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Abstract: The light scattering properties of particles play important roles in radiative transfer in
many dispersed systems, such as turbid atmosphere, ocean water, nanofluids, composite coatings
and so on. As one of the scattering property parameters, the scattering phase functions of particles are
strongly dependent on the particle size, size distribution, and morphology, as well as on the complex
refractive indices of the particles and surrounding media. For the sake of simplicity, the empirical
phase function models are widely used in many practical applications. In this work, we focus on the
radiative transfer problem in dispersed systems composed of spherical particles, and give quantitative
analyses of the impact of scattering phase functions on the radiative transfer process. We fit the
scattering phase functions of four different types of practical dispersed systems using four previously
proposed empirical phase function models, including the Henyey–Greenstein (HG) model, Cornette
Shanks (CS) model, Reynold and McCormick (RM) model and two-term Reynolds–McCormick
(TTRM) model. By comparing the radiative transfer characteristics (i.e., hemispherical reflectance,
hemispherical transmittance and total absorptance) of dispersed layers calculated using the Monte
Carlo method, the relative errors caused by using the empirical phase functions are systematically
investigated. The results demonstrate that the HG, CS and RM models cause obvious errors in the
calculation of hemispherical reflectance in many cases. Meanwhile, the induced errors show no
obvious regularity, but are related to the particle size and layer optical thickness. Due to the good
fitting effect in both forward and backward directions, the TTRM model provides significantly higher
performances in fitting the phase functions of all considered cases than the widely used single-term
parametrizations. Moreover, for different particle sizes and layer optical thicknesses, the induced
errors of the TTRM model in radiative transfer characteristics are very small, especially for the case
of polydisperse particles. Our results can be used to guide the design, analysis and optimization of
dispersed systems in practical optics and photonics applications.

Keywords: scattering phase function; light scattering; radiative transfer; Mie scattering; Monte
Carlo simulation

1. Introduction

Light scattering and radiative transfer in dispersed systems are of great importance in
many fields of natural sciences and engineering, such as remote sensing and modelling
of the ocean and atmosphere, biomedical imaging and diagnostics, photocatalytic and
photothermal techniques and so on [1–5]. In the theoretical analysis and experimental study
of radiative transfer processes in such dispersed systems, the fundamental optical/radiative
properties of particles, such as the absorption coefficient µabs, scattering coefficient µsca,
extinction coefficient µext and scattering phase function Φ(θ) (or volume scattering function
β(θ), VSF) should be obtained first [6,7]. Those optical properties of particles are determined
by the chemical composition, size, shape, volume fraction and mixing state, and are
generally obtained through the electromagnetic scattering calculation or experimental
measurement [8,9].
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With the development of optical measurement technology, the measurement of light
attenuation and absorption is advanced for both laboratory and field measuring, whereas
the scattering phase functions or VSF are rare and difficult to measured, due to the compli-
cated measurement geometries and the difficulty of achieving accurate measurements at
forward and backward scattering angles [2,10]. Specifically, the range of scattering energy
over all scattering angles typically reaches 5 or 6 orders of magnitude in many cases, which
necessitates high measurement accuracy in photodetectors. As a consequence, the mechan-
ical design of the instruments for scattering phase function measurements is often very
complicated, and only several prototype sensors with broad angular ranges exist [11,12].
Lee and Lewis [13] developed a prototype VSF sensor (MVSM) for the measurement of
the VSF of the ocean, which resolves the VSF from 0.6◦ to 177.3◦ in 0.3◦ increments at
eight wavelengths. Twardowski et al. [14] introduced a prototype VSF sensor (MASCOT),
which measures the VSF at angles spanning 10◦ to 170◦ in 10◦ increments. Babin et al. [15]
described a methodology for determining the VSF of aqueous particle suspensions from
measurements with a laboratory multi-angle light scattering instrument called DAWN.
Tan et al. [16] presented a novel optical approach to measure the volume scattering function
(VSF) by image detection, which realizes the scattering angle measurement from 8◦ to 172◦

at 1◦ intervals. Wu et al. [17] developed a laboratory-based VSF instrument adopting
the periscopic optical system, which can realize the measurement of VSF in the range of
1–178.5◦. Moreover, Sequoia Scientific Inc developed a commercial instrument (LISST–VSF)
for measuring the VSF in situ or in the laboratory for angles 0.1–150◦ at a 515 nm wave-
length [18]. Overall, although related experimental techniques and studies regarding the
measurement of scattering phase functions or VSFs have been extensively conducted in the
past decade, the spectral distributions of the scattering phase function for most particles
remain mostly unknown because of the lack of direct measurement.

