Simulation of an AlGaInAs/InP Electro-Absorption Modulator Monolithically Integrated with Sidewall Grating Distributed Feedback Laser by Quantum Well Intermixing
Abstract
:1. Introduction
2. The Model Theory
3. Simulation and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asaka, K.; Suzaki, Y.; Kawaguchi, Y.; Kondo, S.; Noguchi, Y.; Okamoto, H.; Iga, R.; Oku, S. Lossless electroabsorption modulator monolithically integrated with a semiconductor optical amplifier and a passive waveguide. IEEE Photon. Technol. Lett. 2003, 15, 679–681. [Google Scholar] [CrossRef]
- Kreissl, J.; Bornholdt, C.; Gaertner, T.; Moerl, L.; Przyrembel, G.; Rehbein, W. Flip-Chip Compatible Electroabsorption Modulator for up to 40 Gb/s, Integrated With 1.55 μm DFB Laser and Spot-Size Expander. IEEE J. Quantum Electron 2011, 47, 1036–1042. [Google Scholar] [CrossRef]
- Kobayashi, W.; Arai, M.; Yamanaka, T.; Fujiwara, N.; Fujisawa, T.; Tadokoro, T.; Tsuzuki, K.; Kondo, Y.; Kano, F. Design and fabrication of 10-/40-Gb/s, uncooled electroabsorption modulator integrated DFB laser with butt-joint structure. J. Light. Technol. 2009, 28, 164–171. [Google Scholar] [CrossRef]
- Ramdane, A.; Krauz, P.; Rao, E.; Hamoudi, A.; Ougazzaden, A.; Robein, D.; Gloukhian, A.; Carre, M. Monolithic integration of InGaAsP-InP strained-layer distributed feedback laser and external modulator by selective quantum-well interdiffusion. IEEE Photon. Technol. Lett. 1995, 7, 1016–1018. [Google Scholar] [CrossRef]
- Morrison, G.B.; Raring, J.W.; Wang, C.S.; Skogen, E.J.; Chang, Y.-C.; Sysak, M.; Coldren, L. Electroabsorption modulator performance predicted from band-edge absorption spectra of bulk, quantum-well, and quantum-well-intermixed InGaAsP structures. Solid-State Electron. 2007, 51, 38–47. [Google Scholar] [CrossRef]
- Dutta, N.K.; Choudhury, N.; Zhu, G.; Cong, H. Modulation-doped InGaAsP quantum well laser and modulator. In Active and Passive Optical Components for WDM Communications III; SPIE: Bellingham, WA, USA, 2003; pp. 275–286. [Google Scholar]
- Tarucha, S.; Iwamura, H.; Saku, T.; Okamoto, H. Waveguide-type optical modulator of GaAs quantum well double heterostructures using electric field effect on exciton absorption. Jpn. J. Appl. Phys. 1985, 24, L442. [Google Scholar] [CrossRef]
- Mahoney, J.; Tang, M.; Liu, H.; Abadía, N. Measurement of the quantum-confined Stark effect in InAs/In (Ga) As quantum dots with p-doped quantum dot barriers. Opt. Express 2022, 30, 17730–17738. [Google Scholar] [CrossRef]
- Sobhani, S.A.; Stevens, B.J.; Babazadeh, N.; Takemasa, K.; Nishi, K.; Sugawara, M.; Hogg, R.A.; Childs, D.T. Proposal for Common Active 1.3- μm Quantum Dot Electroabsorption Modulated DFB Laser. IEEE Photon. Technol. Lett. 2019, 31, 419–422. [Google Scholar] [CrossRef]
- Lin, C.H.; Wu, J.P.; Kuo, Y.Z.; Chiu, Y.J.; Tzeng, T.E.; Lay, T.S. InGaAs self-assembly quantum dot for high-speed 1300 nm electroabsorption modulator. J. Cryst. Growth 2011, 323, 473–476. [Google Scholar] [CrossRef]
- Hou, L.; Tan, M.; Haji, M.; Eddie, I.; Marsh, J.H. EML based on side-wall grating and identical epitaxial layer scheme. IEEE Photon. Technol. Lett. 2013, 25, 1169–1172. [Google Scholar] [CrossRef]
- Al-Moathin, A.; Watson, S.; Tang, S.; Ye, S.; Di Gaetano, E.; Al-Taai, Q.R.A.; Eddie, I.; Huang, Y.; Zhang, R.; Li, C.; Hou, L.; Anthony, K.; Marsh, J. EML Based on Identical Epitaxial Layer, Side-Wall Grating and HSQ Planarization. IEEE Photon. Technol. Lett. 2022, 34, 317–320. [Google Scholar] [CrossRef]
- Sun, C.; Xiong, B.; Wang, J.; Cai, P.; Xu, J.; Huang, J.; Yuan, H.; Zhou, Q.; Luo, Y. Fabrication and packaging of 40-Gb/s AlGaInAs multiple-quantum-well electroabsorption modulated lasers based on identical epitaxial layer scheme. J. Light. Technol. 2008, 26, 1464–1471. [Google Scholar] [CrossRef]
