting ψ = 2π gives
φrms =

2π
√

N−1
N . This varies inversely with

√
N, such that as N increases the spacing

between closest lattice points reduces. This is to be expected, as increasing N means
a smaller pixel size and hence a smaller rms phase for a given phase variation of a
single pixel.

• Along these kissing directions, the minimum signal is obtained when the single pixel
is π out of phase with the other N − 1 pixels. This leads to a signal minimum of

I =
(N − 2)2

N2 (A2)

which tends to 1 as N increases and, correspondingly, as the size of a single pixel decreases.

Hence, we can also use this lattice description to show that the signal varies only
weakly in these kissing directions (corresponding to single pixels), whereas adjustment of
Walsh modes provides more robust measurement. This confirms the results presented in
Figure 3 using single pixel and modal variations. These properties are closely related to the
extent of the Voronoi cell in these kissing directions. The Voronoi cell is in effect narrower
in the kissing directions than in others. In general, larger signal modulations are obtained
if one samples the function in the directions where the Voronoi cell has a larger extent.

Appendix B. Sensorless AO and the Walsh Transform

Suppose we take a sequence of biased measurements, where we apply biases of each
Walsh mode with a single positive amplitude of π/2 radians. This is equivalent to shifting
the measurement point from the body centre of the (N − 1)-dimensional Voronoi cell to the
centre of each (N− 2)-dimensional facet centred along the positive axis of the corresponding
Walsh mode. Due to the lattice structure, the facet in the positive direction is homologous
to the facet in the negative direction. Therefore, by choosing this bias amplitude, we are
simultaneously sampling both the positive and negative bias positions. When biasing the
kth mode, we are increasing the (unknown) coefficient βk by π/2. The complex pixel value
of that mode is therefore

exp
(

i
{

βk +
π

2

}
WN

k [l]
)
= exp

(
i
π

2
WN

k [l]
)

exp
(

iβkWN
k [l]

)
= iWN

k [l] exp
(

iβkWN
k [l]

)
(A3)

where we have exploited the fact that the Walsh function has values only of ±1. We can
now see that the kth biased signal measurement is given from Equation (7) by

Ik =

∣∣∣∣∣ i
N

N

∑
l=1

{
exp

(
i

N−1

∑
k=0

βkWN
k [l]

)
WN

k [l]

}∣∣∣∣∣
2

=

∣∣∣∣∣ i
N

N

∑
l=1

xlWN
k [l]

∣∣∣∣∣
2

(A4)



Photonics 2022, 9, 547 14 of 18

where we have defined xl to represent the complex pixel values so that:

xl = exp

(
i

N−1

∑
k=0

βkWN
k [l]

)
(A5)

The Walsh transform (WT) Xk of a sequence xl of length N is defined conventionally
as [8]:

Xk =
1
N

N−1

∑
l=0

xlWN
k [l] (A6)

We can therefore derive
Ik = |Xk|2 (A7)

In other words, we see that the set of biased intensity measurements is the modulus
squared of the kth component of the WT of the complex pixel values xl . As the first Walsh
function is piston (hence all pixels have value 1), it is related to the first element of the
WT Xk. As biasing with piston has no effect on the measurement, this is the same as the
unbiased measurement in our system. Hence, the unbiased measurement (corresponding
to the centre of the Voronoi cell) along with the N − 1 biased measurements correspond
to a full set of intensity measurements. This set of intensity measurements is known as
the spectral density of the WT of the set of complex pixel values. In practice, we cannot
measure the complex values of Xk directly, but we are able to quantify the Walsh spectral
density through the intensity measurements with the applied bias modes.

We now derive a relationship using the fundamental properties of the WT. In [8], we
find an equivalent of Parseval’s theorem for WTs:

N−1

∑
k=0
|Xk|2 =

1
N

N

∑
l=1
|xl |2 (A8)

From the definition of xl , it is clear that its modulus is equal to one. Hence, we find that

N−1

∑
k=0
|Xk|2 = 1 (A9)

Equivalently, we find that the sum of the N − 1 biased measurements and the one
unbiased measurement must add to one.

The importance of this result is that in a real experiment the measured signal is not
actually normalised to one, but there is an unknown “brightness” that is a function of
numerous experimental variables. This would be a multiplying factor in the expressions for
I, which we have chosen to omit from the analysis for simplicity. We can use this result to
obtain the “brightness” in a way that is independent of the input aberration, as it is simply
the sum of the N − 1 biased measurements and the unbiased measurement.

Appendix C. Estimation of Coefficients Using Simple Sinusoidal Model

In this appendix, we present a method for rough initial estimation of individual Walsh
mode coefficients. Let us redefine Equation (7) by including a factor A that is equivalent to
an unknown maximum intensity

I = A

∣∣∣∣∣ 1
N

N

∑
l=1

exp

(
i

N−1

∑
k=0

βkWN
k [l]

)∣∣∣∣∣
2

(A10)

The signal varies with a single modal coefficient β j as
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I
(

β j
)
= A

∣∣∣∣∣ 1
N

N

∑
l=1

exp

(
i

N−1

∑
k=0;k 6=j

βkWN
k [l]

)
exp

(
iβ jWN

j [l]
)∣∣∣∣∣

2

= A

∣∣∣∣∣ 1
N

N

∑
l=1

C[l] exp
(

iβ jWN
j [l]

)∣∣∣∣∣
2

(A11)

where the effects of the modes contained within the first exponential term have been
subsumed into the complex coefficients C[l].

