Fabrication of Sulfur-Doped Reduced Graphene Oxide Modified Glassy Carbon Electrode (S@rGO/GCE) Based Acetaminophen Sensor
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of S@rGO
2.2. Characterization
2.3. Preparation of Acetaminophen Sensor
3. Results and Discussion
3.1. Materials Characterization
3.2. Electrochemical Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Liu, S.; Luo, J.; Hou, S.; Song, H.; Niu, Y.; Zhang, C. Conductive Metal-Organic Frameworks for Amperometric Sensing of Paracetamol. Front. Chem. 2020, 8, 594093. [Google Scholar] [CrossRef]
- Dong, Z.M.; Sun, T.; Zhang, P.; Xu, M.Q.; Zhao, G.C. One-step Electrochemical Synthesis of Free-Standing Cobalt Oxide Nanoflakes to Fabricate Amperometric Sensor for the Acetaminophen Detection in Human Fluids and Pharmaceutical Formulations. Int. J. Electrochem. Sci. 2021, 16, 9. [Google Scholar] [CrossRef]
- Pasha, C. Determination of paracetamol in pharmaceutical samples by spectrophotometric method. Eclet. Quim. 2020, 45, 37–46. [Google Scholar] [CrossRef]
- Ghadimi, H.; Tehrani, R.M.A.; Ali, A.S.M.; Mohamed, N.; Ab Ghani, S. Sensitive Voltammetric Determination of Paracetamol by Poly (4-Vinylpyridine)/Multiwalled Carbon Nanotubes Modified Glassy Carbon Electrode. Anal. Chim. Acta 2013, 765, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, J.; Faisal, M.; Alsareii, S.A.; Jalalah, M.; Alsaiari, M.; Harraz, F.A. Mn2O3 Nanoparticle-Porous Silicon Nanocomposite Based Amperometric Sensor for Sensitive Detection and Quantification of Acetaminophen in Real Samples. Ceram. Int. 2022. [Google Scholar] [CrossRef]
- Hamran, B.N.; Khudhair, A.F.; Marhoon, A.A. Cloud Point Extraction of Paracetamol in Pharmaceutical Formation Coupling with Spectrophotometric Method. AIP Conf. Proc. 2020, 2213, 020320. [Google Scholar]
- Chu, Q.; Jiang, L.; Tian, X.; Ye, J. Rapid Determination of Acetaminophen and P-Aminophenol in Pharmaceutical Formulations Using Miniaturized Capillary Electrophoresis with Amperometric Detection. Anal. Chim. Acta 2008, 606, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Lahuerta-Zamora, L.; Mellado-Romero, A.M. Video Approach to Chemiluminescence Detection Using a Low-Cost Complementary Metal Oxide Semiconductor (CMOS)-Based Camera: Determination of Paracetamol in Pharmaceutical Formulations. Anal Bioanal Chem 2017, 409, 3891–3898. [Google Scholar] [CrossRef]
- Abbasi, S.; Haeri, S.A.; Sajjadifar, S. Bio-Dispersive Liquid Liquid Microextraction Based on Nano Rhamnolipid Aggregates Combined with Molecularly Imprinted-Solid Phase Extraction for Selective Determination of Paracetamol in Human Urine Samples Followed by HPLC. Microchem. J. 2019, 146, 106–114. [Google Scholar] [CrossRef]
- NGOa, T.T.H.; Fort, I.C.; Pham, T.H.; Turdean, G.L. Paracetamol Detection at a Graphite Paste Modified Electrode Based On Platinum Nanoparticles Immobilised On Al-Sba-15 Composite MateriaL. Stud. Univ. Babes-Bolyai. Chem. 2020, 65, 27–39. [Google Scholar]
- Zhang, X.; Li, R.; Hu, W.; Zeng, J.; Jiang, X.; Wang, L. A Reliable LC-MS/MS Method for the Quantification of N-Acetyl-p-Benzoquinoneimine, Acetaminophen Glutathione and Acetaminophen Glucuronide in Mouse Plasma, Liver and Kidney: Method Validation and Application to a Pharmacokinetic Study. Biomed. Chromatogr. 2018, 32, e4331. [Google Scholar] [CrossRef] [PubMed]
- Annadurai, K.; Sudha, V.; Murugadoss, G.; Thangamuthu, R. Electrochemical Sensor Based on Hydrothermally Prepared Nickel Oxide for the Determination of 4-Acetaminophen in Paracetamol Tablets and Human Blood Serum Samples. J. Alloys Compd. 2021, 852, 156911. [Google Scholar] [CrossRef]