- Aimez, V.; Beauvais, J.; Beerens, J.; Ng, S.; Ooi, B. Monolithic intracavity laser-modulator device fabrication using postgrowth processing of 1.55 μm heterostructures. Appl. Phys. Lett. 2001, 79, 3582–3584. [Google Scholar] [CrossRef]
- Hou, L.; Haji, M.; Akbar, J.; Marsh, J.H.; Bryce, A.C. CWDM source based on AlGaInAs/InP monolithically integrated DFB laser array. Opt. Lett. 2011, 36, 4188–4190. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, M.; Fujii, T.; Yamazaki, S.; Nakajima, K. Theoretical and experimental study of the optical-absorption spectrum of exciton resonance in In 0.53 Ga 0.47 As/InP quantum wells. Phys. Rev. B 1990, 42, 9587. [Google Scholar] [CrossRef]
- Kim, S.D.; Trezza, J.A.; Harris, J.S., Jr. Observation of 1.5 μm quantum confined Stark effect in InGaAs/AlGaAs multiple quantum wells on GaAs substrates. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1995, 13, 1526–1528. [Google Scholar] [CrossRef]
- Zhou, D.-B.; Liang, S.; Wang, H.-T.; Zhao, W.; Zhang, R.-K.; Zhao, L.-J.; Wang, W. Analysis and optimization of 1.5-μm InGaAsP/InP MQWs electroabsorption modulator. Optik 2019, 182, 1088–1092. [Google Scholar] [CrossRef]
- Hou, L.; Stolarz, P.; Javaloyes, J.; Green, R.P.; Ironside, C.N.; Sorel, M.; Bryce, A.C. Subpicosecond Pulse Generation at Quasi-40-GHz Using a Passively Mode-Locked AlGaInAs–InP 1.55-μm Strained Quantum-Well Laser. IEEE Photon. Technol. Lett. 2009, 21, 1731–1733. [Google Scholar]
- Crank, J. The Mathematics of Diffusion; Oxford University Press: Oxford, UK, 1979. [Google Scholar]
- Luttinger, J.M. Quantum theory of cyclotron resonance in semiconductors: General theory. Phys. Rev. 1956, 102, 1030. [Google Scholar] [CrossRef]
- Li, E.H. Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures. Phys. E Low-Dimens. Syst. Nanostruct. 2000, 5, 215–273. [Google Scholar] [CrossRef]
- Pryor, C. Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations. Phys. Rev. B 1998, 57, 7190. [Google Scholar] [CrossRef] [Green Version]
- Vurgaftman, I.; Meyer, J.Á.; Ram-Mohan, L.Á. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815–5875. [Google Scholar] [CrossRef] [Green Version]
- Adachi, S. GaAs, AlAs, and Al x Ga1−x As: Material parameters for use in research and device applications. J. Appl. Phys. 1985, 58, R1–R29. [Google Scholar] [CrossRef]
- Selmic, S.R.; Chou, T.-M.; Sih, J.; Kirk, J.B.; Mantle, A.; Butler, J.K.; Bour, D.; Evans, G.A. Design and characterization of 1.3-/spl mu/m AlGaInAs-InP multiple-quantum-well lasers. IEEE J. Sel. Top. Quantum Electron. 2001, 7, 340–349. [Google Scholar] [CrossRef]
- Weiss, B.L.; Chan, Y.; Shiu, W.C.; Li, E.H. The electro-optic properties of interdiffused InGaAs/InP quantum well structures. J. Appl. Phys. 2000, 88, 3418–3425. [Google Scholar] [CrossRef]
- Qiu, B.; Liu, X.; Ke, M.; Lee, H.; Bryce, A.; Aitchison, J.; Marsh, J.; Button, C. Monolithic fabrication of 2 × 2 crosspoint switches in InGaAs-InAlGaAs multiple quantum wells using quantum-well intermixing. IEEE Photon. Technol. Lett. 2001, 13, 1292–1294. [Google Scholar] [CrossRef]
- Pukhrambam, P.D.; Keiser, G. Electroabsorption modulated lasers with high immunity to residual facet reflection by using lasers with partially corrugated gratings. IEEE Photon. J. 2017, 9, 7101016. [Google Scholar]
- Gotoda, M.; Nishimura, T.; Matsumoto, K.; Aoyagi, T.; Yoshiara, K. Highly External Optical Feedback-Tolerant 1.49- μm Single-Mode Lasers With Partially Corrugated Gratings. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 612–617. [Google Scholar] [CrossRef]