We introduce a useful relationship, which takes advantage of the binary (±1) values
of the Walsh functions [9]:

exp
(

iβ jWN
j [l]

)
= cos

(
β jWN

j [l]
)
+ i sin

(
β jWN

j [l]
)
= cos β j + iWN

j [l] sin β j (A12)

This leads to

I
(

β j
)
= A

∣∣∣∣∣ 1
N

N

∑
l=1

C[l]
{

cos β j + iWN
j [l] sin β j

}∣∣∣∣∣
2

(A13)

The exact form of this solution will depend upon C[l] and hence on the other
Walsh coefficients. However, the only terms in β j that can arise from the modulus square
term are of the form of cos2 β j, cos β j sin β j, or sin2 β j, which can all be expressed as sinu-
soidal terms of argument 2β j. Hence, we deduce that I

(
β j
)

must be given by the form

I
(

β j
)
= A

[
p + q cos

(
2β j + ζ

)]
(A14)

where p, q and ζ depend on all values βk 6=j. Let us simplify Equation (A14) to the form
I
(
θj
)
= U + V cos

(
2θj
)
, where we have defined 2θj = 2βj + ζ.

Consider applying a bias bWN
j so that the biased measurement I+ = U +V cos

(
2θj + 2b

)
.

Then, we apply the negative bias −bWN
j so that the biased measurement I− = U +

V cos
(
2θj − 2b

)
. We also use the unbiased measurement I0 = U + V cos

(
2θj
)
. If we

use a bias of b = π
3 , then we can obtain through elementary operations

θj =
1
2

tan−1
[√

3
I+ − I−

I+ + I− − 2I0

]
= β j +

ζ

2
(A15)

The value of θj obtained through Equation (A15) was used as the initial rough estimate
provided to the NN as Input2. The error between this estimate and the actual coefficient is
given by β j − θj = −ζ/2.

Appendix D. Description of the Neural Network Training and Network Architecture

The training data consisted of 220 (about one million) simulated samples, and 27 (128)
samples were used for validation to avoid overfitting. Both sets of data were generated for
the case of N = 8, corresponding to the correction of seven Walsh modes (excluding piston).
The total number of training datasets was chosen to provide a sufficient representation of
the seven-dimensional search space.

For each training dataset, seven values were randomly generated corresponding to
the coefficients of seven polar Walsh modes (βk). The coefficients followed a uniform
distribution over the range of −π/2 to π/2. These coefficients were used as labels during
network training in the case of the hypercube cell.

The sum of the product between each coefficient with its corresponding unit Walsh
mode formed the phase aberration Ψ(r) according to Equation (3). The phasor of the
complex field was calculated by averaging the complex field over the pupil. By subtracting
the angle of the mean phasor of Ψ(r) across the pupil (Equation (A16) ) and wrapping the
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phase back within the range of ±π, the aberration Ψ′(r) was calculated to be equivalent to
Ψ(r) and within the primary Voronoi cell.

Ψ′(r) = arg
(

exp
{

i
[

Ψ(r)− arg
(

1
π

∫
exp[iΨ(r)] dr

)]})
(A16)

Using the orthogonality of Walsh modes, the new coefficients βk
′ of the equivalent

aberration Ψ′(r) (Equation (A17)) could be calculated. βk
′ were used as the labels when

training the network with a confined searching space.

βk
′ =

1
π

∫
Ψ′(r)ωk(r)dr (A17)

For each set of data, two phase biases per Walsh mode were introduced. The bias
amplitudes were chosen to be−π/3 and π/3. For each introduced bias phase, the intensity
signal (I− and I+ ) was computed using the Equation (1). The same equation was used to
calculate the signal when no bias phase was introduced (I0). From previous discussions,
the phase modulation of mode 1 (piston) would have no effect on the signal and thus
excluded from the collection of signal readings. The total of 15 signal readings (14 biased
and 1 unbiased readings) were used as the input (Input1) of the network.

In addition, from our previous discussion, the signal varied with mode coefficients in
a period of π. A good approximation to the coefficients of each mode (βk

′′) was obtained
using Equation (A17). These approximations were also used as the separate input (Input2)
to the two networks we trained. Figure A1 shows a few sets of βk, βk

′ and βk
′′, which

derived from the same initial aberration.

Figure A1. (a–p) 16 sets of randomly selected β, β′ and β′′ derived from the same aberration, shown
in blue, red and yellow plots, respectively. In some cases, β′′ (estimation using sinusoidal model)
closely resembled β′ (such as in case (f)) while in some other cases, β′′ could be different to β′ (such
as in (e) and (n)). There were also a small proportion of cases where β was identical to β′ (such as
(n)), which corresponded to the initial aberration being within the primary Voronoi cell.

The full diagram of the NN architecture is shown in Figure A2. The network was
built using TensorFlow Keras. For the first CNN layer, the padding was chosen to be
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“valid” and strides equalled to (1,1). For each of the second to fourth CNN layers, the
padding was chosen to be “same” and strides equalled to (1,1). Following each of the
second to the fourth convolutional layers was a maxpooling layer with a pool size of 2× 1.
For all the layers (except the output layer), the nonlinear activation was chosen to be “tanh”.
The activation of the last output layer was linear. The initializer of all the kernels was
glorot uniform. The loss function was mean squared error (MSE). The optimizer was Adam.

Figure A2. Full neural network architecture. The blue boxes were the two inputs to the network.
The yellow boxes were the trainable kernels of the CNN with the corresponding dimensions as shown.
The orange boxes were the internal layers of the CNN and dense layers in the later stages. The green
box represents the output of the CNN.
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