Reactivity of a Sterical Flexible Pentabenzylcyclopentadienyl Samarocene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Reduction of Diphenyl Dichalcogenides with [CpBz52Sm]
2.2. Reduction of d-Metal Carbonyl Complexes with [CpBz52Sm]
3. Experimental Section
3.1. Materials and Methods
3.2. Synthesis of Complexes
3.3. Single-Crystal X-ray Crystallography Data Collection and Refinement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirsch, S.S.; Bailey, W.J. Base-catalyzed alkylation of cyclopentadiene rings with alcohols and amines. J. Org. Chem. 1978, 43, 4090–4094. [Google Scholar] [CrossRef]
- Chambers, J.W.; Baskar, A.J.; Bott, S.G.; Atwood, J.L.; Rausch, M.D. Formation and molecular structures of (.eta.5-pentabenzylcyclopentadienyl)- and (.eta.5-pentaphenylcyclopentadienyl)dicarbonyl derivatives of cobalt and rhodium. Organometallics 1986, 5, 1635–1641. [Google Scholar] [CrossRef]
- Tsai, W.-M.; Rausch, M.D.; Rogers, R.D. Improved Synthesis of Pentabenzylcyclopentadiene and Study of the Reaction between Pentabenzylcyclopentadiene and Iron Pentacarbonyl. Organometallics 1996, 15, 2591–2594. [Google Scholar] [CrossRef]
- Delville-Desbois, M.-H.; Mross, S.; Astruc, D. Chemistry of (Pentabenzylcyclopentadienyl)iron Compounds Including 17-Electron Dithiocarbamate Complexes. Organometallics 1996, 15, 5598–5604. [Google Scholar] [CrossRef]
- Schumann, H.; Janiak, C.; Köhn, R.D.; Loebel, J.; Dietrich, A. Synthesis and structure of Fe[C5(CH2Ph)5]2 and Lu(C8H8)[C5(CH2Ph)5]. J. Organomet. Chem. 1989, 365, 137–150. [Google Scholar] [CrossRef]
- Selikhov, A.N.; Mahrova, T.V.; Cherkasov, A.V.; Fukin, G.K.; Larionova, J.; Long, J.; Trifonov, A.A. Base-Free Lanthanoidocenes(II) Coordinated by Bulky Pentabenzylcyclopentadienyl Ligands. Organometallics 2015, 34, 1991–1999. [Google Scholar] [CrossRef]
- Schultz, M.; Boncella, J.M.; Berg, D.J.; Tilley, T.D.; Andersen, R.A. Coordination of 2,2’-Bipyridyl and 1,10-Phenanthroline to Substituted Ytterbocenes: An Experimental Investigation of Spin Coupling in Lanthanide Complexes. Organometallics 2002, 21, 460–472. [Google Scholar] [CrossRef]
- Szostak, M.; Procter, D.J. Beyond Samarium Diiodide: Vistas in Reductive Chemistry Mediated by Lanthanides(II). Angew. Chem. Int. Ed. 2012, 51, 9238–9256. [Google Scholar] [CrossRef]
- Bochkarev, M.N. Synthesis, Arrangement, and Reactivity of Arene–Lanthanide Compounds. Chem. Rev. 2002, 102, 2089–2118. [Google Scholar] [CrossRef]
- Reinfandt, N. Untersuchungen zur Reaktivität klassischer und Nicht-Klassischer Divalenter Lanthanoidverbindungen Gegenüber Pnictogenen und deren Verbindungen Sowie Darstellung Heterobimetallischer Lanthanoid-Münzmetallkomplexe. Ph.D. Thesis, Karlruher Institut für Technologie, Karlsruhe, Germany, 2021. [Google Scholar]
- Evans, W.J.; Miller, K.A.; Lee, D.S.; Ziller, J.W. Synthesis, Structure, and Ligand-Based Reduction Reactivity of Trivalent Organosamarium Benzene Chalcogenolate Complexes (C5Me5)2Sm(EPh)(THF) and [(C5Me5)2Sm(μ-EPh)]2. Inorg. Chem. 2005, 44, 4326–4332. [Google Scholar] [CrossRef]
- Hillier, A.C.; Liu, S.-Y.; Sella, A.; Elsegood, M.R.J. Lanthanide Chalcogenolate Complexes: Synthesis and Crystal Structures of the Isoleptic Series [Sm(TpMe,Me)2ER] (E = O, S, Se, Te; TpMe,Me = tris-3,5-Dimethylpyrazolylborate). Inorg. Chem. 2000, 39, 2635–2644. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.J.; Miller, K.A.; Ziller, J.W. Synthesis of (O2CEPh)1− Ligands (E = S, Se) by CO2 Insertion into Lanthanide Chalcogen Bonds and Their Utility in Forming Crystallographically Characterizable Organoaluminum Complexes [Me2Al(μ-O2CEPh)]2. Inorg. Chem. 2006, 45, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Hollemann, A.F.; Wiberg, E.; Wiberg, N. Lehrbuch der Anorganischen Chemie; Walter de Gruyter & Co.: Berlin, Germany, 2007. [Google Scholar]
- Pretsch, E.; Bühlmann, P.; Badertscher, M. Spektroskopische Daten Zur Strukturaufklärung Organischer Verbindungen, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Tilley, T.D.; Andersen, R.A. Preparation and crystal structure of µ-carbonyl-OC-bis(pentamethylcyclopentadienyl)(tetrahydrofuran)ytterbium(III)tricarbonylcobalt(I); A Yb–OC–Co linkage. J. Chem. Soc. Chem. Commun. 1981, 985–986. [Google Scholar] [CrossRef]