If we know the distributions of size, shape, internal structure and the complex refrac-
tive index for particles, the optical properties of particles can be accurately calculated. The
common calculation methods include Lorentz–Mie theory [8], discrete dipole approxima-
tion (DDA) [19], T-matrix method [20], geometric optical approximation [21] and so on.
However, it should be noted that it is usually difficult to obtain all these geometric and
physical parameters of dispersed media. Therefore, many empirical phase function models
have been developed and used in numerical simulations of radiative transfer in dispersed
systems, such as the Henyey–Greenstein (HG) model [22], Cornette Shanks (CS) model [23],
Fournier–Forand (FF) model [24], Reynold and McCormick (RM) model [25], and two-term
Reynolds–McCormick (TTRM) model [26]. Mobley et al. [27] conducted numerical simula-
tions of the phase function effects on oceanic light fields. The results show that the shape of
the phase function can have a significant effect on the underwater radiances, irradiances
and reflectances. Bodenschatz et al. [28] carried out a quantitative analysis of the influences
of different scattering phase functions on subdiffusive backscattered light. Moreover, the
authors introduced a new parameter that more accurately relates a scattering phase func-
tion to its subdiffusive backscattering intensity. Vaudelle [29] proposed an approximate
analytical effective phase function from a thin slab, which can realize the fast estimation
of the asymmetry factor of turbid media. Miramirkhani et al. [30] assessed the effect of
scattering phase functions on underwater visible light communication channel models
and demonstrated that the simplified phase function models (one-term or two-term HG
models) result in a large discrepancy of channel gain in a typical underwater scenario.
Wang et al. [26] proposed a five-parameter two-term Reynolds–McCormick (TTRM) phase
function model and compared it with eight different empirical models. The results indi-
cated that the TTRM model provides the best fit to the experimental results in all cases.
Moreover, according to the measurements of sediments and microalgae, Harmel et al. [31]
demonstrated that the TTRM model provides significantly higher performances in fitting
the phase functions of actual living or mineral hydrosols than the widely used single-term
phase function models.
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Although many studies on the scattering phase function models and their related
applications have been carried out, due to the complexity of the scattering phase function,
there is still no universal phase function model that can comprehensively represent the
scattering properties of different kinds of particles. In addition, the influences of the
empirical phase function models on the radiative transfer process are still lacking in
systematic evaluation. In this work, the radiative transfer characteristics of four different
types of dispersed media (SiO2, TiO2, Si and Au spherical particles embedded in water)
are investigated to quantitatively assess the influence of the empirical phase function
models (HG, CS, RM and TTRM) on radiative transfer. The single-scattering properties of
spherical particles are calculated using Lorenz–Mie theory. HG and CS phase functions
are calculated by using the asymmetry factor. RM and TTRM phase functions are obtained
by fitting the Mie phase function. The directional–hemispherical reflectance, directional–
hemispherical transmittance and the total absorptance for a plane-parallel layer of spherical
particles are calculated and compared using the Monte Carlo method. In order to further
characterize the effects of scattering phase functions on radiative transfer, the errors of the
radiative transfer characteristics calculated using four empirical phase function models
relative to the Mie-calculated phase function are compared. The influences of particle sizes,
size distributions and layer optical thicknesses are discussed. The goal of this work is
to elucidate how and to what extent the empirical phase function models influence the
radiative transfer characteristic of dispersed media.

2. Model and Methods
2.1. Radiative Transfer Model

We considered radiative energy transfer in a plane-parallel layer composed of sparsely
dispersed spherical particles, as shown in Figure 1. The spherical particles with radius r
and complex refractive index mp = np + iκp were randomly dispersed in a non-absorbing
host medium with refractive index nhost. To avoid the influences of Fresnel reflections
from the boundaries, the refractive index of the host medium was set to equal that of the
surrounding medium. For simplicity, the incident wavelength λ was set to 0.6 µm. In
each case, the conventional gamma distribution of particle radii defined by Hansen and
Travis [32] was used:

n(r) = constant× r(1−3b)/b exp
(
− r

ab

)
, b ∈ (0, 0.5) (1)

where the constant was chosen such that the size distribution satisfied the standard nor-
malization

∫ ∞
0 n(r)dr = 1. Two important characteristics of the size distribution were the

effective radius reff and effective variance veff defined by:

reff =
1
〈G〉r

∫ rmax

rmin

πr3n(r)dr (2)

veff =
1

〈G〉rr2
eff

∫ rmax

rmin

(r− reff)
2πr2n(r)dr (3)

where 〈G〉r =
∫ rmax

rmin
πr2n(r)dr was the average area of the geometric projection per particle,

and rmax and rmin represented the maximum and minimum radius of the particles. Note
that for the gamma distribution with rmin = 0 and rmin = ∞, a and b coincided with reff and
veff, and the distribution with veff = 0 corresponded to monodisperse particles.
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Figure 1. Schematic of the plane-parallel layer composed of sparse dispersed spherical particles.

It must be emphasized that the radiative transfer model presented in this paper is
based on the independent scattering approximation, which means the dependent scattering
effect or near-field coupling effect were not considered [33–35]. Under the framework of
independent scattering theory, the radiative/optical properties of the dispersed systems,
including the extinction coefficient µext, scattering coefficient µsca and scattering phase
function Φ(θ), can be calculated as [6,9]:

µsca = µsca,p = n0

∫ rmax

rmin

n(r)Csca(r)dr =
fv

〈V〉r
〈Csca〉r (4)

µext = µext,p = n0

∫ rmax

rmin

n(r)Cext(r)dr =
fv

〈V〉r
〈Cext〉r (5)

Φ(θ) =
n0

µsca

∫ rmax

rmin

Csca(r)Φp(r, θ)n(r)dr (6)

where µext,p and µsca,p are the extinction coefficient and scattering coefficient of the particles,
〈Cext〉r and 〈Csca〉r are the ensemble-averaged extinction cross section and scattering cross
section per particle, Cext, Csca and Φp are the far-field extinction cross section, scattering
cross section and scattering phase function of single particles, respectively, and can be
calculated using the Lorenz–Mie theory [8,36]. n0 is the number of particles per unit volume
of discrete random medium, 〈V〉r = 4π

∫ rmax
rmin

r3n(r)dr/3 is the average volume per particle,
and fv= 4πn0

∫ rmax
rmin

r3n(r)dr/3 is the volume fraction of the particles.

