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Abstract: In optical communication systems, photons are lost due to the attenuation of the trans-
mission medium. To efficiently implement quantum information protocols, we need to be able
to precisely describe such processes. In this paper, we propose statistical methods to estimate the
attenuation coefficient of the fiber link. By following the Beer–Lambert law, we utilize the properties
of the exponential distribution to estimate the rate parameter based on observable data. In particular,
we determine the explicit forms of unbiased estimators that are suitable for censored (truncated) sets
of data. Moreover, we focus on minimum-variance methods that ensure a reliable estimation of the
attenuation coefficient.
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1. Introduction

Optical fiber, which has emerged as the most commonly used transmission medium
for long-distance communications, is a thin string of glass that guides a beam of light
along its length [1]. The subfield of fibers has been developing rapidly both in terms
of manufacturing and applications. Due to its flexibility and the ability to come in a
bundle, optical fibers are used as a medium for telecommunication and computer network-
ing. Through the use of wavelength-division multiplexing, each fiber can accommodate
many independent communication channels, each working with a different wavelength of
light [2]. However, fibers can also be used as: sensors [3,4], carriers of optical power
(power-over-fiber technology) [5], light tubes [6], or components of a inspection instrument
in imaging optics [7].

In quantum optics, photons are used to encode information by exploiting different
degrees of freedom, including polarization, temporal, spatial, or spectral [8]. Most cel-
ebrated applications of quantum properties of light relate to quantum key distribution
(QKD), which allows two parties to exchange a secret key [9]. QKD started in 1984 from
a protocol that was based on polarization states of single photons [10]. Soon after, other
approaches were proposed, including a protocol that employs quantum entanglement [11].
Nowadays, practical implementations of QKD protocols make the secure distribution of
the secret key over optical fibers that are several hundred kilometers long [12] feasible.

Regardless of whether we operate in the quantum or classical regime, we need to take
into account the photon loss that is connected with any transmission through an optical
fiber. The reduction in the intensity of the light signal as it travels through the medium is
called attenuation. Empirical research has demonstrated that attenuation in optical fibers is
caused primarily by absorption and scattering. This phenomenon is an important factor
that limits the transmission of a photonic signal across large distances. Every realization of
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a photon-based communication scheme requires devising an optical power budget that
should comprise the acceptable attenuation [13].

In general, in quantum information theory, we discuss the quantum erasure chan-
nels (QEC) that relate to the lossy transmission of any physical particles used to encode
information [14]. While photons are well-suited for the transmission of quantum informa-
tion, protecting them from an external environment is very difficult due to the extreme
fragility of photonic states. In particular, the photon loss is the most problematic type
of error that arises in any quantum communication protocol. However, quantum error
correction codes have proved to be efficient at conserving quantum information; see, for
example, Refs. [15–17]. As for photonic states, general criteria for an error correction
code that encodes qubits in bosonic states were introduced [18]. Another proposal to deal
with the photon loss in quantum communication involves an error-correction scheme that
encodes a two-photon state by using four photons, up to one of which can be lost in the
transmission [19]. Alternatively, one can implement a three-photon code that protects one
logical qubit against a photon loss [20].

In QKD, the photon loss caused by attenuation is a critical factor not only because
of the reduction in the number of particles but also due to direct relations with other
phenomena affecting the transmission. For instance, several scattering processes have an
impact on the secure key rate in the presence of classical data signals, including Raman
scattering, [21,22], guided acoustic wave Brillouin scattering [23], and double Rayleigh
backscattering noise [24]. In each case, the secure key rate can be calculated only by taking
into account the attenuation characteristics of the transmission medium.

In this paper, we propose approaching the problem of photon loss from the perspective
of statistics. In quantum physics, estimation methods are usually implemented in the
context of quantum state tomography [25–27] or quantum metrology [28,29]. The present
paper achieves two goals—the first is that the attenuation coefficient is represented by
means of a statistic that works as an estimator; the second is that optimal estimators
among many possible are selected based on quantitative criteria. The key advantages of
implementing the statistical treatment for the attenuation coefficient include the reliability
and accuracy of estimation achieved through the minimum-variance requirement and
unbiasedness, respectively.

2. Exponential Distribution and Fiber Attenuation

The methodology of the research was formulated on the grounds of the mathematical
properties of the exponential distribution.

Definition 1. We say that a random variable X has the exponential distribution with the parameter
λ > 0, which is denoted by X ∼ Exp(λ) if the probability density function (PDF) is given by [30]:

fλ(x) =

{
λe−λx, x > 0,
0, x 6 0

and cumulative distribution function (CDF):

Fλ(x) =

{
1− e−λx, x > 0.
0, x 6 0.
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The parameter of the distribution, i.e., λ, is often called the rate parameter, whereas the
inverse figure, λ−1, is named the scale parameter. Next, one can also compute the expected
value (mean) and the variance, respectively:

E[X] =
∫ ∞

−∞
x fλ(x)dx =

1
λ

, (1)

Var[X] =
∫ ∞

−∞
(x−E[X])2 fλ(x)dx =

∫ ∞

−∞
x2 fλ(x)dx−E2[X] =

1
λ2 , (2)

Another key characteristics of a probability distribution of a random variable are raw
moments, µr for r ∈ N, which are defined as µr := E[Xr]. These quantities can be computed
from the moment generating function (MGF) [31]. For the exponential distribution, the
MGF, denoted by mX(t), is

mX(t) = E[etX ] =
∫ ∞

0
etxλe−λxdx = λ

∫ ∞

0
e(t−λ)xdx

= λ
e(t−λ)x

t− λ

∣∣∣∣∣
∞

0

=

{
∞, t− λ > 0,

λ
λ−t t− λ < 0

.

