Transition Metal Complexes of Schiff Base Ligands Prepared from Reaction of Aminobenzothiazole with Benzaldehydes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Schiff Bases Ligands
2.2. Synthesis of Metal Complexes
2.3. Physical Properties of Complexes
2.4. Magnetic Susceptibility of Metal Complexes
2.5. FTIR Spectra of Metal Complexes
2.6. 1H-NMR Study of Complexes
3. Materials and Methods
3.1. Materials and Instruments
3.2. Synthesis of Schiff Base Ligands
3.2.1. (E)-N-(6-methoxybenzo[d]thiazol-2-yl)-1-(2-nitrophenyl) methanimine (NB)
3.2.2. (E)-1-(2-chlorophenyl)-N-(6-methoxybenzo[d]thiazol-2-yl) methanimine (CB)
3.2.3. (E)-4-(((6-methoxybenzo[d]thiazol-2-yl)imino) methyl) benzene-1,3-diol (HB)
3.3. Synthesis of Metal Complexes
3.3.1. Synthesis of NB Complexes
- Cu-NB: Yield: 58%, color: Dark green, m.p.: 195–197 °C, analysis: C 46.87, H 2.87, N 10.89, S 8.21%, calculated for CuL2Cl2 0.5H2O: C 46.76, H 3.01, N 10.91, S 8.33%.
- Cd-NB: Yield: 64%, color: Orange, m.p.: 292–294 °C (dec), analysis: C 44.98, H 2.95, N 10.78, S 8.01%, calculated for CdL2Cl(OH) 0.5H2O: C 45.01, H 3.02, N 10.50, S 8.01%.
- Cr-NB: Yield: 66%, color: Dark green, m.p.: 70–72 °C, analysis: C 48.67, H 3.30, N 11.52, S 8.78%, calculated for CrL2(OH)3 0.5H2O: C 48.78, H 3.55, N 11.38, S 8.68%.
- Fe-NB: Yield: 57%, color: Brown, m.p.: 134–136 °C, analysis: C 47.98, H 3.11, N 11.85, S 8.89%, calculated for FeL2Cl(OH)2: C 47.92, H 3.22, N 11.18, S 8.53%.
- Co-NB: Yield: 62%, color: Blue, m.p.: 285–287 °C, analysis: C 47.87, H 3.27, N 11.45, S 8.89%, calculated for CoL2Cl(OH) 0.5H2O: C 48.23, H 3.24, N 11.25, S 8.58%.
3.3.2. Synthesis of CB Complexes
- Cu-CB: Yield: 55%, color: Dark green, m.p.: 53–55 °C, analysis: C 48.89, H 2.91, N 7.89, S 8.81%, calculated for CuL2Cl2: C 48.69, H 3.00, N 7.57, S 8.67%.
- Cr-CB: Yield: 62%, color: Blue, m.p.: 278–280 °C (dec.), analysis: C 49.85, H 3.54, N 7.75, S 8.78%, calculated for CrL2Cl(OH)2: C 49.56, H 3.33, N 7.71, S 8.82%.
- Fe-CB: Yield: 57%, color: Black, m.p.: 88–90 °C, analysis: C 49.87, H 3.60, N 7.96, S 8.97%, calculated for FeL2(OH)3 0.5H2O: C 49.95, H 3.63, N 7.77, S 8.89%.
- Co-CB: Yield: 55%, color: Navy-blue, m.p.: 285–287 °C, analysis: C 49.60, H 3.22, N 7.75, S 8.98%, calculated for CoL2Cl(OH) 0.5H2O: C 49.63, H 3.33, N 7.72, S 8.83%.
- Ni-CB: Yield: 54%, color: Green, m.p.: 228–230 °C, analysis: C 48.88, H 2.89, N 7.47, S 8.35%, calculated for NiL2Cl2: C 49.01, H 3.02, N 7.62, S 8.72%.
3.3.3. Synthesis of HB Complexes
- Cu-HB: Yield: 68%, color: Dark green, m.p.: 93–95 °C, analysis: C 49.50, H 3.54, N 7.91, S 8.41%, calculated for CuL2Cl(OH) 0.5H2O: C 49.65, H 3.61, N 7.72, S 8.84%.
- Cd-HB: Yield: 59%, color: Yellow, m.p.: 270–272 °C (dec.), analysis: C 46.23, H 3.21, N 7.25, S 8.56%, calculated for CdL2Cl(OH) 0.5H2O: C 46.52, H 3.38, N 7.23, S 8.28%.
