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Abstract: Transverse mode instability (TMI) has been recognized as onse of the primary limiting
factors for the average power scaling of high-brightness fiber lasers. In this work, a static model of the
TMI effect based on stimulated thermal Rayleigh scattering (STRS) is established while considering
the four-wave mixing (FWM) effect. The focus of the model is to theoretically investigate the TMI
phenomenon and threshold power dominated by FWM. The gain saturation effect and fiber laser
system parameters, such as seed power, pumping direction, and core numerical aperture, which have
not been considered in the previous perturbation theory model, are also investigated. This work will
enrich the perturbation theory model and extend its application scope in TMI mitigation strategies,
providing guidance for understanding and suppressing TMI.

Keywords: transverse mode instability; fiber amplifier; gain saturation

1. Introduction

Since the TMI phenomenon was first reported in 2010 [1], TMI has become one of
the main limitations for the power scaling of high-brightness fiber lasers [2–5]. Although
TMI does not directly restrict the power scaling, it will cause a sharp deterioration in
beam quality and affect the stability of the laser system [6–10]. So far, much evidence has
indicated that TMI may originate from STRS [11–14], according to which researchers have
established various TMI static models based on STRS [12,15–18]. These models analyze the
nonlinear coupling process between the fundamental mode and the higher-order modes to
investigate the TMI characteristics under the assumption that the phase shift between the
mode interference pattern and the refractive index grating is usually π/2.

Compared with the above models, the perturbation theory model proposed by Zervas
can not only obtain similar results as the TMI static model based on STRS [19], but also
has a broader perspective for investigating the TMI phenomenon induced by four-wave
mixing (FWM) [20]. The model indicates that high-power fiber laser systems will become
more sensitive to small perturbations at high average powers, and that TMI is caused by
FWM and cross-phase modulation (XPM) under certain conditions [20]. The influence
of some factors in fiber laser systems on TMI, such as average gain, signal wavelength,
and quantum defects, is also clearly shown using a succinct TMI threshold formula [21].
However, the model’s unique threshold definition and simplified temperature solution
obscure many details of the physical processes underlying TMI, and it is unclear how
some factors, such as gain saturation, seeding power, and pump direction, affect the TMI
threshold, or whether the effects of the aforementioned factors in this model conform to
other models [22–29]. Therefore, it is necessary to study these issues in order to better
understand the TMI mechanism and mitigate the TMI effect in high-power fiber lasers.

In this work, a static model is established based on STRS and taking into consideration
FWM. The model focuses on the theoretical study of the TMI phenomenon and threshold
power dominated by FWM, where the connection between the FWM threshold and the TMI
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threshold is elucidated by analyzing the mode gain characteristics of the fiber amplifier.
Moreover, the impact of gain saturation on the maximum the TMI threshold power of
fiber amplifiers is investigated. Finally, some fiber laser system parameters, such as seed
power, pumping direction, and core numerical aperture (NA), which were previously not
considered in the perturbation theory model, are also investigated.

2. Theoretical Model

Some assumptions are made to simplify the model without loss of generality. Firstly,
it is assumed that high-power fiber laser systems have only two modes (LP01 and LPmn).
When the fiber laser system operates below or near the TMI threshold power and the
seed is injected into the fiber amplifier with near-diffraction-limited beam, although the
fiber may support multiple modes as the core radius increases, it can be ensured that the
dynamic mode coupling only occurs between LP01 and LP11 modes due to the maximum
nonlinear coupling gain of LP01 and LP11 modes [30]. Most TMI models make similar
assumptions [18,31]. Secondly, the thermal lensing effect, which has no obvious effect on
TMI induced by FWM in single core fiber amplifiers, is not considered.

Under the slow variation approximation in the time domain and space domain, the
first order Helmholtz equation can be expressed as [32]

∂Ax

∂z
− i

1
vg

∂Ax

∂t
=

1
2

gx Ax + ik0

x
ψ∗x(r, φ)∆nNLErdrdϕe−i(βxz−ωxt) (1)

E(r, φ, z, t) = ∑
x

Ax(z, t)ψx(r, φ)ei(βxz−ωxt) (2)

where vg is group velocity, g is pump gain, k0 is the propagation constant in vacuum, E is
the electric field, A(z, t) is the slow-varying amplitude, ψ(r, φ) is the normalized transverse
mode field distribution, β is the propagation constant, and ω is the circular frequency. x
and y represent LP01 and LPmn.