If an MGF exists, then mX(t) is continuously differentiable in some neighborhood of
the origin. If we differentiate the MGF r times with respect to t, and let t→ 0, we obtain

dr

dtr mX(0) = E[Xr] ≡ µr,

which, for the exponential distribution, leads to

µr =
r!
λr .

Another important property of the exponential distribution is memorylessness, which
can be formulated by means of the conditional probability.

Theorem 1. An exponentially distributed random variable X obeys the relation

P(X > x1 + x2|X > x1) = P(X > x2), ∀x1, x2 ≥ 0.

Proof.

P(X > x1 + x2|X > x1) =
P(X > x1 + x2 ∩ X > x1)

P(X > x1)
=

=
P(X > x1 + x2)

P(X > x1)
=

=
e−λ(x1+x2)

e−λx1
=

= e−λx2 ≡ P(X > x2),

In the proof, we used the fact that P(X > x) = 1− Fλ(x) = e−λx ≡ Fλ(x). The func-
tion Fλ(x) is called the complementary cumulative distribution function (CCDF) and plays
a central role in the context of physical applications of the exponential distribution.

When we consider the transmission of light through an optical fiber, we encounter
losses, which are caused by absorption and scattering. This phenomenon is called the
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attenuation of an optical fiber. To quantify the photon loss, we follow the Beer–Lambert
law, which measures the amount of light lost between the input and output:

I(L) = I0 10−αL, (3)

where I(L) denotes the output power after the transmission through a fiber of the length L,
I0 represents the input power, and α accounts for the attenuation. The attenuation coefficient
α depends on the properties of the fiber. Recently, the Beer–Lambert law has already been
implemented to study how a beam of photons is being attenuated by investigating the
evolution of the Fock state representing the number of photons [32].

In physics, the exponential distribution can be applied to every process that involves
an exponential decay; for example, a sample of a radionuclide that undergoes radioactive
decay to a different state. Here, the Beer–Lambert law (3) can be equivalently written as
I(L) = I0 exp(−λL), where λ ≡ ln 10 α. Furthermore, in the quantum regime, it implies
that a single photon has been lost on the path L with the probability 1− exp(−λL), whereas
exp(−λL) denotes the probability that it has survived. In other words, the Beer–Lambert
law provides the CCDF for this process. Therefore, in the present manuscript, the distance
that a photon covers before vanishing can be treated as a variable with the exponential
distribution L ∼ Exp(λ).

The process of attenuation on the fundamental quantum level is in agreement with
the memorylessness of the exponential distribution. If a photon travels through a fiber, one
may assign time-dependent probabilities to the basis vectors in the Fock space [32]

$(L) =
(

1− e−λL
)
|0〉〈0|+ e−λL |1〉〈1| , (4)

where |0〉 represents the state when the photon has already vanished, and |1〉 is the sit-
uation when the photon keeps traveling. However, if, at some point, we witness the
presence of the photon, the state collapses to |1〉 and the decay starts over again. Thus, the
statistical property of memorylessness is equivalent to the quantum collapse that occurs
upon measurement.

3. General Notes on Statistical Estimators

Estimators are used for calculating an estimate of a given quantity based on observed
data. Let θ = (θ1, . . . , θk) denote the parameters that need to be determined (the estimand).
Moreover, let Θ stand for the parameter space. The unknown parameters characterize
the distribution of the random variable X. The sample space of all possible values of X is
denoted by Ω. An estimator, denoted by θ̂, is a function of the data that maps the observed
outcomes onto the parameter space, i.e., θ̂ : Ω→ Θ [33].

Suppose that a sample of n observations is drawn, resulting in the values: X1, X2, . . . , Xn.
To clarify the notation, we denote the mean of the sample by X. In addition, the ob-
served values can be arranged in the non-decreasing sequence, which is denoted by:
X1:n ≤ X2:n ≤ . . . ≤ Xn:n. In particular, we have X1:n = min{X1, X2, . . . , Xn} and
Xn:n = max{X1, X2, . . . , Xn}.

Henceforth, Xk:n shall be called the k−th order statistic [34]. In general, any mea-
surable function S : Ω → Rk of the sample shall be called a statistic and denoted by
S(X1, X2, . . . , Xn). From this definition, we see that an estimator is a kind of statistic.

We revise several types of estimators that can be applied in the exponential model.

3.1. Estimator of Moments

Assume that, for every θ ∈ Θ, there exists a finite moment Eθ [Xr] for r = 1, 2, . . . , n.
In general, every moment will be a known function of the k parameters.



Photonics 2022, 9, 568 5 of 19

Definition 2. Then, the estimators θ̂ = (θ̂1, . . . , θ̂k) of the parameters θ = (θ1, . . . , θk) determined
by the method of moments are the solutions of the system:

Eθ [X] = X = 1
n

n
∑

i=1
Xi,

Eθ [(X−Eθ [X])j] = 1
n

n
∑

i=1
(Xi − X)j, j = 2, . . . , k

with respect to θ.

The fact that θ̂ is an estimator of moments shall be denoted by θ̂ ∼ EM[θ].