2.2. Empirical Phase Functions

Four previously proposed empirical phase function models, including the HG model,
CS model, RM model, and TTRM model, are studied and discussed herein. The HG
model is one of the most widely used empirical phase functions, and is a function of the
asymmetry factor with the following analytic form [22]:

ΦHG(θ, g) =
1

4π

1− g2

[1 + g2 − 2g cos θ]
3/2 (7)

where g is the asymmetry factor and related to the phase function by:

g =
1

4π

∫
4π

Φ(θ) cos θdΩ (8)

The value of g ranges from backscattering (−1) through isotropic scattering (0) to
forward scattering (1).
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Similarly to the HG phase function, the CS phase function is a function of the asym-
metry factor g, and has the following form [23]:

ΦCS(θ, g) =
3
[
1 + cos2 θ

]
2(2 + g2)

1− g2

[1 + g2 − 2g cos θ]
3/2 (9)

The CS phase function is mainly suitable for characterizing the scattering by small
particles. It converges to the Rayleigh phase function when g = 0, and it approaches the HG
phase function when g = 1.

The RM phase function, which was proposed by Reynold and McCormick [25], de-
scribes highly anisotropic angular scattering distributions and has the following form:

ΦRM(θ, g, α) =
αg
(
1− g2)2α

π
[
1 + g2 − 2g cos θ

]α+1
[
(1 + g)2α − (1− g)2α

] (10)

where g and α are two fitting parameters. Note that the RM phase function approaches
the HG phase function when α = 0.5, and only in this situation does the parameter g have
the same meaning of asymmetry factor g. The two-term TTRM phase function, which
was recently proposed by Wang et al. [26], is a modification of the RM phase function,
introducing a mixing parameter γ, as follows:

ΦTTRM(θ, g1, α1, g2, α2, γ) = γΦRM(θ, g1, α1) + (1− γ)ΦRM(θ, g2, α2) (11)

This function has two parts with two different parameters, where g1 is positive and g2
is negative, in order to treat the forward and backward peaks in the phase function. The
parameter γ gives the forward scattering portion while (1−γ) is the backward scattering
portion. Meanwhile, in order to assess the fitting effects of the RM and TTRM phase
functions, a loss function, which is defined as the mean square logarithmic error (MSLE)
between the fitting results ΦModel and Mie results ΦMie is used [31]:

MSLE =
∑θi=π

θi=0 [log ΦMie(θi)− log ΦModel(θi)]
2

Nsca − Nparam
(12)

where Nsca is the number of scattering angles of the phase function and Nparam is the
number of fitting parameters of the phase function model (Nparam = 2 for RM model and
Nparam = 5 for TTRM model). By using a large number of fitting parameters, the RM and
TTRM phase functions can be well-fitted with the Mie phase function. In this work, the
fitting procedure is based on the particle swarm optimization algorithm under given bound
constraint values (see supporting material, Table S1).

2.3. Radiative Transfer Calculation

Multiple scatterings of light in the dispersed systems are accounted for by the mean-
ings of the radiative transfer equation (RTE), which can be written as [6,7]:

dI(τ)
dτ

= −I(τ) +
ω

4π

∫
4π

I
(

τ,
→
Ω’
)

Φ
(→

Ω’,
→
Ω
)

d Ω ’ (13)

where I is the radiation intensity in the direction of
→
Ω, τ = µextL is the optical thickness of

the dispersed layer, L is the geometric thickness of the dispersed layer, ω = µsca/µext is the
single scattering albedo, and Ω’ is the solid angle. We note that the thermal radiation term
was neglected in this study, and the RTE was solved by using the widely used Monte Carlo
(MC) method [6,37]. A light beam was perpendicularly incident on the boundary (z = 0) of
the layer by default. After interacting with the layer, the reflected and transmitted photons
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were collected, and the directional–hemispherical reflectance R, directional–hemispherical
transmittance T and the total absorbance A of the dispersed layer were finally determined:

R =
Nr

N0
(14)

T =
Nt

N0
(15)

A = 1− R− T (16)

where N0 is the total number of the photons that are incident on the layer, and Nr and Nt
are the number of photons that are collected with the use of detectors positioned in the
hemispherical space outside the upper surface and the lower surface, respectively. In this
study, 5 × 106 photons were used for each calculation to obtain accurate results without
using too much computation time.

3. Results and Discussion

To theoretically investigate the influence of the scattering phase function on a practical
radiative transfer process, the radiative transfer characteristics of four different types of
dispersed systems were studied in this paper. Firstly, Lorenz–Mie theory considering
the particle size distribution was used to calculate the far-field extinction cross section,
scattering cross section, scattering phase function, and the asymmetry factor of the particles.
Secondly, HG and CS phase functions were calculated by using the asymmetry factor g.
Additionally, RM and TTRM phase functions were obtained by fitting the Mie phase
function. Lastly, radiative transfer characteristics (i.e., R, T and A) of the dispersed media
were calculated and compared using the MC method on account of the Mie phase function,
HG, CS, RM and TTRM phase functions.

In order to cover more comprehensive and more realistic situations, four different
types of dispersed systems with a wide range of particle sizes (xeff = 2πnhostreff/λ = 1.0, 2.0,
5.0 and 10.0, respectively) and size distributions (veff = 0, 0.01, 0.05 and 0.15, respectively)
were studied in this paper. For simplicity, the incident wavelength λ was set to 0.6 µm;
the complex refractive indices of spherical particles mp and water host medium nhost for
the four cases are listed in Table 1. Note that these four cases can be considered as the
situation of micro–nano particles embedded in water, which is common in many practical
applications, such as photothermal, photocatalytic and optical visualization [38–41]. In
Case 1 and Case 2, both the particles and media were non-absorbing. In Case 3 and Case
4, absorbing particles with higher and lower refractive indices were embedded in the
non-absorbing water medium. The radiative properties of different monodisperse and
polydisperse size distributions of spheres are given in the supporting material, Table S2.

