The Flower-like Co3O4 Hierarchical Microspheres for Methane Catalytic Oxidation
Abstract
:1. Introduction
2. Experimental
2.1. Co3O4-FL Preparation
2.2. Characterizations
2.3. Catalytic Tests
3. Results and Discussion
3.1. Catalytic Characterization
3.2. Methane Catalytic Oxidation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Fletcher, S.E.M.; Schaefer, H. Rising methane: A new climate challenge. Science 2019, 364, 932–933. [Google Scholar] [CrossRef] [PubMed]
- Vickers, S.M.; Gholami, R.; Smith, K.J.; MacLachlan, M.J. Mesoporous Mn- and La doped cerium oxide/cobalt oxide mixed metal catalysts for methane oxidation. Appl. Mater. Interfaces 2015, 7, 11460–11466. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xiang, W.; Guan, N.; Cui, R.; Cheng, H.; Chen, X.; Song, Z.; Zhang, X.; Zhang, Y. Enhanced catalytic performance for toluene purification over Co3O4/MnO2 catalyst through the construction of different Co3O4-MnO2 interface. Sep. Purif. Technol. 2022, 278, 119590. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, C.; Li, X.; Li, Z.; Wang, L.; Zhang, Q.; Wu, G.; Li, Z. Engineering an effective MnO2 catalyst from LaMnO3 for catalytic methane combustion. Fuel 2019, 239, 1240–1245. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, C.; Li, X.; Wang, C.; Wang, X.; Cao, H.; Zhao, M.; Wu, G.; Su, W.; Ma, T.; et al. N-doping activated defective Co3O4 as an efficient catalyst for low-temperature methane oxidation. Appl. Catal. B 2020, 269, 118757. [Google Scholar] [CrossRef]
- Sanchis, R.; García, A.; Ivars-Barceló, F.; Taylor, S.H.; García, T.; Dejoz, A.; Vázquez, M.I.; Solsona, B. Highly active Co3O4-based catalysts for totaloxidation of light C1–C3 alkanesprepared by a simplesoft chemistry method: Effect of the heat-treatment temperature and mixture of alkanes. Materials 2021, 14, 7120. [Google Scholar] [CrossRef]
- Choya, A.; de Rivas, B.; Gutiérrez-Ortiz, J.I.; López-Fonseca, R. Bulk Co3O4 for methane oxidation: Effect of the synthesis route on physico-chemical properties and catalytic performance. Catalysts 2022, 12, 87. [Google Scholar] [CrossRef]
- Yu, Q.; Zhuang, R.; Gao, W.; Yi, H.; Xie, X.; Zhang, Y.; Tang, X. Mesoporous Co3O4 with large specific surface area derived from MCM-48 for catalytic oxidation of toluene. J. Solid State Chem. 2022, 307, 122802. [Google Scholar] [CrossRef]
- Miao, L.; Tang, X.; Zhao, S.; Xie, X.; Du, C.; Tang, T.; Yi, H. Study on mechanism of low-temperature oxidation of n-hexanal catalysed by 2D ultrathin Co3O4 nanosheets. Nano Res. 2022, 15, 1660–1671. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Gao, L.; Zheng, H.; Zhang, Z.; Qian, Y. One-Dimensional Arrays of Co3O4 Nanoparticles: Synthesis, Characterization, and Optical and Electrochemical Properties. J. Phys. Chem. B 2004, 108, 16401–16404. [Google Scholar] [CrossRef]
- Hu, L.; Peng, Q.; Li, Y. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 130, 16136–16137. [Google Scholar] [CrossRef]
- Liotta, L.F.; Wu, H.; Pantaleo, G.; Venezia, A.M. Co3O4 nanocrystals and Co3O4–MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: A review. Catal. Sci. Technol. 2013, 3, 3085–3102. [Google Scholar] [CrossRef]
- Fei, Z.; He, S.; Li, L.; Ji, W.; Au, C.T. Morphology-directed synthesis of Co3O4 nanotubes based on modified Kirkendall effect and its application in CH4 combustion. Chem. Commun. 2012, 48, 853–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setiawan, A.; Kennedy, E.M.; Dlugogorski, B.Z.; Adesina, A.A.; Stockenhuber, M. The stability of Co3O4, Fe2O3, Au/Co3O4 and Au/Fe2O3 catalysts in the catalytic combustion of lean methane mixtures in the presence of water. Catal. Today 2015, 258, 276–283. [Google Scholar] [CrossRef]