- Hou, L.; Haji, M.; Dylewicz, R.; Qiu, B.; Bryce, A.C. Monolithic 45-GHz mode-locked surface-etched DBR laser using quantum-well intermixing technology. IEEE Photon. Technol. Lett. 2010, 22, 1039–1041. [Google Scholar] [CrossRef]
- Hou, L.; Avrutin, E.A.; Haji, M.; Dylewicz, R.; Bryce, A.C.; Marsh, J.H. 160 GHz passively mode-locked AlGaInAs 1.55 μm strained quantum-well lasers with deeply etched intracavity mirrors. IEEE J. Sel. Top. Quantum Electron. 2012, 19, 1100409. [Google Scholar] [CrossRef]
- Stolarz, P.M.; Pusino, V.; Akbar, J.; Mezősi, G.; Hou, L.; Coleman, A.C.; Marsh, J.H.; Kelly, A.E.; Sorel, M. High-power and low-noise mode-locking operation of al-quaternary laser diodes. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Lu, D.; Wang, H.; Guo, F.; Liu, S.; Zhou, D.; Zhu, H.; Wang, W.; Huang, Y.; Zhang, R. Modeling and Experiment Verification of Lateral Current Spreading Effect in Ridge Waveguide Electroabsorption Modulators. IEEE Trans. Electron Devices 2015, 62, 3756–3759. [Google Scholar] [CrossRef]
- Sun, X.; Ye, S.; Seddon, J.; Renaud, C.C.; Hou, L.; Marsh, J.H. Modeling and Measurement of a HSQ Passivated UTC-PD with a 68.9 GHz Bandwidth. In Proceedings of the 2021 IEEE Photonics Conference (IPC), Virtual, 18–21 October 2021; pp. 1–2. [Google Scholar]
Parameters | Symbol (Unit) | AlxGayIn1-x-yAs |
---|---|---|
Lattice constant | a (Å) | 5.6x + 5.6533y + 6.0584(1 − x − y) |
Elastic stiffness constant | C11 (1011 dyn/cm2) | 1.25x + 1.1879y + 0.8329(1 − x − y) |
C12 (1011 dyn/cm2) | 0.534x + 0.5376y + 0.4526(1 − x − y) | |
Hydrostatic deformation potential | ||
for conduction band | ac (eV) | − 5.64x − 7.17y − 5.08(1 − x − y) |
For valence band | av (eV) | 2.47x + 1.16y + 0.66(1 − x − y) |
Shear deformation potential | b (eV) | − 1.5x − 1.7y − 1.8(1 − x − y) |
Electron effective mass | me/m0 | 0.15x + 0.067y + 0.023(1 − x − y) |
Heavy-hole effective mass | mhh/m0 | 0.7x + 0.5y + 0.517(1 − x − y) |
Light-hole effective mass | mlh/m0 | 0.1415x + 0.088y + 0.024(1 − x − y) |
Valence band parameter | γ1 | 3.45x + 6.8y + 20.4(1 − x − y) |
γ2 | 0.68x + 1.9y + 8.3(1 − x − y) | |
γ3 | 1.29x + 2.73y + 9.1(1 − x − y) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Cheng, W.; Sun, Y.; Ye, S.; Al-Moathin, A.; Huang, Y.; Zhang, R.; Liang, S.; Qiu, B.; Xiong, J.; et al. Simulation of an AlGaInAs/InP Electro-Absorption Modulator Monolithically Integrated with Sidewall Grating Distributed Feedback Laser by Quantum Well Intermixing. Photonics 2022, 9, 564. https://doi.org/10.3390/photonics9080564
Sun X, Cheng W, Sun Y, Ye S, Al-Moathin A, Huang Y, Zhang R, Liang S, Qiu B, Xiong J, et al. Simulation of an AlGaInAs/InP Electro-Absorption Modulator Monolithically Integrated with Sidewall Grating Distributed Feedback Laser by Quantum Well Intermixing. Photonics. 2022; 9(8):564. https://doi.org/10.3390/photonics9080564
Chicago/Turabian StyleSun, Xiao, Weiqing Cheng, Yiming Sun, Shengwei Ye, Ali Al-Moathin, Yongguang Huang, Ruikang Zhang, Song Liang, Bocang Qiu, Jichuan Xiong, and et al. 2022. "Simulation of an AlGaInAs/InP Electro-Absorption Modulator Monolithically Integrated with Sidewall Grating Distributed Feedback Laser by Quantum Well Intermixing" Photonics 9, no. 8: 564. https://doi.org/10.3390/photonics9080564
APA StyleSun, X., Cheng, W., Sun, Y., Ye, S., Al-Moathin, A., Huang, Y., Zhang, R., Liang, S., Qiu, B., Xiong, J., Liu, X., Marsh, J. H., & Hou, L. (2022). Simulation of an AlGaInAs/InP Electro-Absorption Modulator Monolithically Integrated with Sidewall Grating Distributed Feedback Laser by Quantum Well Intermixing. Photonics, 9(8), 564. https://doi.org/10.3390/photonics9080564