Table 1. Four different types of spherical particles embedded in water (λ = 0.6 µm).

Number Materials of Particles mp (Particles) nhost (Water) [42]

Case 1 Silicon dioxide (SiO2) 1.458 + 0i [43] 1.333
Case 2 Titanium dioxide (TiO2) 2.605 + 0i [44] 1.333
Case 3 Silicon (Si) 3.949 + 0.0274i [45] 1.333
Case 4 Gold (Au) 0.249 + 3.074i [46] 1.333

3.1. Scattering Phase Functions of Monodisperse and Polydisperse Spherical Particles

The Mie phase functions considering the size distribution of particles, as characterized
by conventional gamma distributions with effective particle size parameter xeff equal to 1.0,
2.0, 5.0 and 10.0 and effective variance veff equal to 0, 0.01, 0.05 and 0.15 were calculated.
Meanwhile, HG and CS phase functions were calculated on account of the asymmetry
factor g, and the RM and TTRM empirical phase functions were fitted to the calculated Mie
phase functions. The specific parameters obtained by fitting the Mie scattering phase func-
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tion with RM and TTRM models are shown in the supporting material, Tables S3 and S4.
All MSLE numbers for the TTRM model were less than 0.1, and most of them were less
than 0.01, demonstrating the validity of our parameter fitting [31]. Parameters γ, g1 and g2
varied greatly from case to case. Since the upper and lower limits of parameters α1 and
α2 were set at −5 to 5, the cases that reached the upper and lower limits needed further
optimization with extended limits. In this work, we did not carry out further optimizations,
considering the MSLEs to be acceptable. Moreover, it was observed that for most cases,
the retrieved α parameters obviously departed from the 0.5 value considered in the HG
model [31]. In general, if the exact phase functions are known (e.g., Mie phase functions),
the TTRM model can fit well to the exact phase functions by choosing appropriate fitting
parameters. However, if accurate calculations are not performed first, the data of phase
functions should be obtained based on a significant number of measurements, and if
possible in a high angular resolution manner [26,31].

Figure 2 presents the comparison of the Mie phase function with four phase function
empirical models for SiO2 particles embedded in water (Case 1). Overall, the scattering
pattern became more anisotropic, and forward scattering became more dominant with
increasing particle size. Meanwhile, we can observe that the HG and CS phase functions
had poor overlaps with the Mie phase functions in most circumstances, especially for
forward and backward scattering. The RM phase function showed good agreement with
the Mie phase functions, apart from some situations involving small size particles with
xeff = 1.0. In most cases, the results showed that the TTRM functions fit better to the Mie
phase functions than the HG, CS and RM phase functions, but some discrepancies appeared
when there were oscillations in the Mie calculations, owing to excitations of higher order
eigenmodes for large size particles in the monodisperse situations with veff = 0, as shown
in Figure 2c,d. Nevertheless, TTRM function still followed the trend, although it did not
describe the multiple peaks. Such scattering phase function oscillations were smoothed
for polydisperse situations with increasing effective variance veff due to the averaging
procedure. Considering that the particles were polydisperse in most practical applications,
TTRM phase function could fit Mie calculations within a wide range of particle sizes and
distributions. Moreover, the TTRM outperformed the other models even when scattering
angles are larger than 140◦. This result implies that the TTRM could provide a new means to
extrapolate phase function measurements when instrumentation is limited in the backward
directions [26].

We also present Mie calculations and phase function fittings for monodisperse (veff = 0)
and polydisperse (veff = 0.05) TiO2 particles (Case 2, with refractive index np = 2.605), as
shown in Figure 3. The fitting effects of the HG phase function for xeff = 2 were better than
the CS and RM phase functions. Compared with Case 1 (SiO2 particles with np = 1.458), the
higher refractive index of particles led to stronger backward scattering, especially for larger
size particles. Meanwhile, it was found that the difference between forward scattering and
backward scattering became smaller. Multiple peaks also appeared when xeff was larger
than 1.0, and the oscillations in the phase function were obviously reduced for polydisperse
situations. The RM phase function showed poor overlap with the Mie phase functions
for backward scattering due to its simple expression. By introducing a mixing parameter,
the TTRM was able to sufficiently characterize the forward and backward peaks in the
phase function. As shown in Figure 3d,h, for large size particles with xeff = 10, the TTRM
model outperformed the other models over the full range of scattering angles, although the
forward and backward scattering peaks were very high.
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Figure 2. Comparison of the Mie phase function with four phase function empirical models for
SiO2 particles (Case 1) with (a–d) veff = 0, (e–h) veff = 0.01, (i–l) veff = 0.05, and (m–p) veff = 0.15,
respectively.
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Figure 3. Comparison of the Mie phase function with four phase function empirical models for TiO2

particles (Case 2) with (a–d) veff = 0 and (e–h) veff = 0.05, respectively.