- Liu, S.; Liu, P.; Niu, R.; Wang, S.; Li, J. Facile synthesis of mesoporous Co3O4 nanoflowers for catalytic combustion of ventilation air methane. Chem. Res. Chin. Univ. 2017, 33, 965–970. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, H.; Du, Y.; Deng, J.; Zhang, L.; Zhao, Z.; Au, C.T. Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene. J. Catal. 2012, 287, 149–160. [Google Scholar] [CrossRef]
- Cai, T.; Huang, H.; Deng, W.; Dai, Q.; Liu, W.; Wang, X. Catalytic combustion of 1,2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts. Appl. Catal. B 2015, 166, 393–405. [Google Scholar] [CrossRef]
- Konsolakis, M.; Sgourakis, M.; Carabineiro, S.A.C. Surface and redox properties of cobalt-ceria binary oxides: On the effect of Co content and pretreatment conditions. Appl. Surf. Sci. 2015, 341, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Barreca, D.; Massignan, C.; Daolio, S.; Fabrizio, M.; Piccirillo, C.; Armelao, L.; Tondello, E. Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition. Chem. Mater. 2001, 13, 588–593. [Google Scholar] [CrossRef]
- Wei, W.; Chen, W.; Ivey, D.G. Rock salt—Spinel structural transformation in anodically electrodeposited Mn−Co−O nanocrystals. Chem. Mater. 2008, 20, 1941–1947. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Díaz-Fernández, D.; Méndez, J.; Bomatí-Miguel, O.; Yubero, F.; Mossanek, R.J.O.; Abbate, M.; Domínguez-Cañizares, G.; Gutiérrez, A.; Tougaard, S.; Soriano, L. The growth of cobalt oxides on HOPG and SiO2 surfaces: A comparative study. Surf. Sci. 2014, 624, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Lykhach, Y.; Faisal, F.; Skála, T.; Neitzel, A.; Tsud, N.; Vorokhta, M.; Dvořák, F.; Beranová, K.; Kosto, Y.; Prince, K.C.; et al. Interplay between the metal-support interaction and stability in Pt/Co3O4 (111) model catalysts. J. Mater. Chem. A 2018, 6, 23078–23086. [Google Scholar] [CrossRef]
- Chen, J.; Shi, W.; Yang, S.; Arandiyan, H.; Li, J. Distinguished roles with various vanadium loadings of CoCr2–xVxO4 (x = 0–0.20) for Methane Combustion. J. Phys. Chem. C 2011, 115, 17400–17408. [Google Scholar] [CrossRef]
- Gautier, J.L.; Rios, E.; Gracia, M.; Marco, J.F.; Gancedo, J.R. Characterisation by X-ray photoelectron spectroscopy of thin MnxCo3−xO4 (1 ≥ x ≥ 0) spinel films prepared by low-temperature spray pyrolysis. Thin Solid Film. 1997, 311, 51–57. [Google Scholar] [CrossRef]
- Valeri, S.; Borghi, A.; Gazzadi, G.C.; Di Bona, A. Growth and structure of cobalt oxide on (001) bct cobalt film. Surf. Sci. 1999, 423, 346–356. [Google Scholar] [CrossRef]
- Yuan, C.; Liu, S.Y.; Wang, Z.Q.; Wang, G.Y. Catalytic oxidation of low concentrations of vinyl chloride over spinel-type Co3O4 catalysts. React. Kinet. Mech. Catal. 2018, 125, 757–771. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, C.; Du, D.; Wang, C.; Qin, Y.; Ge, J.; Han, Y.; Zhu, J.; Liu, M. The Flower-like Co3O4 Hierarchical Microspheres for Methane Catalytic Oxidation. Inorganics 2022, 10, 49. https://doi.org/10.3390/inorganics10040049
Lv C, Du D, Wang C, Qin Y, Ge J, Han Y, Zhu J, Liu M. The Flower-like Co3O4 Hierarchical Microspheres for Methane Catalytic Oxidation. Inorganics. 2022; 10(4):49. https://doi.org/10.3390/inorganics10040049
Chicago/Turabian StyleLv, Changpeng, Dan Du, Chao Wang, Yingyue Qin, Jinlong Ge, Yansong Han, Junjie Zhu, and Muxin Liu. 2022. "The Flower-like Co3O4 Hierarchical Microspheres for Methane Catalytic Oxidation" Inorganics 10, no. 4: 49. https://doi.org/10.3390/inorganics10040049
APA StyleLv, C., Du, D., Wang, C., Qin, Y., Ge, J., Han, Y., Zhu, J., & Liu, M. (2022). The Flower-like Co3O4 Hierarchical Microspheres for Methane Catalytic Oxidation. Inorganics, 10(4), 49. https://doi.org/10.3390/inorganics10040049