3.2. Quantile Estimator

First, let us define the empirical distribution function (EDF), denoted by F̂n(y), which
is associated with the empirical measure of a sample

F̂n(y) :=
1
n

n

∑
i=1

1(−∞; y](Xi),

where the indicator function 1A : X → {0, 1} is defined as

1A(x) =

{
1 if x ∈ A ,
0 if x /∈ A .

For the EDF, one can find that the p-th quantile is given by X[np]+1:n, where [y] denotes
the integer part of y. Then, we adopt the following definition of the quantile estimator
(denoted as θ̂ ∼ QE[θ]).

Definition 3. The estimator θ̂ = (θ̂1, . . . , θ̂k) of the parameters θ = (θ1, . . . , θk) determined by
the quantile method are the solutions of the system

F−1
θ (pi) = X[npi ]+1:n where i = 1, 2, . . . , k, (5)

for some selected 0 < p1 < . . . < pk < 1. The symbol F−1
θ represents the quantile function

associated with the CDF of the random variable, i.e., Fθ(x).

3.3. Minimum-Variance Unbiased Estimator

Let us start by defining the property of unbiasedness, assuming that g(θ) represents
some function of the parameters θ.

Definition 4. g(θ̂) is an unbiased estimator of g(θ) (denoted by UE[g(θ)]) if and only if

Eθ [g(θ̂)] = g(θ) ∀ θ ∈ Θ.

In other words, an estimator is said to be unbiased when the estimator’s expected
value and the true value of the parameter being estimated are the same. In addition to
unbiasedness, an estimator can satisfy the minimum-variance property.

Definition 5. g(θ̂) is a minimum-variance unbiased estimator of g(θ) (denoted g(θ̂) ∼ MVUE[θ])
if and only if

∀ Û(X) ∼ UE[g(θ)] ∀ θ ∈ Θ E[(g(θ̂)− g(θ))2] 6 Eθ [(Û(X)− g(θ))2].

3.4. Maximum Likelihood Estimator

The likelihood function of n random variables X1, X2, . . . , Xn is defined to be the joint
density of the n random variables, say fθ(X1, X2, . . . , Xn), which is considered to be a
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function of θ. In particular, if X1, X2, . . . , Xn is a random sample from the density fθ(x),
then the likelihood function is fθ(X1) fθ(X2) . . . fθ(Xn). To remind ourselves that we think
of the likelihood function as a function of θ (while the observed sample is fixed), we use
the notation L(θ) : Θ→ R for the likelihood function [31].

Definition 6. θ̂ is a maximum likelihood estimator (θ̂ ∼ MLE[θ]) of θ if and only if

∀ x ∈ Ω L(θ̂(x)) = sup
θ∈Θ
L(θ).

Finally, let us note that, when θ̂ ∼ MLE[θ], then g(θ̂) ∼ MLE[g(θ)].

4. Estimators for the Exponential Distribution

Having summarized general definitions of estimators, we can move on to the exponen-
tial distribution, which is the center of attention for this paper. As explained in Section 2,
the exponential distribution is characterized by one parameter, λ, which is considered the
estimand in our framework.

4.1. Estimator of Moments

By following the definition of the estimator of moments, Definition 2, and imple-
menting the expected value for the exponential distribution (1), we arrive at the following
equation:

Eλ[X] =
1
λ
= X,

which can be solved straightforwardly as

λ̂EM =
1
X

.

4.2. Quantile Estimator

Let us begin with finding the quantile function, which is the inverse to the CDF of the
exponential distribution. We obtain

F−1
λ (x) = − 1

λ
ln (1− x).

From Definition 3, we have

F−1
λ (p) = X[np]+1:n ≡ ξ̂p

for any 0 < p < 1. One obtains

λ̂
p
QE = − ln (1− p)

ξ̂p
,

which, in a particular case of p = 1/2, takes the form

λ̂0.5
QE = −

ln 1
2

ξ̂ 1
2

=
ln 2
ξ̂ 1

2

.

4.3. Minimum-Variance Unbiased Estimator

To define MVUE[θ] for the exponential model, we need to revise several definitions
and theorems.
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Definition 7 (Sufficient statistic.). A statistic S(X1, X2, . . . , Xn) is a sufficient statistic for a
family of distributions P = {Pθ : θ ∈ Θ}, if, for any set of events F ∈ Fn and for any value of the
statistic, the conditional distribution

Pθ((X1, . . . , Xn) ∈ F|S = s)

does not depend on θ.

Definition 8 ([31], Complete family of densities). Let X1, X2, . . . , Xn denote a random sample
from the density fθ(x) with the parameter space Θ, and let S = S(X1, X2, . . . , Xn) be a statistic.
The family of densities Pθ of S is defined to be complete if and only if Eθ [g(S)] = 0 for all θ ∈ Θ
implies that Pθ [g(S) = 0] = 1 for all θ ∈ Θ, where g(S) is a statistic. In addition, the statistic S is
said to be complete if and only if its family of densities is complete.

Theorem 2 (Lehmann–Scheffe theorem). Let X1, X2, . . . , Xn be a random sample from the
density fθ(x). Suppose S = S(X1, X2, . . . , Xn) is a complete sufficient statistic for θ. If φ is a
statistic such that E[φ(S)] = θ, then φ(S) ∼ MVUE[θ].