- Cr-HB: Yield: 66%, color: Reddish-brown, m.p.: 92–94 °C, analysis: C 49.75, H 3.87, N 7.51, S 9.12%, calculated for CrL2Cl(OH)2: C 49.90, H 3.63, N 7.76, S 8.88%.
- Fe-HB: Yield: 67%, color: Black, m.p.: 95–97 °C, analysis: C 49.87, H 3.64, N 7.88, S 8.91%, calculated for FeL2Cl(OH)2: C 49.63, H 3.61, N 7.72, S 8.83%.
- Co-HB: Yield: 63%, color: Green, m.p.: 110–112 °C (dec.), analysis: C 49.89, H 3.81, N 8.01, S 9.11%, calculated for CoL2Cl(OH) 0.5H2O: C 49.97, H 3.63, N 7.77, S 8.89%.
- Ni-HB: Yield: 66%, color: Reddish-green, m.p.: 190–192 °C (dec.), analysis: C 49.04, H 3.11, N 7.27, S 8.20%, calculated for NiL2Cl2: C 49.34, H 3.31, N 7.67, S 8.78%.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schiff, H. Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen. Justus Liebigs Ann. Chem. 1864, 131, 118–119. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.B.; de Fátima, Â. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res. 2011, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff bases: A versatile pharmacophore. J. Catal. 2013, 2013, 893512. [Google Scholar] [CrossRef] [Green Version]
- Altamimi, M.A.; Hussain, A.; Alshehri, S.; Imam, S.S.; Alnami, A.; Bari, A. Novel Hemocompatible Imine Compounds as Alternatives for Antimicrobial Therapy in Pharmaceutical Application. Processes 2020, 8, 1476. [Google Scholar] [CrossRef]
- Abdel-Rahman, L.H.; El-Khatib, R.M.; Nassr, L.A.; Abu-Dief, A.M.; Lashin, F.E.-D. Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe (II) Schiff base amino acid complexes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 111, 266–276. [Google Scholar] [CrossRef]
- Dehkhodaei, M.; Sahihi, M.; Rudbari, H.A. Spectroscopic and molecular docking studies on the interaction of Pd (II) & Co (II) Schiff base complexes with β-lactoglobulin as a carrier protein. J. Biomol. Struct. Dyn. 2018, 36, 3130–3136. [Google Scholar]
- Abdel-Rahman, L.H.; Ismail, N.M.; Ismael, M.; Abu-Dief, A.M.; Ahmed, E.A.-H. Synthesis, characterization, DFT calculations and biological studies of Mn (II), Fe (II), Co (II) and Cd (II) complexes based on a tetradentate ONNO donor Schiff base ligand. J. Mol. Struct. 2017, 1134, 851–862. [Google Scholar] [CrossRef]
- Kostova, I.; Saso, L. Advances in research of Schiff-base metal complexes as potent antioxidants. Curr. Med. Chem. 2013, 20, 4609–4632. [Google Scholar] [CrossRef]
- Xavier, A.; Srividhya, N. Synthesis and study of Schiff base ligands. IOSR J. Appl. Chem. 2014, 7, 6–15. [Google Scholar] [CrossRef]
- Yousif, E.; Majeed, A.; Al-Sammarrae, K.; Salih, N.; Salimon, J.; Abdullah, B. Metal complexes of Schiff base: Preparation, characterization and antibacterial activity. Arab. J. Chem. 2017, 10, S1639–S1644. [Google Scholar] [CrossRef] [Green Version]
- Vadivel, T.; Dhamodaran, M. Synthesis, characterization and antibacterial studies of ruthenium (III) complexes derived from chitosan Schiff base. Int. J. Biol. Macromol. 2016, 90, 44–52. [Google Scholar] [CrossRef]
- Keri, R.S.; Patil, M.R.; Patil, S.A.; Budagumpi, S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem. 2015, 89, 207–251. [Google Scholar] [CrossRef]
- Liu, X.; Dong, Z.-B. A Review on Domino Condensation/Cyclization Reactions for the Synthesis of 2-Substituted 1, 3-Benzothiazole Derivatives. Eur. J. Org. Chem. 2020, 2020, 408–419. [Google Scholar] [CrossRef]
- Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Chaudhari, H.K.; Sekar, N. Schiff base clubbed benzothiazole: Synthesis, potent antimicrobial and MCF-7 anticancer activity, DNA cleavage and computational study. J. Biomol. Struct. Dyn. 2019, 38, 1772–1785. [Google Scholar] [CrossRef]
- El-Dakdouki, M.H.; Hussein, A.; Abdallah, H.; Shatila, R.; Mouneimne, Y. Synthesis of novel 2H-indazole analogues via the Davis-Beirut reaction and conjugation onto magnetic nanoparticles. Tetrahedron 2017, 73, 5769–5777. [Google Scholar] [CrossRef]
- Li, W.; Song, B.; Bhadury, P.S.; Li, L.; Wang, Z.; Zhang, X.; Hu, D.; Chen, Z.; Zhang, Y.; Bai, S.; et al. Chiral cinchona alkaloid-derived thiourea catalyst for enantioselective synthesis of novel β-amino esters by mannich reaction. Chirality 2012, 24, 223–231. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Xu, D. Asymmetric Synthesis of α-Amino Phosphonates by Using Cinchona Alkaloid-Based Chiral Phase Transfer Catalyst. Eur. J. Org. Chem. 2018, 2018, 5422–5426. [Google Scholar] [CrossRef]
- Yeap, G.-Y.; Heng, B.-T.; Faradiana, N.; Zulkifly, R.; Ito, M.M.; Tanabe, M.; Takeuchi, D. Synthesis, molecular structures and phase transition studies on benzothiazole-cored Schiff bases with their Cu(II) and Pd(II) complexes: Crystal structure of (E)-6-methoxy-2-(4-octyloxy-2-hydroxybenzylideneamino)benzothiazole. J. Mol. Struct. 2012, 1012, 1–11. [Google Scholar] [CrossRef]
- Ha, S.-T.; Koh, T.-M.; Yeap, G.-Y.; Lin, H.-C.; Lee, S.-L.; Win, Y.-F.; Ong, S.-T. Synthesis and Mesomorphic Properties of 6-Methoxy- and 6-Ethoxy-2-(2-Hydroxy-4 Alkanoyloxybenzylidenamino)Benzothiazoles. Mol. Cryst. Liq. Cryst. 2010, 528, 10–22. [Google Scholar] [CrossRef]
- Chohan, Z.H.; Supuran, C.T. Antibacterial Zn (II) compounds of. Schiff bases derived from some benzothiazoles. Main Group Met. Chem. 2002, 25, 291–296. [Google Scholar]
- Chohan, Z.H. Biologically active transition metal chelates of Ni (ll), Cu (ll) AND Zn (ll) with 2-aminothiazole-derived Schiff-bases: Their synthesis, characterization and the role of anions (NO3, SO-, C2O4 and CH3CO2) on their antibacterial properties. Met.-Based Drugs 1999, 6, 3. [Google Scholar]
- Kettle, S.F.A. Physical Inorganic Chemistry: A Coordination Chemistry Approach; Springer: Berlin/Heidelberg, Germany, 1996; Chapter 9. [Google Scholar]
- Angelusiu, M.V.; Barbuceanu, S.-F.; Draghici, C.; Almajan, G.L. New Cu (II), Co (II), Ni (II) complexes with aroyl-hydrazone based ligand. Synthesis, spectroscopic characterization and in vitro antibacterial evaluation. Eur. J. Med. Chem. 2010, 45, 2055–2062. [Google Scholar] [CrossRef] [PubMed]
- Housecroft, C.E.; Sharpe, A.G. Inorganic Chemistry; Pearson Education Limited England: London, UK, 2005; p. 583. [Google Scholar]
- Dalal, M. A Textbook of Inorganic Chemistry—Volume 1; Dalal Institute: Haryana, India, 2019; Chapter 9. [Google Scholar]
- Willis, J.B.; Mellor, D.P. The Magnetic Susceptibility of Some Nickel Complexes in Solution. J. Am. Chem. Soc. 1947, 69, 1237–1240. [Google Scholar] [CrossRef]
- Blanchard, S.; Neese, F.; Bothe, E.; Bill, E.; Weyhermüller, T.; Wieghardt, K. Square Planar vs Tetrahedral Coordination in Diamagnetic Complexes of Nickel(II) Containing Two Bidentate π-Radical Monoanions. Inorg. Chem. 2005, 44, 3636–3656. [Google Scholar] [CrossRef]