In high-power fiber laser systems, the temperature effect usually has a significantly
greater influence on TMI than the Kramers–Kronig (KK) effect [15,19]. By neglecting the
impact of the KK effect, the thermal nonlinear refractive index4nNL can be stated similarly
to reference [23], as:

4 nNL ≈ 4nT = kTT = ∑
x

∑
y

γxy (3)

where kT is the thermal-optical coefficient, γ is the nonlinear refractive index coefficient,
and temperature T is expressed through heat conduction Equation (4) and boundary
condition (5):

ρC
∂T(r, φ, z; t)

∂t
− κ∇2

⊥T(r, φ, z; t) = Q(r, φ, z; t) (4)

κ
∂T
∂r
|r=R + hqT|r=R = 0 (5)

where ρ, C0, and κ are fiber core density, specific heat capacity, and thermal conductivity,
respectively, Q is the fiber thermal density, and hq is the convective coefficient. R is the
radius of the optical fiber cladding. If hq fulfills infinity, the boundary condition (5) can be
simplified as follows because the refrigeration form has no significant effect on the TMI
threshold [18].

T|r=R = 0 (6)

By ignoring the background loss and photon darkening and assuming that quantum
defect is the only source of heat in the fiber, the thermal density of the fiber amplifier can
be expressed as:

Q(r, φ, z; t) = qD∑ gxy Ixy (7)

gxy =

{
g, x = y

g2/g0, x 6= y
(8)
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g(r, φ, z; t) =
g0

1 + Is/Isaturation
(9)

g0 =
Pp(σapσes − σepσas)/[Ap Ip,sat(σap + σep)]− σas/τ

Pp/(Ap Ip,sat) + 1/τ
Nion (10)

Isaturation = [Pp/(Ap Ip,sat) + 1/τ]Is,sat (11)

where Ixy = ExE∗y , the quantum defect coefficient qD = λs/λp − 1, λs(p) is the signal
(pump) wavelength, g(r, φ, z; t) is the transverse distribution of the fiber amplifier gain,
g0 is the small-signal gain, Nion is the total Yb3+ concentration, σas(p)(σes(p)) is the signal
(pump) absorption (emission) cross-section, Ap is the cladding area, Pp is the pump power,
Ip(s),sat = hc/[λp(s)(σap(s) + σep(s))].

Equations (3)–(11) are solved using the Green’s function method to obtain the nonlinear
refractive index coefficient.

γxy =
∞

∑
v=0

∞

∑
l=1

{
qDkT Jv(kvlr)

(κk2
vl − iΩρC)

s
r,φ J2

v(kvlr) cos2(vφ)

[
cos vφ

s
r,φ gxyψxψ∗y Jv(kvlr) cos vφ+

sin vφ
s

r,φ gxyψxψ∗y Jv(kvlr) sin vφ

]}
(12)

where Jv is the second Bessel function of order v, kvl is the l-th positive root of equation
Jv(kvl R) = 0, Ω = ωx −ωy.

According to the orthogonality of the modes, without considering the time domain
variation, Equation (1) can be expressed as

∂A01
∂z = 1

2 g01 A01 + i[C0101 A01 A∗01 A01 + Cmnmn Amn A∗mn A01+

C01mn A01 A∗mn + Cmn01 Amn A∗01 Amne2i(βmn−β01)z]
(13)

∂Amn
∂z = 1

2 gmn Amn + i[Cmnmn Amn A∗mn Amn + C0101 A01 A∗01 Amn+

Cmn01 Amn A∗mn A01 + C01mn A01 A∗mn A01e2i(β01−βmn)z]
(14)

Cxy = k0

x
ψ∗x(r, φ)γxy(r, φ)ψy(r, φ)rdrdφ (15)

where the first term on the right of Equations (13) and (14) is the pump gain, the second and
third terms are SPM, the fourth term is XPM, and the last term is FWM. C is the nonlinear
coupling coefficient.

If A01 � Amn, for simplification, XPM and FWM are ignored in Equation (13) and
SPM is ignored in Equation (14), then the solution of Equations (13) and (14) is obtained.

∂Pmn

∂z
= gFPmn + gCPmn + gmnPmn (16)

where
gF = 2

√
|Cmn01P01|2 − [P01Re(Cmn01)− ∆β]2 (17)

gC = −2P01Im(Cmn01) (18)

∆β = β01 − βmn (19)

Re(C) and Im(C) are the real and imaginary parts of C. The first term gF of Gmn
represents the influence of FWM on higher-order modes. The second term gC represents
the gain of XPM on higher-order modes. The term gmn is the pump gain. The output power
of LPmn mode is expressed as:

Pmn(z) = Pmn(0) exp
z∫

0

Gmn(z′)dz′ (20)
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3. Results and Discussions

According to Equations (16)–(20) in the above model, the nonlinear gain of higher-
order modes and TMI threshold power in the fiber amplifier are simulated and calculated
to explore the influence of FWM on TMI.