To study the effect of particle absorption on scattering phase functions, we performed
Mie calculations and phase function fittings for Si particles and Au particles embedded in
water, as shown in Figures 4 and 5. In general, the forward scattering increased markedly
with increasing particle size parameter. However, a peculiar phenomenon occurred: the
forward scattering was even weaker than the backward scattering for monodisperse Si
particles with xeff = 2.0, as shown in Figure 4b. This result is mainly attributed to the
Mie resonances of high refractive-index dielectric particles [41,47]. In some cases, the
antiphase interference of the electric dipole and magnetic dipole modes resulted in the
radiation pattern of particles dominated by backward scattering. When the effective
variance veff increased to 0.05, due to the averaging procedure, the phenomenon of the
forward scattering being greater than the backscattering disappeared, as indicated in
Figure 4f. By comparing the Mie phase functions with the phase functions obtained
from the four empirical phase function models, it was also found that the TTRM model
outperformed the other models over the full range of scattering angles for both the cases
of Si particles and Au particles. However, for the other three empirical models, the fitting
effects were unstable and depended on circumstances. For example, the RM model fit the
Mie phase function well in the forward directions, but poorly in the backward directions, as
shown in Figure 4a,e. In general, because of the simple form of the three empirical models
(HG, CS and RM), it was difficult for these models to remain consistent with the Mie phase
function in all scattering angles. In addition, it should be noted that the four empirical
phase function models could be used for both spherical and non-spherical particles if the
exact phase functions, measured data or necessary parameters (e.g., asymmetry factors
need to be given for HG and CS models) were known. The phase function effects on light
scattering and radiative transfer in dispersed systems composed of non-spherical particles
will be investigated in future work.
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Figure 4. Comparison of the Mie phase function with four phase function empirical models for Si
particles (Case 3) with (a–d) veff = 0 and (e–h) veff = 0.05, respectively.
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Figure 5. Comparison of the Mie phase function with four phase function empirical models for Au
particles (Case 4) with (a–d) veff = 0 and (e–h) veff = 0.05, respectively.

3.2. Radiative Transfer Characteristics of the Dispersed Layer

The radiative transfer process can be affected by many factors. The most direct way to
describe the effects of multiple scattering between particles on radiative transfer is to solve
the RTE to obtain the apparent reflection, transmission and absorption characteristics of the
dispersed systems. In this section, the directional-hemispherical reflectance R, directional-
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hemispherical transmittance T and total absorptance A of the dispersed layer are calculated
using the MC method on account of the Mie, HG, CS, RM and TTRM phase functions.
To further characterize the effects of scattering phase functions on the radiative transfer
process, the errors of the radiative transfer characteristics (R, T and A) caused by using the
empirical phase function models are obtained and analyzed. The relative errors are defined
according to δξ = |ξMie − ξEM|/ξMie × 100%, where ξMie and ξEM refer to the characteristic
parameters (R, T and A) obtained by using the Mie phase function and empirical phase
function models, respectively.

3.2.1. Case 1: Non-Absorbing SiO2 Particles Embedded in Water

Figures 6 and 7 present the hemispherical reflectances R of the dispersed plane-parallel
layer (for Case 1 with non-absorbing SiO2 particles embedded in water) as functions
of the layer optical thickness for monodisperse (veff = 0) and polydisperse (veff = 0.05)
particles, respectively. Insets are logarithmic plots of the corresponding reflectance. The
figures also include the relative errors δR of the hemispherical reflectances caused by
using the empirical phase function models. As shown in the figures, the hemispherical
reflectance is relatively small for media with a small optical thickness (e.g., τ < 1.0), and such
reflectance calculated using HG phase function is extremely inaccurate. The corresponding
relative errors may be more than 100% for some circumstances when xeff = 5.0 and 10.0.
Accordingly, small reflectance corresponds to high transmittance (Figures S1 and S2 in the
supplement material) and the relative errors of hemispherical transmittance will be small.
As the spectral reflectance of ocean seawater is mostly within 0.05 [37,48], the relative
errors of the reflectance calculated using HG and CS phase functions are extremely large
under this background. With increasing optical thickness, the reflectance of the dispersed
layer increases, along with reducing relative errors in different degrees for the reflectance
calculated by the four different phase functions. Besides the layer optical thickness, the
size parameter xeff of particles also has a significant influence on the relative error δR. The
smaller the size parameter is, the closer the particle scattering is to Rayleigh scattering,
and the less influence the scattering phase function shows on the reflection characteristics.
With increasing particle size parameters, the particle scattering effect enhances, especially
the forward scattering, which leads to the decrease in the hemispherical reflectance of
the dispersed layer and the increase in the influence of scattering phase function on the
radiative transfer process.

According to the foregoing results, the fitting effect of RM phase function is contingent
for some situations; thus, the relative error of the hemispherical reflectance calculated by
RM phase function is also contingent, especially for the case of monodisperse particles. As
shown in Figure 6f,g, for dispersed layers with xeff = 2.0 and 5.0, the maximum relative
errors of reflectance can reach up to about 40% and 50%, respectively. However, when
xeff = 1.0 and 10.0, the maximum relative errors of reflectance decrease to about 7% and 26%,
respectively. By comparison, the relative errors of the hemispherical reflectance calculated
by the TTRM models are very small for different particle sizes and layer optical thicknesses,
especially for the case of polydisperse particles. This is because the TTRM empirical phase
function models have good fitting effects in both forward and backward directions, as
indicated in Figure 2. Meanwhile, it should be noted that for monodisperse particle systems,
the relative errors of the hemispherical reflectance induced by using the TTRM models are
still uncertain because the TTRM model cannot perfectly fit all the characteristics of Mie
phase function.



Photonics 2022, 9, 584 12 of 19Photonics 2022, 9, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 6. The hemispherical reflectance of the layers (Case 1, SiO2 particles, veff = 0) versus the layer 
optical thickness for different phase function models, and the relative errors of the hemispherical 
reflectance caused by using four phase function empirical models. (a–h) The insets show a Log−Log 
plot of the reflectance versus optical thickness. 