Theorem 3 (Factorization theorem). A statistic S = S(X1, X2, . . . , Xn) is sufficient if and only
if the joint density factors as

fθ(x1, . . . , xn) = gθ(S(x1, . . . , xn))h(x1, . . . , xn), θ ∈ Θ,

where the function h(x1, . . . , xn) is non-negative and does not involve the parameter θ, and the
function gθ(S(x1, . . . , xn)) is non-negative and depends on X1, X2, . . . , Xn only through the
function S(X1, X2, . . . , Xn).

Furthermore, we utilize the concept of the exponential family, which, in general, can
be extended to a vector parameter.

Definition 9. A class of distributions is said to belong to the exponential family if the PDF can be
written as

fθ(x) = exp

(
k

∑
i=1

ci(θ)Ti(x)− B(θ)

)
h(x),

where h(x), B(θ), ci(θ), and Ti(x) are known functions.

The statistics {ci(θ)} can help to introduce a natural family of parameters. For a param-
eter vector θ = (θ1, . . . , θk) ∈ Θ, we define a set Θ̃ to be the natural family
of parameters:

Θ̃ = {θ̃ = (θ̃1, . . . , θ̃k) = (c1(θ), . . . , ck(θ)) : θ ∈ Θ}.

The main application of the exponential family does not relate to finding sufficient
statistics, but to showing that a sufficient statistic is complete since this concept is useful in
obtaining the best estimators.

Theorem 4. IfP is an exponential family of densities and a natural family of parameters Θ̃ = C(Θ)
contain a non-empty k−dimensional open interval, then the statistic (T1(x), . . . , Tk(x)) is complete.

By following the above definitions and theorems, one can compute a sufficient and
complete statistic for the exponential distribution. The joint density can be expressed as

fλ(x1, . . . , xn) = λn exp

(
−λ

n

∑
i=1

xi

)
1R+

(x1:n) = exp

(
−λ

n

∑
i=1

xi + n ln λ

)
1R+

(x1:n).
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Based on Theorem 3, we know that the function

T = T (X1, . . . , Xn) =
n

∑
i=1

Xi

is a sufficient statistic. Furthermore, since −λ ∈ (−∞, 0), then, from Theorem 4, we have
that S is a complete statistic. In addition, we know that the sum of n random variables
such that X ∼ Exp(λ) has the distribution Γ(n, λ), where n is the shape parameters and λ
represents the rate parameter. The PDF for the distribution Γ(n, λ) is given by

f (x) =
λn

Γ(n)
xn−1e−λx1[0,∞)(x),

where Γ(n) =
∫ ∞

0 xn−1e−xdx. Now, we proceed to computing the expected value of n−1
T :

Eλ

[
n− 1

T

]
= (n− 1)

∫ ∞

0

1
x

λn

Γ(n)
xn−1e−λxdx

= (n− 1)
λ

n− 1

∫ ∞

0

λn−1

Γ(n− 1)
xn−2e−λxdx = λ,

where we use the property of the Γ distribution

Γ(n) = (n− 1)Γ(n− 1)

as well as the value of the integral

∫ ∞

0

λn−1

Γ(n− 1)
xn−2e−λxdx = 1,

which comes straightforwardly from integrating the PDF of Γ(n− 1, λ). As a result, we see
that λ̂MVUE = n−1

T is an unbiased estimator of the parameter λ. In addition, by following
the Lehmann–Scheffe theorem, we notice that this estimator

λ̂MVUE =
n− 1
n
∑

i=1
Xi

=
n− 1
nX

(6)

is a minimum-variance estimator since it is a function of a sufficient and complete statistic,
i.e., λ̂MVUE ∼ MVUE[λ].

For applications of the estimation theory, the class of MVUE is especially important
due to the fact that it minimizes the statistical dispersion. The spread of the results is a key
factor that limits the accuracy of the analysis. However, the estimator (6) guarantees the
lowest achievable scatter. To quantify this aspect, let us compute

Var[λ̂MVUE] = Var

 n− 1
n
∑

i=1
Xi

 = E


 n− 1

n
∑

i=1
Xi


2−

E

 n− 1
n
∑

i=1
Xi




2

= E


 n− 1

n
∑

i=1
Xi


2− λ2,
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where the first element can be calculated based on the properties of the Γ distribution

E


 n− 1

n
∑

i=1
Xi


2 = (n− 1)2 E


 1

n
∑

i=1
Xi


2 = (n− 1)2

∫ ∞

0

1
x2

λn

Γ(n)
xn−1e−λxdx

= (n− 1)2 λ2

(n− 1)(n− 2)

∫ ∞

0

λn−2

Γ(n− 2)
xn−3e−λxdx

=
n− 1
n− 2

λ2,

which finally leads to

Var[λ̂MVUE] =
n− 1
n− 2

λ2 − λ2 =
λ2

n− 2
. (7)

4.4. Maximum Likelihood Estimator

The likelihood function for the exponential distribution takes the form

L(λ) = f (λ; X1, . . . , Xn) = λe−λX1 . . . λe−λXn = λne−λ ∑n
i=1 Xi .

Since the natural logarithm is an increasing function, we can maximize either L(θ) or
lnL(θ). For convenience, we compute

lnL(λ) = n ln λ− λ
n

∑
i=1

Xi.

Then, we obtain
∂ lnL(λ)

∂λ
=

n
λ
−

n

∑
i=1

Xi.

One can easily solve ∂ lnL(λ)
∂λ = 0 by finding

λ̂MLE =
n

n
∑

i=1
Xi

=
1
X

.