- Tripathi, S.; Dey, A.; Shanmugam, M.; Narayanan, R.S.; Chandrasekhar, V. Cobalt(II) Complexes as Single-Ion Magnets. In Organometallic Magnets; Topics in Organometallic Chemistry; Springer: Cham, Switzerland, 2018; Volume 64. [Google Scholar] [CrossRef]
- Emara, A.A.; El-Sayed, B.A.; Ahmed, E.-S.A. Syntheses, spectroscopic characterization and thermal behavior on novel binuclear transition metal complexes of hydrazones derived from 4, 6-diacetylresorcinol and oxalyldihydrazine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 69, 757–769. [Google Scholar] [CrossRef]
- Tarafder, M.T.H.; Kasbollah, A.; Crouse, K.A.; Ali, A.M.; Yamin, B.M.; Fun, H.-K. Synthesis and characterization of Zn (II) and Cd (II) complexes of S-benzyl-β-N-(2-pyridyl) methylenedithiocarbazate (HNNS): Bioactivity of the HNNS Schiff base and its Zn (II), Cu (II) and Cd (II) complexes and the X-ray structure of the [Zn (NNS) 2] complex. Polyhedron 2001, 20, 2363–2370. [Google Scholar]
- Kross, R.D.; Fassel, V.A. The Infrared Spectra of Aromatic Compounds. IV. The Nitro Valence Vibrations in p-Disubstituted Nitrobenzenes1. J. Am. Chem. Soc. 1956, 78, 4225–4229. [Google Scholar] [CrossRef]
- Alkuubaisi, H.M.; Sallom, H.K.; Kadim, W.H.; Shaker, S.H. Synthesis and Characterization of Co(II),Ni(II),Cu(II) and Zn(II) Complexes with Benzothiazol-2-yl-(4-chloro-benzylidene)-amine. IOSR J. Appl. Chem. 2016, 9, 11–16. [Google Scholar] [CrossRef]
- Salehi, M.; Faghani, F.; Kubicki, M.; Bayat, M. New complexes of Ni(II) and Cu(II) with tridentate ONO Schiff base ligand: Synthesis, crystal structures, electrochemical and theoretical investigation. J. Iran. Chem. Soc. 2018, 15, 2229–2240. [Google Scholar] [CrossRef] [Green Version]
- Gavranić, M.; Kaitner, B.; Meštrović, E. Intramolecular N- H... O hydrogen bonding, quinoid effect, and partial π-electron delocalization in N-aryl Schiff bases of 2-hydroxy-1-naphthaldehyde: The crystal structures of planar N-(α-naphthyl)-and N-(β-naphthyl)-2-oxy-1-naphthaldimine. J. Chem. Crystallogr. 1996, 26, 23–28. [Google Scholar] [CrossRef]
- Moosavi-Tekyeh, Z.; Dastani, N. Intramolecular hydrogen bonding in N salicylideneaniline: FT-IR spectrum and quantum chemical calculations. J. Mol. Struct. 2015, 1102, 314–322. [Google Scholar] [CrossRef]
- Pankratova, Y.; Aleshin, D.; Nikovskiy, I.; Novikov, V.; Nelyubina, Y. In Situ NMR Search for Spin-Crossover in Heteroleptic Cobalt(II) Complexes. Inorg. Chem. 2020, 59, 7700–7709. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, S.; Hambley, T.W.; Kennedy, B.J.; Lay, P.A. NMR Spectroscopic Characterization of Copper(II) and Zinc(II) Complexes of Indomethacin. Inorg. Chem. 2004, 43, 2943–2946. [Google Scholar] [CrossRef]
- Nanthakumar, A.; Fox, S.; Murthy, N.N.; Karlin, K.D. Inferences from the 1H-NMR Spectroscopic Study of an Antiferromagnetically Coupled Heterobinuclear Fe(III)−(X)−Cu(II) S = 2 Spin System (X = O2−, OH−). J. Am. Chem. Soc. 1997, 119, 3898–3906. [Google Scholar] [CrossRef]
- Watkins, C.L.; Vigee, G.S. Ethylenediamine complexes of copper(II) and nickel(II) in solutions of dimethyl sulfoxide. J. Phys. Chem. 1976, 80, 83–88. [Google Scholar] [CrossRef]