3.1. Nonlinear Gain of Higher-Order Modes

Most of the parameters used in the modeling are consistent to those used by Smith et al. [30],
as listed in Table 1. Unlike reference [30], the fiber core is doped with a higher concentration
of ytterbium ions, which has a higher thermal load and makes it easier to observe the
effect of FWM in the fiber amplifier [33]. Incidentally, the concentration of ytterbium ions
mentioned here can be achieved under current fiber fabrication technology. Thus, the fiber
length is also shortened to 0.5 m.

Table 1. The simulation parameters of fiber amplifiers.

Parameter Value Parameter Value

rcore 40 µm rclad 125 µm
λp 976 nm λs 1064 nm
σap 2.47× 10−24 m2 σep 2.44× 10−24

σas 5.8× 10−27 m2 σes 2.71× 10−25 m2

ncore 1.451 nclad 1.45
kT 1.2× 10−5 L 500 mm
τ 901 µs Nion 1× 1026 m−3

κ 1.38 W/K ρC 1.55× 106 J/(m3·K)

Figure 1 shows the simulation results of the amplifier specified in Table 1, where the
LP11 mode of the seed laser is evolved from the quantum noise [30]. Since TMI first occurs
between the fundamental mode and the first higher-order mode (LP11) [34,35], it is assumed
that the fiber only contains LP01 and LP11. The LP11 mode is seeded with 1 × 10−16 W [30].
The counter pump input power is 280 W, of which 0.17 W is not absorbed. The input LP01
power is 50 W and is amplified to 279 W in the output light.
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Figure 1a shows the relationship between LP11 mode gain and frequency shift at
different positions of the fiber amplifier. Figure 1b shows the gain curve at five specific
positions of Figure 1a. When the fiber position Z moves from the seed input end to the pump
end, the local gain gradually increases, and a sharp gain peak occurs at the fiber amplifier’s
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output end due to the function of FWM in Figure 1a. When Z ≤ 0.4 m, the maximizes
local gain is still at the Stokes frequency shift of ~500 Hz, as shown in Figure 1b, which is
the same as reference [30]. However, the LP11 mode with the small Stokes frequency shift
obtains the maximum gain at the position of Z = 0.45 m (Stokes frequency shift is smaller
than 100 Hz). The above result indicates that the effect of FWM can be ignored in the fiber
amplifier when Z is less than 0.4 m.

The total gain of higher-order modes is shown in Figure 2, and the LP11 mode with
a Stokes shift of ~90 Hz eventually has the maximum total gain (36.0) due to the FWM
effect. However, the maximum local gain is still at the Stokes frequency shift of ~500 Hz
at the position of Z < 0.4 m. Thus, we only focus on the LP11 mode with Stokes shifts of
~90 Hz and ~500 Hz. For simplification, it is assumed that all Stokes shift LP11 power is
~1 × 10−16 W in the seed. The output LP11 power with Stokes shift of ~90 Hz increases
from 10−6 W (green dotted line) to 0.45 W (black solid curve) due to the FWM effect. It is
obvious that the influence of FWM on the LP11 mode (90 Hz) becomes significant at the
fiber length of 0.43 m, where the power of LP11 mode (90 Hz) quickly exceeds that of the
LP11 mode (500 Hz) in Figure 2b. Therefore, the effect of FWM on higher-order modes
cannot be negligible in the 80/250 µm fiber amplifier.
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It is noted that when the signal power is 165 W, the LP11 mode with the same frequency
as the LP01 mode begins to be affected by FWM. However, until the signal power reaches
280 W, the LP11 power is still far less than 5% of the output power, which is regarded as
the threshold of TMI defined by some researchers [18,27,36]. If the TMI threshold is set
at the signal optical power of 5% in the LP11 mode of the output light, the fiber amplifier
still does not reach the trigger condition of TMI. Therefore, the FWM threshold cannot be
completely equivalent to the TMI threshold.