Since ∂2 lnL(λ)
∂λ2 = − n

λ2 < 0, we know that λ̂MLE corresponds to the maximum value of
the likelihood function. One can note that the estimator λ̂MLE is equivalent to λ̂EM.

5. Estimators for the Type II Censored Data

In this part, we propose estimators of the exponential distribution for the type II
censored data. Let X1, . . . , Xn be a random sample from the same distribution. We say that
we perform type II censoring of the data if we observe exactly r first results (naturally, r < n),
assuming that the observations are arranged in non-decreasing order. In other words, type
II censored data consist of the r consecutive order statistics: X1:n, . . . , Xr:n [35–38].

The focus on censored data makes the estimation theory more practicable. In real
experiments, we have to deal with uncertainties and deficiencies that limit our capability
to measure a sufficient set of data. Therefore, it appears relevant to search for estimators
suited for censored data, which can be applied in realistic circumstances.

Before determining the exact forms of estimators, we need to revise the properties of
the order statistics.
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Theorem 5. Suppose X1, . . . , Xn is a sample taken from a distribution characterized by the PDF
denoted by fλ and CDF Fλ. Then, the k-th order statistic, Xk:n, has its own PDF and CDF in the
forms [39]:

fk:n(x) = n
(

n− 1
k− 1

)
fλ(x)Fk−1

λ (x)(1− Fλ(x))n−k,

Fk:n(x) = P(Xk:n 6 x) =
n

∑
i=k

(
n
i

)
Fi

λ(x)(1− Fλ(x))n−i.

Furthermore, we can also find a modified formula for the joint density that fits
the censoring.

Theorem 6. The joint density for the sequence of r < n order statistics X1:n, . . . , Xr:n is given by

f1,...,r(x1:n, . . . , xr:n) =
n!

(n− r)!
f (x1:n) . . . f (xr:n)(1− F(xr:n))

n−r,

for −∞ < x1:n < . . . < xr:n < +∞.

In particular, Theorems 5 and 6 can be applied to the exponential distribution (see
Definition 1) to determine the PDF and CDF for the k-th order statistic, as well as the joint
density for r consecutive order statistics. One obtains the following:

fk:n(x) = n
(

n− 1
k− 1

)
λe−λx(n+1−k)(1− e−λx)k−11[0,∞)(x),

Fk:n(x) =
n

∑
i=k

(
n
i

)
(1− e−λx)ie−λx(n−i)1[0,∞)(x),

f1,...,r(x1:n, . . . , xr:n) =
n!

(n− r)!
λr exp

[
−λ

(
r

∑
i=1

xi:n + (n− r)xr:n

)]
. (8)

The properties of the exponential distribution enumerated in (8) are implemented to
determine the explicit forms of three kinds of estimators suited for type II censored data:
MVUE, MLE, and best linear unbiased estimator (BLUE).

5.1. Minimum-Variance Unbiased Estimator for Censored Data

The results presented in (8) along with the factorization theorem allow us to state that

Tr =
r

∑
i=1

Xi:n + (n− r)Xr:n (9)

is a sufficient statistic. Furthermore, we know that −λ ∈ (−∞, 0), which implies on the
basis of Theorem 4 that Tr is a complete statistic. We formulate and prove the theorem.

Theorem 7. For type II censored data, X1:n, . . . , Xr:n, selected from an exponential distribution,
the rate parameter, λ, can be estimated with the MVUE given by

λ̂MVUE(r) =
r− 1

Tr
(10)

Proof. Let us start by studying the distribution of the statistic Tr.
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Suppose Y1, . . . , Yn are selected from the exponential distribution characterized by
λ = 1. Then, one can prove that these figures are related to the order statistics by [34]

Y1 = nX1:n,
Y2 = (n− 1)(X2:n − X1:n),
...
Yn = Xn:n − Xn−1:n

⇔


X1:n = Y1

n
X2:n = Y1

n + Y2
n−1

...
Xn:n = Y1

n + Y2
n−1 + . . . + Yn

1 .

We see that Xi:n =
i

∑
k=1

Yk
n−k+1 for i = 1, . . . , n. Thus,

Tr =
r

∑
i=1

Xi:n + (n− r)Xr:n

=
Y1

n
+

Y1

n
+

Y2

n− 1
+ . . . +

Y1

n
+

Y2

n− 1
+ . . . +

Yr

n− r + 1

+ (n− r)
(

Y1

n
+

Y2

n− 1
+ . . . +

Yr

n− r + 1

)
= Y1

( r
n
+ 1− r

n

)
+ Y2

(
r− 1
n− 1

+
n

n− 1
− r

n− 1

)
+ . . .

+ Yr

(
1

n− r + 1
+

n
n− r + 1

− r
n− r + 1

)
= Y1 + Y2 + . . . + Yr.

Again, we use the fact that
r
∑

i=1
Yi, which is a sum of variables from the exponential

distribution, has the distribution Γ(r, n). Then, it follows that

E
[

r− 1
Tr

]
= (r− 1)E

(
1
Tr

)
= (r− 1)

+∞∫
0

1
t

λr

Γ(r)
tr−1e−λtdt

= (r− 1)
λ

r− 1

+∞∫
0

λr−1

Γ(r− 1)
tr−2e−λtdt = λ.