- Valencia, M.N.C.; Corrales, H.F.Z.; Martínez, G. Electronic and electrochemical properties of grid-type metal ion complexes (Fe2+ and Co2+ with a pyridine-pyrimidine-pyridine based bis(hydrazone). Rev. Colomb. Quím. 2018, 47, 45–53. [Google Scholar] [CrossRef] [Green Version]
Ligand | NB | CB | HB |
---|---|---|---|
Metal | µeff (B.M) | µeff (B.M) | µeff (B.M) |
Cu | 1.88 | 1.88 | 1.84 |
Cd | Dia | *** | Dia |
Cr | 3.77 | 3.73 | 3.87 |
Fe | 6.01 | 5.85 | 5.15 |
Co | 4.84 | 5.28 | 5.73 |
Ni | *** | 3.37 | 2.90 |
Code | -HC=N-, Azomethine | -C=N-, Benzothiazole | C-NO2 | M-N | M-N |
---|---|---|---|---|---|
NB | 1606 | 1597 | 1517, 1337 | ||
Cu-NB | 1637 | 1607 | 1528, 1344 | 500 | 442 |
Cd-NB | 1630 | 1611 | 1505, 1340 | 474 | 431 |
Cr-NB | 1639 | 1598 | 1522, 1342 | 576 | 536 |
Fe-NB | 1643 | 1599 | 1573, 1307 | 598 | 537 |
Co-NB | 1613 | 1576 | 1518, 1348 | 531 | 512 |
Code | -HC=N-, Azomethine | -C=N-, Benzothiazole | C-Cl | M-N | M-N |
---|---|---|---|---|---|
CB | 1602 | 1557 | 755 | ||
Cu-CB | 1694 | 1603 | 758 | 653 | 631 |
Cr-CB | 1612 | 1577 | 796 | 496 | 428 |
Fe-CB | 1634 | 1598 | 712 | 620 | 600 |
Co-CB | 1611 | 1576 | 795 | 692 | 649 |
Ni-CB | 1693 | 1635 | 755 | 641 | 630 |
Code | -HC=N-, Azomethine | -C=N-, Benzothiazole | C-OH Phenolic | M-N | M-N |
---|---|---|---|---|---|
HB | 1639 | 1604 | 1472, 1462 | ||
Cu-HB | 1620 | 1611 | 1489, 1475 | 598 | 428 |
Cd-HB | 1632 | 1614 | 1485, 1423 | 552 | 442 |
Cr-HB | 1647 | 1575 | 1485, 1423 | 558 | 496 |
Fe-HB | 1644 | 1583 | 1488, 1428 | 527 | 494 |
Co-HB | 1612 | 1584 | 1480, 1435 | 549 | 497 |
Ni-HB | 1623 | 1613 | 1489, 1475 | 576 | 546 |
Code | -HC=N-, Azometh | CH3-O | Code | -HC=N-, Azometh | CH3-O | Code | -HC=N-, Azometh | CH3-O | OH |
---|---|---|---|---|---|---|---|---|---|
NB | 9.44 | 3.86 | CB | 9.44 | 3.86 | HB | 9.18 | 3.84 | 10.69, 12.01 (broad) |
Cu-NB | 10.24 | 3.84 | Cu-CB | 10.33 | 3.79 | Cu-HB | 9.91 | 3.61 | 10.61, 10.88 (sharp) |
Cr-NB | 10.25 9.20 | 3.76 | Cr-CB | 10.32 | 3.70 | Cr-HB | 9.94 | 3.78 | disappeared |
Cd-NB | 10.22 | 3.76 | Ni-CB | 10.34 | 3.72 | Cd-HB | 9.17 | 3.84 | 10.68, 12.02 (broad, lower intensity) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sunjuk, M.; Al-Najjar, L.; Shtaiwi, M.; El-Eswed, B.; Al-Noaimi, M.; Al-Essa, L.; Sweidan, K. Transition Metal Complexes of Schiff Base Ligands Prepared from Reaction of Aminobenzothiazole with Benzaldehydes. Inorganics 2022, 10, 43. https://doi.org/10.3390/inorganics10040043
Sunjuk M, Al-Najjar L, Shtaiwi M, El-Eswed B, Al-Noaimi M, Al-Essa L, Sweidan K. Transition Metal Complexes of Schiff Base Ligands Prepared from Reaction of Aminobenzothiazole with Benzaldehydes. Inorganics. 2022; 10(4):43. https://doi.org/10.3390/inorganics10040043
Chicago/Turabian StyleSunjuk, Mahmoud, Lana Al-Najjar, Majed Shtaiwi, Bassam El-Eswed, Mousa Al-Noaimi, Luay Al-Essa, and Kamal Sweidan. 2022. "Transition Metal Complexes of Schiff Base Ligands Prepared from Reaction of Aminobenzothiazole with Benzaldehydes" Inorganics 10, no. 4: 43. https://doi.org/10.3390/inorganics10040043
APA StyleSunjuk, M., Al-Najjar, L., Shtaiwi, M., El-Eswed, B., Al-Noaimi, M., Al-Essa, L., & Sweidan, K. (2022). Transition Metal Complexes of Schiff Base Ligands Prepared from Reaction of Aminobenzothiazole with Benzaldehydes. Inorganics, 10(4), 43. https://doi.org/10.3390/inorganics10040043