 
Figure 7. As in Figure 6, but for effective variance veff = 0.05. (a–h) The insets show a Log−Log plot 
of the reflectance versus optical thickness. 

  

0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.1 1 10 10010−3

10−2

10−1

100

 Mie
 HG
 CS
 RM
 TTRM

H
em

isp
he

ric
al

 re
fle

ct
an

ce
, R

 Case 1 
 x = 10
νeff = 0

0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.1 1 10 10010−5

10−4

10−3

10−2

10−1

100

x = 10

0.01 0.1 1 10 100
0

20

40

60

80

100
 HG
 CS
 RM
 TTRM

Re
la

tiv
e 

Er
ro

r, 
δ R

 (%
)

Optical thickness, τ

Case 1 
 x = 1
νeff = 0

0.01 0.1 1 10 100
0

20

40

60

80

100

Optical thickness, τ

x = 2

0.01 0.1 1 10 100
0

50

100

150

200

Optical thickness, τ

 x = 5

0.01 0.1 1 10 100
0

50

100

150

200

Optical thickness, τ

 x = 10

0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.1 1 10 10010−5

10−4

10−3

10−2

10−1

100

x = 5

0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.1 1 10 10010−4

10−3

10−2

10−1

100

x = 2

a b c d

e f g h
xeff = 2 xeff = 5 xeff = 10

veff = 0
xeff = 1

xeff = 2 xeff = 5 xeff = 10veff = 0

Case 1
xeff = 1

0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.1 1 10 10010−3

10−2

10−1

100

 Mie
 HG
 CS
 RM
 TTRM

H
em

isp
he

ric
al

 re
fle

ct
an

ce
, R

 Case 1 
  x = 1
 νeff = 0.05

0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.1 1 10 10010−5

10−4

10−3

10−2

10−1

100

x = 10

0.01 0.1 1 10 100
0

20

40

60

80

100
 HG
 CS
 RM
 TTRM

Re
la

tiv
e 

Er
ro

r, 
δ R (

%
)

Optical thickness, τ

Case 1 
 x = 1
νeff = 0.05

0.01 0.1 1 10 100
0

20

40

60

80

100

Optical thickness, τ

x = 2

0.01 0.1 1 10 100
0

50

100

150

200

Optical thickness, τ

 x = 5

0.01 0.1 1 10 100
0

50

100

150

200

Optical thickness, τ

 x = 10

0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.1 1 10 10010−5

10−4

10−3

10−2

10−1

100

x = 5

0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.1 1 10 10010−4

10−3

10−2

10−1

100

x = 2

a b c d

e f g h
xeff = 2 xeff = 5 xeff = 10

veff = 0.05
xeff = 1

xeff = 2 xeff = 5 xeff = 10

Case 1
xeff = 1
veff = 0.05

Figure 6. The hemispherical reflectance of the layers (Case 1, SiO2 particles, veff = 0) versus the layer
optical thickness for different phase function models, and the relative errors of the hemispherical
reflectance caused by using four phase function empirical models. (a–h) The insets show a Log–Log
plot of the reflectance versus optical thickness.
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Figure 7. As in Figure 6, but for effective variance veff = 0.05. (a–h) The insets show a Log–Log plot
of the reflectance versus optical thickness.
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3.2.2. Case 2: Non-Absorbing TiO2 Particles Embedded in Water

Figures 8 and 9 present the hemispherical reflectances R of the dispersed plane-
parallel layer (for Case 2 with non-absorbing TiO2 particles embedded in water) and the
relative errors δR of the hemispherical reflectance caused by using four phase function
empirical models as functions of the layer optical thickness for monodisperse (veff = 0) and
polydisperse (veff = 0.05) particles, respectively. As shown in the figures, the relative errors
of hemispherical reflectance calculated using HG phase function for particle size parameter
xeff = 1.0 and 2.0 are less than 10%. At this point, the performance of the HG phase function
model in radiative transfer process is better than that of CS and RM models. It is worth
noting that the overlap between the HG and Mie phase functions is not good, especially
for forward and backward scattering, as Figure 3 shows, demonstrating that the general
fitting effect may also result in a higher coincidence of radiative transfer characteristics.
According to the forgoing results, the fitting effect of the RM phase function is contingent
on some situations; thus, the relative error of the hemispherical reflectance calculated by
RM phase function is also contingent, for example, on the relative error of RM-calculated
hemispherical reflectance being larger than CS and HG phase functions for x = 2 situations.
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Figure 8. The hemispherical reflectance of the layers (Case 2, TiO2 particles, veff = 0) versus the layer
optical thickness for different phase function models, and the relative errors of the hemispherical
reflectance caused by using four phase function empirical models. (a–h) The insets show a Log–Log
plot of the reflectance versus optical thickness.

Compared with Case 1 (SiO2 particles with n = 1.458), a higher refractive index of
particles leads to stronger scattering and higher reflectance for large particle size situations.
In general, the HG, CS and RM models will cause obvious errors in the calculation of
hemispherical reflectance for unabsorbed particles in many cases. Although the induced
error is related to the particle size and layer optical thickness, it is difficult to predict the
specific error, and the errors show no obvious regularity. Meanwhile, it is gratifying to note
that the TTRM empirical phase function model has high accuracy and strong adaptability
in the calculation of hemispherical reflectances. For the cases of different particle size and
layer thickness, the relative errors of hemispherical reflectance are less than 8%, which
indicates that the TTRM model has excellent performance in radiative transfer calculations.
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Moreover, as for the hemispherical transmittance (as shown in Figures S3 and S4), it was
found that the relative errors induced by using the HG and TTRM models were very small,
which indicates that the empirical phase function models can be used for radiative transfer
calculations when focusing more on the transmission characteristics.