The last integral gives 1 since it is computed over the entire distribution Γ(r− 1, λ).
Finally, based on the Theorem 2, we can conclude that

λ̂MVUE(r) =
r− 1

Tr
=

r− 1
r
∑

i=1
Xi:n + (n− r)Xr:n

satisfies the conditions for MVUE, which finishes the proof.

In addition, one can notice that, for r = n, we have λ̂MVUE(r) = λ̂MVUE, which means
that, without the censoring, our estimator agrees with the formula for the complete set of
data; see (6).

One can also compute the variance of λ̂MVUE(r) and obtain

Var
[
λ̂MVUE(r)

]
=

λ2

r− 2
. (11)

The proof of (11) shall be skipped since one can use the same reasoning as in the case
of obtaining Var

[
λ̂MVUE

]
; see (7). Here, Tr has the distribution Γ(r, λ), which allows one to

proceed analogously as in Section 4.3.
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The result (11) informs us about the impact of the censoring on the reliability of
estimation. Naturally, as we reduce the number of observations included in the model,
we expect to increase the uncertainty of estimation. This feature is reflected in (11), which
shows that, the less data we include, the more variance we obtain.

5.2. Maximum Likelihood Estimator for Censored Data

MLE is also obtainable with a set of censored data X1:n, . . . , Xr:n. We propose and
prove a theorem.

Theorem 8. Let X1, . . . , Xn denote a sample of variables with the exponential distribution charac-
terized by the rate parameter λ. The parameter λ can be estimated based on the first r order statistics,
X1:n, . . . , Xr:n, from the following MLE:

λ̂MLE(r) =
r
Tr

, (12)

where the statistic Tr was defined in (9).

Proof. Since we know the statistics of r consecutive order statistics from the exponential
distribution, we can formulate the maximum likelihood function for type II censored set
of data

L(λ) = n!
(n− r)!

r

∏
i=1

f (Xi:n)(1− F(Xr:n))
n−r

=
n!

(n− r)!

(
r

∏
i=1

λe−λXi:n

)(
eXr:n

)n−r

=
n!

(n− r)!
λr exp

[
−λ

(
r

∑
i=1

Xi:n + (n− r)Xr:n

)]
.

In this approach, we search for the maximum value of L(λ). To achieve this, we
compute the natural logarithm of L(λ) along with its first derivative:

l(λ) ≡ lnL(λ) = ln
n!

(n− r)!
+ r ln λ− λ

(
r

∑
i=1

Xi:n + (n− r)Xr:n

)
,

∂l(λ)
∂λ

=
r
λ
−
(

r

∑
i=1

Xi:n + (n− r)Xr:n

)
.

Then, by solving ∂l(λ)
∂λ = 0, we obtain the estimator:

λ̂MLE(r) =
r

∑r
i=1 Xi:n + (n− r)Xr:n

=
r
Tr

. (13)

Finally, we check that the second derivative is negative:

∂2l(λ)
∂λ2 = − r

λ2 < 0

for all λ, which implies that we maximize the likelihood function and that λ̂MLE(r) is a
legitimate estimator.

Finally, let us notice that, for r = n, one obtains λ̂MLE(r) = λ̂MLE ≡ 1
X

. This observa-
tion comes as no surprise since, without the censoring, both approaches are expected to
deliver the same estimator.
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5.3. Best Linear Unbiased Estimator

For order statistics, one can define linear estimators, i.e., linear combinations of the

order statistics V̂ =
n
∑

i=1
aiXi:n, where ai ∈ R are some constant coefficients. Then, one can

introduce the notion of best linear unbiased estimator (BLUE) [40].

Definition 10. An unbiased linear estimator V̂ =
n
∑

i=1
aiXi:n of the parameter function g(θ) is

called best linear unbiased estimator (BLUE) if and only if

∀
n

∑
i=1

ciXi:n ∼ UE[g(θ)] ∀ θ ∈ Θ Eθ

( n

∑
i=1

aiXi:n − g(θ)

)2
 6 Eθ

( n

∑
i=1

ciXi:n − g(θ)

)2
.

The goal of this section is to find a minimum-variance BLUE that is based on first r
order statistics (1 < r 6 n), X1:n, . . . , Xr:n, to estimate the scale parameter β ≡ 1

λ of the
exponential distribution. We formulate and prove a theorem.

Theorem 9. Let X1, . . . , Xn denote a sample of variables with the exponential distribution charac-
terized by the rate parameter λ. The scale parameter β can be estimated based on the first r order
statistics, X1:n, . . . , Xr:n, from the following BLUE:

β̂BLUE(r) =
r

∑
i=1

ciXi:n =
1
r

(
r

∑
i=1

Xi:n + (n− r)Xr:n

)
.

Proof. The estimator has the form:

β̂BLUE(r) =
r

∑
i=1

ciXi:n, (14)

where the coefficients ci have to be properly determined to ensure that λBLUE(r) is unbiased
and features minimal variance. Let us notice that the random variables

Z1 = nX1:n

Zi = (n− i + 1)(Xi:n − Xi−1:n), i = 2, . . . , r,

are independent and have the exponential distribution with the rate parameter λ. One can
use these variables to determine the coefficients ci. First, let us note that the estimator (14)
can be rewritten as

β̂BLUE(r) =
r

∑
i=1

ciXi:n

=
r

∑
i=1

ciX1:n −
r

∑
i=1

(Xi:n − Xi+1:n)
r

∑
j=i+1

cj

= X1:n

r

∑
i=1

ci +
r

∑
i=1

(Xi+1:n − Xi:n)
r

∑
j=i+1

cj.