- Shahmiri, M.R.; Bahari, A.; Karimi-Maleh, H.; Hosseinzadeh, R.; Mirnia, N. Ethynylferrocene–NiO/MWCNT Nanocomposite Modified Carbon Paste Electrode as a Novel Voltammetric Sensor for Simultaneous Determination of Glutathione and Acetaminophen. Sens. Actuators B Chem. 2013, 177, 70–77. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Ahmadi, N.; Rezaei, B.; Abarghoui, M.M. A New Electrochemical Sensor for the Simultaneous Determination of Acetaminophen and Codeine Based on Porous Silicon/Palladium Nanostructure. Talanta 2015, 134, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Kalambate, P.K.; Dhanjai; Sinha, A.; Li, Y.; Shen, Y.; Huang, Y. An Electrochemical Sensor for Ifosfamide, Acetaminophen, Domperidone, and Sumatriptan Based on Self-Assembled MXene/MWCNT/Chitosan Nanocomposite Thin Film. Microchim Acta 2020, 187, 402. [Google Scholar] [CrossRef]
- Sarikaya, S.; Ozcan, M.; Uzunoglu, A. Modification of Commercial Pt/C Catalyst with Graphene Nanoplatelets for Sensitive and Selective Detection of Acetaminophen in Commercial Tablets. ECS J. Solid State Sci. Technol. 2020, 9, 115006. [Google Scholar] [CrossRef]
- Ahmad, K.; Shinde, M.A.; Kim, H. Molybdenum Disulfide/Reduced Graphene Oxide: Progress in Synthesis and Electro-Catalytic Properties for Electrochemical Sensing and Dye Sensitized Solar Cells. Microchem. J. 2021, 169, 106583. [Google Scholar] [CrossRef]
- Ahmad, K.; Mobin, S.M. Design and Fabrication of Cost-Effective and Sensitive Non-Enzymatic Hydrogen Peroxide Sensor Using Co-Doped δ-MnO2 Flowers as Electrode Modifier. Anal Bioanal Chem 2021, 413, 789–798. [Google Scholar] [CrossRef]
- Poonia, M.; Manjuladevi, V.; Gupta, R.K.; Gupta, S.K.; Singh, J.; Agarwal, P.B.; Akhtar, J. Ultrathin Films of Single-Walled Carbon Nanotubes: A Potential Methane Gas Sensor. Sci. Adv. Mater. 2015, 7, 455–462. [Google Scholar] [CrossRef]
- Ahmad, K.; Kumar, P.; Mobin, S.M. Hydrothermally grown novel pyramids of the CaTiO3 perovskite as an efficient electrode modifier for sensing applications. Mater. Adv. 2020, 1, 2003–2009. [Google Scholar]
- Raza, W.; Ahmad, K.; Kim, H. Nitrogen-Doped Graphene as an Efficient Metal-Free Catalyst for Ammonia and Non-Enzymatic Glucose Sensing. Phys. Chem. Solids 2022, 160, 110359. [Google Scholar] [CrossRef]
- Ahmad, K.; Kim, H. Fabrication of Nitrogen-Doped Reduced Graphene Oxide Modified Screen Printed Carbon Electrode (N-RGO/SPCE) as Hydrogen Peroxide Sensor. Nanomaterials 2022, 12, 2443. [Google Scholar] [CrossRef] [PubMed]
- Poonia, M.; Manjhuladevi, V.; Gupta, R.K. Ultrathin films of functionalised single-walled carbon nanotubes: A potential bio-sensing platform. Liq. Cryst. 2020, 47, 1204–1213. [Google Scholar] [CrossRef]
- Ahmad, K.; Mohammad, K.; Ansari, S.N.; Mobin, S.M. Construction of graphene oxide sheets based modified glassy carbon electrode (GO/GCE) for the highly sensitive detection of nitrobenzene. Mater. Res. Express 2018, 5, 075601. [Google Scholar] [CrossRef]
- Ahmad, K.; Mobin, S.M. Construction of polyanilne/ITO electrode for electrochemical sensor applications. Mater. Res. Express 2019, 6, 085508. [Google Scholar] [CrossRef]
- Ahmad, K.; Mobin, S.M. Shape Controlled Synthesis of High Surface Area MgO Microstructures for Highly Efficient Congo Red Dye Removal and Peroxide Sensor. J. Environ. Chem. Eng. 2019, 7, 103347. [Google Scholar] [CrossRef]
- Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 2019, 1, 31–47. [Google Scholar]
- Zidan, M.; Zawawi, R.M.; Erhayem, M.; Salhin, A. Electrochemical detection of paracetamol using graphene oxide-modified glassy carbon electrode. Int. J. Electrochem. Sci. 2014, 9, 7605–7613. [Google Scholar]
- Poonia, M.; Manjuladevi, V.; Gupta, R.K. Ultrathin film of carboxylated graphene at air-water and air-solid interfaces. Surf. Interfaces 2018, 13, 37–45. [Google Scholar] [CrossRef]