3.2. The Threshold of TMI Affected by Gain Saturation

In high-power fiber amplifiers, it is difficult to obtain the general TMI threshold
formula because of the variation of pump gain along the fiber. It is extremely unreasonable
to calculate the TMI threshold induced by FWM using average gain [20]. Some assumptions
need to be made in order to intuitively understand the influence of gain saturation on TMI
and directly derive a more explicit TMI threshold formula. According to reference [37],
when backward pump is applied and the seed power is comparable to the residual pump
power, the connection between the pump power and the signal power can be simplified
as follows:

P01(z) ≈
λp

λs
Pp(z) (21)
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Ignoring the amplified spontaneous emission and combining the Equations (9)–(11),
the gain can be expressed as:

g ≈ Nion
σapσes − σasσep

σap + σep
/

[
1 +

Aclad(σas + σes)

Aeff (σap + σep)

]
(22)

where Aeff is the effective mode field area of signal light and Aeff is positively proportional
to r2

core.
According to reference [20], the TMI threshold power is defined when gF starts to be

greater than 0. Thus, the TMI threshold can be obtained:

Pthr =
∆β

2max[Re(C1101)]
(23)

where 4β represents the influence of phase matching required by FWM on the TMI
threshold, and max

∣∣χi
mn
∣∣ demonstrates the influence of refractive index grating intensity

formed by thermal-optical effect in the fiber on TMI.
The relationship between ∆β and V can be expressed by Equations (24) and (25) in

step-index straight fiber [38]. U is the transverse wave number. The cutoff wave number of
LP01 and LP11 modes U(∞) is 2.405 and 3.832, respectively. 4β is inversely proportional
to the square of the core radius.

∆β =
U2

11 −U2
01

2k0ncorer2
core

(24)

U(V) ≈ U(∞) exp(−1/V) (25)

Nonlinear coupling coefficient χmn is incorporated along with Equations (12) and (15),
and the relationship between Cmn01 and χmn is obtained [12,22].

Re(C1101) = −2
g2

g0
χi

11 (26)

TMI threshold can be written as:

Pthr =
U2

11 −U2
01

2k0ncorer2
coregmax

∣∣χi
mn
∣∣σ (27)

σ =
g0

g
=

[
1 +

Aclad(σas + σes)

Ae f f (σap + σep)

]
(28)

where σ is utilized to evaluate the gain saturation of high-power fiber amplifiers (σ is often
larger than 1). The effect of gain saturation on the TMI threshold is substantial if σ� 1, and
the larger the cladding area, the higher the TMI threshold [39]. As the core radius increases,
the effective mode field area rises and the TMI threshold drops. The TMI threshold will
rise as the signal emission cross-section increases and the pump absorption cross-section
decreases [40,41]. For example, the TMI threshold of tandem pumping at 1018 nm is higher
than laser diode pumping at 976 nm [21], and the TMI threshold rises with decreasing core
radius [42].

The simulation results of Equation (26) are shown in Figure 3. According to refer-
ence [19], the normalized parameter V is 3, and the average gain of the fiber amplifier is
20 dB/m. Other parameters are listed in Table 1. As shown in Figure 3a, the effective mode
field area Ae f f grows and the threshold drops as the core radius increases. When V remains
constant, max

∣∣χi
mn
∣∣ is hardly affected by the core radius [12]. TMI threshold power will

continue to decline as the core radius grows because4β is inversely proportional to the
core radius and σ is also negatively correlated with the core radius. Two kinds of TMI
thresholds are simulated in Figure 3b; the blue curve represents the result of Equation (27)



Photonics 2022, 9, 577 7 of 11

in this paper, the black curve shows the TMI threshold of the well-saturated fiber amplifiers
calculated by Zervas. In the well-saturated fiber amplifiers, σ is around 2. As shown in
Figure 3b, when the core diameter is less than 40 µm, σ is substantially bigger than 2 and
the gain saturation effect can significantly improve the TMI threshold which is inversely
proportional to r4

core. The two kinds of TMI thresholds in Figure 3b are almost equal when
the core diameter is larger than 70 µm, and gain saturation makes an insignificant contribu-
tion to TMI threshold increment. TMI threshold power is inversely proportional to r2

core
due to the effect of4β and well saturation.
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If only the influence of FWM on TMI is considered, the TMI threshold is indeed very
high when the core is very small. However, the actual situation is that STRS is also an
important factor affecting TMI in Figure 4b. When the core diameter is less than 50 µm,
the STRS threshold is already smaller than the FWM threshold, and the TMI threshold will
be dominated by the STRS threshold. If the actual situation is considered, STRS needs to
be taken into account when the core is small, then the actual TMI threshold is not so high.
Another work of ours has systematically studied the impact of both STRS and FWM on the
TMI threshold [43].
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This section illustrates how the pump gain, core/cladding radius, and wavelength
of signal and pump affect the TMI threshold through the assumptions of backward pump
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and small signal input. The impacts of seed power, pumping direction, and core NA on the
TMI threshold will then be investigated by numerical simulation.