Then, if we denote

di ≡
1

n− i + 1

r

∑
j=i

cj, i = 1, . . . , r, (15)

we obtain

β̂BLUE(r) =
r

∑
i=1

ciXi:n =
r

∑
i=1

diZi:n.



Photonics 2022, 9, 568 14 of 19

Next, we move on to computing the expected value of the estimator β̂BLUE(r):

E
[
β̂BLUE(r)

]
= E

[
r

∑
i=1

diZi:n

]
=

r

∑
i=1

diE[Zi:n] = β
r

∑
i=1

di.

Since β̂BLUE(r) needs to be unbiased, we obtain a necessary condition for BLUE:

r

∑
i=1

di = 1. (16)

To ensure the minimal variance, we consider

min
d1, ..., dr

E

( r

∑
i=1

diZi:n − β

)2
, (17)

which can be elaborated on by taking advantage of the necessary condition (16):

E

( r

∑
i=1

diZi:n − β

)2
 = E

( r

∑
i=1

di(Zi:n − β)

)2


=
r

∑
i=1

d2
i Var Zi +

r

∑
i 6=j

didj Cov ZiZj

= β2
r

∑
i=1

d2
i

= β2

r−1

∑
i=1

d2
i +

(
1−

r−1

∑
i=1

di

)2
,

where we used the fact that dr = 1−
r−1
∑

i=1
di.

As a result, in order to determine the minimal value of (17), we need to consider
the following:

min
d1, ..., dr

r−1

∑
i=1

d2
i +

(
1−

r−1

∑
i=1

di

)2
. (18)

By differentiating (18) with respect to di for i = 1, . . . , r− 1, i we obtain the conditions
for optimization

∂

∂di

r−1

∑
j=1

d2
j +

(
1−

r−1

∑
j=1

dj

)2
 = 2di − 2

(
1−

r−1

∑
j=1

dj

)
= 2

(
di − 1−

r−1

∑
j=1

dj

)
= 0,

which leads to a system of equations:

di = 1−
r−1

∑
j=1

dj, j = 1, . . . , r− 1.

We notice that all coefficients di must be equal for i = 1, . . . , r− 1. Let us, then, use
one symbol d ≡ di, which gives

d = 1−
r−1

∑
i=1

d = 1− (r− 1)d
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and, finally, we arrive at the result

d = di =
1
r

, i = 1, . . . , r− 1.

From the necessary condition (16), we obtain

dr = 1−
r−1

∑
i=1

=
1
r

.

Since, for the BLUE, we need ci, we calculate those from (15):

1
n− i + 1

r

∑
j=i

cj =
1
r

r

∑
j=i

cj =
n− i + 1

r
, i = 1, . . . , r,

which leads to

cr =
n− r + 1

r
,

ci =
r

∑
j=i

cj −
r

∑
j=i+1

cj =
n− i + 1

r
− n− (i + 1) + 1

r
=

1
r

for i = 1, . . . , r− 1.

If we substitute the results into (14), we obtain the explicit formula for the BLUE:

β̂BLUE(r) =
r

∑
i=1

ciXi:n =
1
r

(
r

∑
i=1

Xi:n + (n− r)Xr:n

)
,

which finishes the proof.

6. Performance Analysis of the Estimators for Censored Data

In this section, we propose a numerical framework to evaluate the efficiency of the
estimators that operate on censored data. In particular, we compare the performance of
λ̂MVUE(r) and λ̂MLE(r) for different values of r.

First, let us consider a typical fiber with the attenuation coefficient α = 0.5 dB/km.
We know that the photon loss is characterized by an exponential distribution with the
rate parameter λ = ln 10 α. Thus, we can simulate an experimental scenario by randomly
generating a sample of 107 observations such that X ∼ Exp(λ). Wolfram Mathematica 10.0
was used to generate random numbers and compute the estimators with order statistics.
Each piece of data corresponds to the distance that a photon has covered before absorption
(or scattering). To quantify the performance of the statistical estimators, we did not focus
on specific results of estimation, but we computed the relative error

δx :=
|λ− λ̂x|

λ
100 %, (19)

where λ̂x denotes any of the estimators considered. For convenience, we expressed the
estimation error as a percentage of the actual rate parameter. This approach allowed us
to investigate how the quality of estimation changes when we reduce the initial set of
observations by leaving only the first r order statistics. The percent errors that depend on r
are denoted by δMVUE(r) and δMLE(r) for the respective estimators λ̂MVUE(r) and λ̂MLE(r).
The results of the numerical simulation are collected in Table 1.
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Table 1. The percent errors of the rate parameter estimation. The results are rounded to two significant
figures. The estimators λ̂MVUE(r) (10) and λ̂MLE(r) (12) were utilized.

r δMVUE(r) δMLE(r)

107 0.024% 0.024%
106 0.037% 0.036%
105 0.050% 0.051%
104 0.53% 0.52%
103 1.3% 1.2%
102 3.4% 4.5%
10 15% 5.9%

In the first place, one can notice that the first row with r = 107 corresponds to
an estimation with the complete set of data. It was already explained that, in this case,
λ̂MVUE(r) and λ̂MLE(r) are equivalent to standard estimators for the exponential model. We
see that r = 107 observations are sufficient for a reliable estimation of the rate parameter and,
consequently, determining the attenuation coefficient α. If we decrease r, which means that
we incorporate only a portion containing r consecutive order statistics, we observe that the
estimation error increases monotonically for both estimators. This tendency was anticipated
since, by performing censoring, we reject a part of the highest-valued observation. This
implies that a censored set of data is not representative for the distribution, which leads
to a more significant error in parameter estimation. We see, however, that, up to r = 105,
the growth of the error is not critical. By further censoring the data, we obtain results
that are more distorted due to the incomplete representation of the distribution. Finally,
if r = 10, which means that we implement only the lowest 10 observation, we obtain
unreliable results.