Photonics 2022, 9, x FOR PEER REVIEW 14 of 19 
 

 

Figure 8. The hemispherical reflectance of the layers (Case 2, TiO2 particles, veff = 0) versus the layer 
optical thickness for different phase function models, and the relative errors of the hemispherical 
reflectance caused by using four phase function empirical models. (a–h) The insets show a Log−Log 
plot of the reflectance versus optical thickness. 

 
Figure 9. As in Figure 8, but for effective variance veff = 0.05. (a–h) The insets show a Log−Log plot 
of the reflectance versus optical thickness. 

3.2.3. Case 3 and 4: Absorbing Si and Au Particles Embedded in Water 
The hemispherical reflectance R of the layers (Case 3, absorbing Si particles with veff 

= 0.05) versus the layer optical thickness for different phase function models and the rela-
tive errors δR of the hemispherical reflectance caused by using four phase function empir-
ical models are presented in Figure 10. As shown, the hemispherical reflectances R of the 
layers tended to be constant with increasing optical thickness due to the strong absorption 
properties of Si particles. Moreover, unlike the results in Case 2 (as indicated in Figure 9), 
the relative errors δR caused by using the empirical phase function models showed no 
obvious decreasing trend with the increase in optical thickness. Furthermore, it was found 
that the reflectances calculated using HG and CS phase functions were generally smaller 
than those calculated on account of the Mie phase function. As the particle size parameter 
increased, due to the decrease in single scattering albedo (as shown in Table S2), the hem-
ispherical reflectances R gradually decreased and the relative errors δR caused by using 
HG and CS phase functions showed an obvious increasing trend. As shown in Figure 10h, 
for large particles with xeff = 10, the relative errors δR caused by using HG and CS phase 
functions were larger than 21.6% and 35% for all the considered optical thicknesses. Re-
cent studies [41,47] show that Si nanoparticles have the lowest-order Mie resonance in the 
visible range and are widely used in the design of structural colors. Large reflectance er-
rors will inevitably lead to large deviations in the optical and color characteristics. By 
comparison, the relative errors caused by using the RM and TTRM models are obviously 
smaller than those of HG and CS models. As presented in Figure 10e–h, the relative errors 
of TTRM-calculated hemispherical reflectance were within 10% for all the considered 
cases. 

0.01 0.1 1 10 100
0

20

40

60

80

100

Optical thickness, τ

x = 2

0.01 0.1 1 10 100
0

20

40

60

80

100

Optical thickness, τ

 x = 5

0.01 0.1 1 10 100
0

20

40

60

80

100

Optical thickness, τ

 x = 10

a b c d

e f g h

0.01 0.1 1 10 100
0

20

40

60

80

100
 HG
 CS
 RM
 TTRM

Re
la

tiv
e 

Er
ro

r, 
δ R

 (%
)

Optical thickness, τ

Case 2 
 x = 1
νeff = 0.05

xeff = 2 xeff = 5 xeff = 10

veff = 0.05
xeff = 1

veff = 0.05
xeff = 1

xeff = 2 xeff = 5 xeff = 10
0.01 0.1 1 10 100

0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.1 1 10 10010−3

10−2

10−1

100

 Mie
 HG
 CS
 RM
 TTRM

H
em

isp
he

ric
al

 re
fle

ct
an

ce
, R

0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.1 1 10 10010−3

10−2

10−1

100

0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.1 1 10 10010−3

10−2

10−1

100

0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.1 1 10 10010−3

10−2

10−1

100

Case 2

Figure 9. As in Figure 8, but for effective variance veff = 0.05. (a–h) The insets show a Log–Log plot
of the reflectance versus optical thickness.

3.2.3. Case 3 and 4: Absorbing Si and Au Particles Embedded in Water

The hemispherical reflectance R of the layers (Case 3, absorbing Si particles with
veff = 0.05) versus the layer optical thickness for different phase function models and the
relative errors δR of the hemispherical reflectance caused by using four phase function
empirical models are presented in Figure 10. As shown, the hemispherical reflectances
R of the layers tended to be constant with increasing optical thickness due to the strong
absorption properties of Si particles. Moreover, unlike the results in Case 2 (as indicated
in Figure 9), the relative errors δR caused by using the empirical phase function models
showed no obvious decreasing trend with the increase in optical thickness. Furthermore, it
was found that the reflectances calculated using HG and CS phase functions were generally
smaller than those calculated on account of the Mie phase function. As the particle size
parameter increased, due to the decrease in single scattering albedo (as shown in Table S2),
the hemispherical reflectances R gradually decreased and the relative errors δR caused
by using HG and CS phase functions showed an obvious increasing trend. As shown in
Figure 10h, for large particles with xeff = 10, the relative errors δR caused by using HG and
CS phase functions were larger than 21.6% and 35% for all the considered optical thicknesses.
Recent studies [41,47] show that Si nanoparticles have the lowest-order Mie resonance in
the visible range and are widely used in the design of structural colors. Large reflectance
errors will inevitably lead to large deviations in the optical and color characteristics. By
comparison, the relative errors caused by using the RM and TTRM models are obviously
smaller than those of HG and CS models. As presented in Figure 10e–h, the relative errors
of TTRM-calculated hemispherical reflectance were within 10% for all the considered cases.
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Figure 10. The hemispherical reflectance of the layers (Case 3, Si particles, veff = 0.05) versus the layer
optical thickness for different phase function models, and the relative errors of the hemispherical
reflectance caused by using four phase function empirical models. (a–h) The insets show a Log–Log
plot of the reflectance versus optical thickness.