- Tilley, T.D.; Andersen, R. Preparation and crystal structure of bis[bis(pentamethylcyclopentadienyl)ytterbium(III)] undecacarbonyltriferrate, [(C5Me5)2Yb]2 [Fe3(CO)11]; a compound with four isocarbonyl (iron-carbonyl-ytterbium) interactions. J. Am. Chem. Soc. 1982, 104, 1772–1774. [Google Scholar] [CrossRef]
- Boncella, J.M.; Andersen, R.A. Bis(pentamethylcyclopentadienyl)ytterbium(II) as a Lewis acid and electron-transfer ligand. Preparation and crystal structures of [Yb(Me5C5)2(μ-CO)xMn(CO)5-x]y (x, y = 2; x = 3, y = ∞). Inorg. Chem. 1984, 23, 432–437. [Google Scholar] [CrossRef]
- Recknagel, A.; Steiner, A.; Brooker, S.; Stalke, D.; Edelmann, F.T. [Cp2*Sm(μ-OC)2FeCp*]2. Chem. Ber. 1991, 124, 1373–1375. [Google Scholar] [CrossRef]
- Yadav, R.; Simler, T.; Gamer, M.T.; Köppe, R.; Roesky, P.W. Rhenium is different: CO tetramerization induced by a divalent lanthanide complex in rhenium carbonyls. Chem. Commun. 2019, 55, 5765–5768. [Google Scholar] [CrossRef] [Green Version]
- Boncella, J.M.; Andersen, R.A. Preparation of [{Yb(C5Me5)2}2{Co3(C5H4R)2(µ3-CO)4}], R = H, Me, SiMe3; an example of a 47-electron transition metal fragment containing a cobalt atom with hexagonal planar co-ordination. J. Chem. Soc. Chem. Commun. 1984, 809–810. [Google Scholar] [CrossRef]
- Deacon, G.B.; Guo, Z.; Junk, P.C.; Wang, J. Reductive Trapping of [(OC)5W–W(CO)5]2− in a Mixed-Valent SmII/III Calix[4]pyrrolide Sandwich. Angew. Chem. Int. Ed. 2017, 56, 8486–8489. [Google Scholar] [CrossRef] [Green Version]
- Hillier, A.C.; Sella, A.; Elsegood, M.R.J. Reduction of rhenium decacarbonyl by samarium(II): Synthesis and structure of the spiked triangular anion [HRe4(CO)17]−. J. Organomet. Chem. 1999, 588, 200–204. [Google Scholar] [CrossRef]
- Yadav, R.; Hossain, M.E.; Peedika Paramban, R.; Simler, T.; Schoo, C.; Wang, J.; Deacon, G.B.; Junk, P.C.; Roesky, P.W. 3d–4f heterometallic complexes by the reduction of transition metal carbonyls with bulky LnII amidinates. Dalton Trans. 2020, 49, 7701–7707. [Google Scholar] [CrossRef] [PubMed]
- Calderazzo, F.; Fachinetti, G.; Marchetti, F.; Zanazzi, P.F. Preparation and crystal and molecular structure of two trialkylamine adducts of HCo(CO)4 showing a preferential NR3H + [(OC)3Co(CO)]– interaction. J. Chem. Soc., Chem. Commun. 1981, 181–183. [Google Scholar] [CrossRef]
- Evans, W.J.; Bloom, I.; Grate, J.W.; Hughes, L.A.; Hunter, W.E.; Atwood, J.L. Synthesis and characterization of the samarium-cobalt complexes (C5Me5)2(THF)SmCo(CO)4 and (SmI2(THF)5)(Co(CO)4): X-ray crystal structure of a seven-coordinate samarium(III) cation complex. Inorg. Chem. 1985, 24, 4620–4623. [Google Scholar] [CrossRef]
- Blake, M.P.; Kaltsoyannis, N.; Mountford, P. Probing the Limits of Alkaline Earth–Transition Metal Bonding: An Experimental and Computational Study. J. Am. Chem. Soc. 2015, 137, 12352–12368. [Google Scholar] [CrossRef] [PubMed]
- Hillier, A.C.; Sella, A.; Elsegood, M.R.J. The reaction of samarium(II) with manganese carbonyl: Unexpected conversion of CO to formate. X-ray crystal structures of [Sm(TpMe2)2]Mn(CO)5 and {[Sm(TpMe2)2]2(μ-HCO2)}Mn(CO)5 (TpMe2=HB(3,5-dimethylpyrazolyl). J. Organomet. Chem. 2002, 664, 298–305. [Google Scholar] [CrossRef]
- Girard, P.; Namy, J.L.; Kagan, H.B. Divalent lanthanide derivatives in organic synthesis. 1. Mild preparation of samarium iodide and ytterbium iodide and their use as reducing or coupling agents. J. Am. Chem. Soc. 1980, 102, 2693–2698. [Google Scholar] [CrossRef]
- Sheldrick, G. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinfandt, N.; Roesky, P.W. Reactivity of a Sterical Flexible Pentabenzylcyclopentadienyl Samarocene. Inorganics 2022, 10, 25. https://doi.org/10.3390/inorganics10020025
Reinfandt N, Roesky PW. Reactivity of a Sterical Flexible Pentabenzylcyclopentadienyl Samarocene. Inorganics. 2022; 10(2):25. https://doi.org/10.3390/inorganics10020025
Chicago/Turabian StyleReinfandt, Niklas, and Peter W. Roesky. 2022. "Reactivity of a Sterical Flexible Pentabenzylcyclopentadienyl Samarocene" Inorganics 10, no. 2: 25. https://doi.org/10.3390/inorganics10020025
APA StyleReinfandt, N., & Roesky, P. W. (2022). Reactivity of a Sterical Flexible Pentabenzylcyclopentadienyl Samarocene. Inorganics, 10(2), 25. https://doi.org/10.3390/inorganics10020025