In addition, we notice that the performance of λ̂MVUE(r) for r = 10 and r = 100 differs
considerably from λ̂MLE(r), whereas, for the other values of r, both estimators deliver
similar results. This discrepancy for a low number of statistics results from different figures
in the numerators of λ̂MVUE(r) and λ̂MLE(r), which leads to a significant difference when
only the lowest order statistics are included in the estimation. In conclusion, the feasibility
study presented in this section allows one to verify how many observations are needed to
guarantee reliable parameter estimation.

7. Discussion

In the paper, we considered applications of the estimation theory to the exponential
distribution. The problem is formulated on the assumption that a measurable quantity
is represented by a random variable X with a PDF fθ(x) that depends on an unknown
parameter θ. Then, on the basis of the observed sample values X1, . . . , Xn, it is desired
to estimate the value of the unknown parameter θ or the value of some function of the
parameter, g(θ). We followed the approach called the parametric point estimation with the
goal of determining some statistic, say S(X1, . . . , Xn), to represent the unknown parameter.

The paper contains a brief revision of general concepts of estimation, included in
Section 3. Then, in Section 4, we summarized the most common estimators for the expo-
nential distribution, where the goal was to determine the rate parameter λ. We presented
four types of estimators that operate on the complete set of data, i.e., X1, . . . , Xn.

In physics, the exponential distribution plays a central role in decay processes. In
particular, the Beer–Lambert law (3) describes the attenuation that involves a decline in
the intensity of light as the beam travels through a fiber. This macroscopic law has been
implemented to develop a quantum picture for the photon loss. First of all, we have
postulated that the distance that a photon covers before absorption (or scattering) has ah
exponential distribution, i.e., L ∼ Exp(λ). In this context, the rate parameter λ is connected
to the attenuation coefficient α that describes the properties of the optical link. Therefore,
the estimators presented in Section 4 can be applied to characterize fibers by determining
their attenuation coefficients. In addition, the estimation theory allows us to establish
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minimum-variance estimators that are particularly well-suited for physical applications.
The variance, which is an indicator of statistical dispersion, conveys information about
the reliability of the measurement. A higher variance means that the scheme provides
different results under unchanged conditions. However, we are interested in consistent
measurement procedures that feature only insignificant scatter within the delivered results.
For this reason, the class of MVUE, which also guarantees validity through unbiasedness,
appears very promising for further applications.

The key part of the paper relates to the estimators corresponding to type II censored
data, which were introduced in Section 5. In such a case, operating with an incomplete set of
measurements is assumed, i.e., we possess r consecutive order statistics: X1:n, . . . , Xr:n. This
problem is intrinsically linked to the nature of physical measurement. For the exponential
distribution, the random variable can be observed within the interval: X ∈ [0; ∞). However,
if X denotes a physical observable (e.g., fiber length or time), it cannot be tracked up to
infinity. Consequently, the set of physically obtainable data is always truncated according
to our inability to capture extremely large values of the random variable. This inherent
limitation of measurement becomes a motivation to search for statistical estimators that
can produce reliable results with realistic sets of data.

In this paper, three estimators for type II censored data have been presented. Two of
them, i.e., MVUE and MLE, allow one to estimate the rate parameter (λ) of the exponential
distribution, whereas the third (BLUE) provides a formula for the scale parameter (λ−1).
Any of the estimators can be implemented with a realistic set of data. Special attention,
however, has been paid to MVUE, where an explicit formula for the variance can be given.
Thanks to this, we can investigate how the reliability of the estimation declines as we
reduce the set of data.

Numerical simulations have been performed to test the efficiency of the estimators
(MVUE and MLE) with censored data. We assumed a specific value of the attenuation
coefficient, which allowed us to generate a set of observations. To quantify the performance
of the estimators, we computed the percent errors for different numbers of order statistics
included in the estimation. The results demonstrate how the quality of estimation degener-
ates as we truncate the initial set of data. By following the method presented in this paper,
one can conduct similar simulations with another attenuation coefficient or other numbers
of statistics.

8. Conclusions

This paper provides statistical tools for analyzing the photon loss in fiber-optic commu-
nication. The attenuation coefficient can be determined based on the estimators presented
in this work, including the methods intended for censored (truncated) sets of data. The
results pave the way for the analytical treatment of the attenuation process. In the future,
other types of distributions relevant to physics can be investigated to determine reliable
estimators of the parameters.
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Abbreviations
The following abbreviations are used in this manuscript:

BLUE best linear unbiased estimator
CCDF complementary cumulative distribution function
CDF cumulative distribution function
EDF empirical distribution function
EM estimator of moments
MGF moment generating function
MLE maximum likelihood estimator
MVUE minimum-variance unbiased estimator
PDF probability density function
QE quantile estimator
UE unbiased estimator
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