- Ahmad, K.; Song, G.; Kim, H. Fabrication of Tungsten Oxide/Graphene Quantum Dot (WO3@GQD) Thin Films on Indium Tin Oxide-Based Glass and Flexible Substrates for the Construction of Electrochromic Devices for Smart Window Applications. ACS Sustain. Chem. Eng. 2022, 10, 11948–11957. [Google Scholar] [CrossRef]
- Rowley-Neale, S.J.; Randviir, E.P.; Abo Dena, A.S.; Banks, C.E. An Overview of Recent Applications of Reduced Graphene Oxide as a Basis of Electroanalytical Sensing Platforms. Appl. Mater. Today 2018, 10, 218–226. [Google Scholar] [CrossRef]
- Manna, B.; Raj, C.R. Nanostructured Sulfur-Doped Porous Reduced Graphene Oxide for the Ultrasensitive Electrochemical Detection and Efficient Removal of Hg(II). ACS Sustain. Chem. Eng. 2018, 6, 6175–6182. [Google Scholar] [CrossRef]
- Liu, B.; Ouyang, X.; Ding, Y.; Luo, L.; Xu, D.; Ning, Y. Electrochemical Preparation of Nickel and Copper Oxides-Decorated Graphene Composite for Simultaneous Determination of Dopamine, Acetaminophen and Tryptophan. Talanta 2016, 146, 114–121. [Google Scholar] [CrossRef]
- Amiri-Aref, M.; Raoof, J.B.; Ojani, R. A Highly Sensitive Electrochemical Sensor for Simultaneous Voltammetric Determination of Noradrenaline, Acetaminophen, Xanthine and Caffeine Based on a Flavonoid Nanostructured Modified Glassy Carbon Electrode. Sens. Actuators B Chem. 2014, 192, 634–641. [Google Scholar] [CrossRef]
- Awad, M.I.; Sayqal, A.; Pashameah, R.A.; Hameed, A.; Morad, M.; Alessa, H.; Shah, R.K.; Kassem, M.A. Enhanced paracetamol oxidation and its determination using electrochemically activated glassy carbon electrode. Int. J. Electrochem. Sci. 2021, 16, 150864. [Google Scholar] [CrossRef]
- Goyal, R.N.; Singh, S.P. Voltammetric Determination of Paracetamol at C60-Modified Glassy Carbon Electrode. Electrochim. Acta 2006, 51, 3008–3012. [Google Scholar] [CrossRef]
- Su, W.-Y.; Cheng, S.-H. Electrochemical Oxidation and Sensitive Determination of Acetaminophen in Pharmaceuticals at Poly(3,4-Ethylenedioxythiophene)-Modified Screen-Printed Electrodes. Electroanalysis 2010, 22, 707–714. [Google Scholar] [CrossRef]
- Patil, M.M.; Shetti, N.P.; Malode, S.J.; Nayak, D.S.; Chakklabbi, T.R. Electroanalysis of Paracetamol at Nanoclay Modified Graphite Electrode. Mater. Today Proc. 2019, 18, 986–993. [Google Scholar] [CrossRef]
Material | LoD (µM) | Sensitivity (µA/µMcm2) | References |
---|---|---|---|
NiO/CuO/rGO | 1.33 | 0.618 | [33] |
Luteolin/f-MWCNTs | 0.78 | 0.061 | [34] |
NiO | 0.13 | 0.091 | [12] |
NiO/MWCNTs/MEFPE | 0.5 | - | [13] |
Electrochemically activated GCE | 0.28 | - | [35] |
C60 modified glassy carbon electrode (GCE) | 50 | - | [36] |
Screen printed electrode modified Poly (3,4-ethylenedioxythiophene) | 1.39 | - | [37] |
Nanoclay modified graphite | 3.71 | - | [38] |
S@rGO/GCE | 0.07 | 0.957 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.Q.; Kumar, P.; Khan, R.A.; Ahmad, K.; Kim, H. Fabrication of Sulfur-Doped Reduced Graphene Oxide Modified Glassy Carbon Electrode (S@rGO/GCE) Based Acetaminophen Sensor. Inorganics 2022, 10, 218. https://doi.org/10.3390/inorganics10120218
Khan MQ, Kumar P, Khan RA, Ahmad K, Kim H. Fabrication of Sulfur-Doped Reduced Graphene Oxide Modified Glassy Carbon Electrode (S@rGO/GCE) Based Acetaminophen Sensor. Inorganics. 2022; 10(12):218. https://doi.org/10.3390/inorganics10120218
Chicago/Turabian StyleKhan, Mohd Quasim, Praveen Kumar, Rais Ahmad Khan, Khursheed Ahmad, and Haekyoung Kim. 2022. "Fabrication of Sulfur-Doped Reduced Graphene Oxide Modified Glassy Carbon Electrode (S@rGO/GCE) Based Acetaminophen Sensor" Inorganics 10, no. 12: 218. https://doi.org/10.3390/inorganics10120218
APA StyleKhan, M. Q., Kumar, P., Khan, R. A., Ahmad, K., & Kim, H. (2022). Fabrication of Sulfur-Doped Reduced Graphene Oxide Modified Glassy Carbon Electrode (S@rGO/GCE) Based Acetaminophen Sensor. Inorganics, 10(12), 218. https://doi.org/10.3390/inorganics10120218