3.3. Numerical Simulation Results of Other Fiber Laser System Parameters

Using backward pumping, a succinct TMI threshold formula was derived in the above
section. The TMI threshold formula, however, could not be obtained directly for larger
seed power and different pumping directions. Moreover, the influence of NA on TMI also
needs to be considered. Therefore, in order to verify the effects of the seed power, pump
directions, and core NA on the TMI threshold, the model in the second section is used
for precise simulation calculations. The parameters for the 80/250 µm fiber amplifiers are
listed in Table 1.

3.3.1. Forward Pumping with Different Seed Power

Forward pumping is a common pumping method in high-power fiber amplifier
systems. The influence of seed power on TMI threshold in a forward pumped fiber
amplifier is investigated, the results of which are shown in Figure 4. When the seed power
is increased from 10 to 100 W, the TMI threshold only increases from 311 to 340 W, while
the extracted power decrease from 301 to 240 W. The results differ from those in the prior
simulation [27] due to the consideration of FWM. As shown in Figure 4b, the peak heat
load of the forward pumping amplifier with the same pump power of 340 W continuously
grows as the seed power increases from 20 to 100 W, and the gain of higher-order modes
is positively associated with the peak heat load, resulting in a decrease in TMI threshold
power. The choice of small signal seed will not significantly lower the TMI threshold for
the forward pumped large core short fiber amplifiers.

3.3.2. Backward and Bidirectional Pumping with Different Seed Power

Previous research has demonstrated the influence of the gain saturation effect on
the TMI threshold of fiber amplifiers with different pump direction and core diameters
between 20 and 40 µm [25]. The influence of seed power on the TMI threshold is depicted in
Figure 5 for the 80/250 µm backward and bidirectional pumped fiber amplifier, where the
contribution of the gain saturation effect on TMI may be neglected. As shown in Figure 5a,
when the seed power increases from 10 to 100 W in the backward pumping amplifier, the
TMI threshold increases continually from 235 to 333 W, and the extracted power has no
significant change, which is similar to a backward pumping amplifier that is not influenced
by FWM [44]. As shown in the Figure 5b, with the continuous increase of seed power, the
TMI threshold increases, and the extracted power firstly increases and then decreases for
the bidirectional pumped fiber amplifiers with equally distributed forward and backward
pump power. When the seed power is less than 80 W, only the fiber position near the output
end meets the conditions of FWM excitation. When the seed power increases to more than
80 W, the position near the seed laser input also meets the conditions of FWM excitation,
which will limit the growth of the TMI threshold and lead to the reduction of extracted
power. The bidirectional pumped fiber amplifiers have a higher TMI threshold than the
backward pumped fiber amplifiers, but the extracted power of the backward pumped fiber
amplifier is less sensitive to the seed power.

3.3.3. Core Numerical Aperture

Core NA has a complex impact on TMI dominated by FWM according to Equation (27),
and the nonlinear coupling coefficient max

∣∣χi
mn
∣∣ and ∆β have a positive correlation with

NA in Figure 6a. The growth of max
∣∣χi

mn
∣∣ is very tiny compared to that of ∆β when NA

increases from 0.04 to 0.07, which is consistent with reference [45], hence the TMI output
threshold power will rise from 306 to 336 W in Figure 6b. It is advantageous to boost NA
properly for large core short fiber amplifiers, such as the 80/250 µm forward pumping
amplifier in this paper, where the influence of ∆β on TMI is more significant compared
with max

∣∣χi
mn
∣∣.
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4. Conclusions

The gain amplification process of higher-order modes in fiber laser is demonstrated
in this work using the TMI numerical simulation model incorporating FWM. When the
gain saturation effect is taken into account, the TMI threshold of the fiber amplifier is
initially inversely proportional to the fourth power of the core radius, and finally inversely
proportional to the square of the core radius as the mode area increases. The influence of
FWM on the TMI threshold is investigated for the large core short fiber, i.e., 80/250 µm,
by taking account of the pumping direction, seed power, and core NA. It was discovered
that the backward pumping amplifier’s pumping threshold practically remained constant,
whereas the forward pumping amplifier’s pumping threshold fell linearly with the rise in
seed power. The larger the core NA, the greater the difference in mode wave vectors and
the higher the TMI threshold. This work could help gain a better understanding of TMI
from a new perspective and would further contribute to TMI mitigation in high-power
fiber lasers.
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