Considering the absorbance of the Si particles, we also present the total absorbance of
the dispersed layers (Case 3, polydisperse particles with veff = 0.05) and the corresponding
relative errors caused by using four phase function empirical models in Figure 11. As
shown, the total absorptance increased obviously with increasing particle size parameters
due to the decrease in single scattering albedo. Meanwhile, similarly to the situation of
hemispherical reflectance, the total absorptance showed a trend of increasing first and then
gradually flattening out. In addition, although the relative errors caused by using different
phase function models showed complex changes with the increase in optical thickness
and particle size, all the relative errors were less than 6.4%. As for the TTRM model, the
accuracy of the calculated absorptance was high, and the maximum relative error was
only 0.6% for all the calculated results. Overall, all the four empirical scattering phase
function models could be used for radiative transfer calculations when focusing more on
the absorption characteristics of dispersed systems composed of absorbing Si particles.

We also present the hemispherical reflectance R and total absorbance A of the dispersed
layers (Case 4, polydisperse Au particles with veff = 0.05), and the corresponding relative
errors caused by using four phase function empirical models in Figures S5 and S6. In
general, the variation laws of relative errors in the reflectance and absorbance with particle
size and layer optical thickness are basically similar to the corresponding situations of Si
particles (Case 3). Owing to their strong interactions with visible light through localized
surface plasmon resonances, Au nanoparticles have been subject to extensive research and
application. According to the preceding analysis, the commonly used empirical phase
function models (e.g., HG, CS, and RM) may cause obvious errors in the calculations of
reflectance spectra and affect the accurate analysis of applications of plasmonic coloring
and image projection [49,50]. Meanwhile, because the relative errors of absorption char-
acteristics caused by using the empirical phase function models are relatively small, this
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aspect can be ignored in many engineering applications, such as photothermal utilization
and energy harvesting [51,52].
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Figure 11. (a–h) The total absorptance of the layers (Case 3, Si particles, veff = 0.05) versus the layer
optical thickness for different phase function models, and the relative errors of the absorptance caused
by using four phase function empirical models.

4. Conclusions

In summary, we carried out systematic studies on the effects of scattering phase func-
tion on radiative transfer in realistic dispersed systems. By comparing with the Mie phase
function, four empirical phase function models (HG, CS, RM and TTRM) were analyzed
and discussed. To cover more comprehensive situations, the directional–hemispherical
reflectance R, directional–hemispherical transmittance T and total absorptance A of four dif-
ferent types of dispersed systems with a wide range of particle sizes and size distributions
were investigated using the Monte Carlo method.

The results demonstrate that the TTRM model provides significantly higher per-
formances in fitting Mie phase functions than the widely used HG phase function and
single-term RM models. Synthesizing the four application cases, it was found that the HG,
CS and RM models caused obvious errors in the calculation of hemispherical reflectance
in many cases. Meanwhile, the induced errors were related to the particle size and layer
optical thickness, and it was difficult to predict the specific errors, with the errors showing
no obvious regularity. The HG phase function is more suitable for the calculation con-
ditions with smaller size parameters (xeff = 1 and 2 in this study). CS phase function is
not recommended because of its poor accuracy in most cases. The relative error of the
hemispherical reflectance calculated by the RM phase function is contingent, especially for
the case of monodisperse particles. Due to the good fitting effect in both forward and back-
ward directions, the relative errors of the hemispherical reflectance calculated by the TTRM
model are very small for different particle sizes and layer optical thicknesses, especially for
the case of polydisperse particles. As for the dispersed systems composed of absorbing
particles, because the relative errors of total absorptance are relatively small, all the four
empirical scattering phase function models can be used for radiative transfer calculations
when focusing more on the absorption characteristics in practical engineering applications.
Our work gives quantitative analyses of the impacts of scattering phase function on the
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light scattering and radiative transfer process, which can guide the design, analysis and
optimization of dispersed systems in practical optics and photonics applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/photonics9080584/s1. Table S1: Values used as bound constraints
in the fitting procedure for the RM and TTRM models; Table S2: Radiative properties of monodisperse
and polydisperse particles for different particle size parameters; Table S3: Parameters obtained from
fits to the RM function; Table S4: Parameters obtained from fits to the TTRM function; Figure S1:
The hemispherical transmittance of the layers (Case 1, SiO2 particles, veff = 0) versus the layer
optical thickness for different phase function models, and the relative errors of the hemispherical
transmittance caused by using four phase function empirical models; Figure S2: As in Figure S1, but
for effective variance veff = 0.05; Figure S3: The hemispherical transmittance of the layers (Case 2,
TiO2 particles, veff = 0) versus the layer optical thickness for different phase function models, and
the relative errors of the hemispherical transmittance caused by using four phase function empirical
models; Figure S4: As in Figure S3, but for effective variance veff = 0.05; Figure S5: The hemispherical
reflectance of the layers (Case 4, Au particles, veff = 0.05) versus the layer optical thickness for different
phase function models, and the relative errors of the hemispherical transmittance caused by using
four phase function empirical models; Figure S6: The total absorptance of the layers (Case 4, Au
particles, veff = 0.05) versus the layer optical thickness for different phase function models, and the
relative errors of the absorptance caused by using four phase function empirical models.
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