Anthracene-Containing Metallacycles and Metallacages: Structures, Properties, and Applications
Abstract
:1. Introduction
2. Constructions of Anthracene-Containing Metallacycles and Metallacages
2.1. Anthracene-Containing Organic Donor Building Blocks
2.2. Anthracene-Containing Organometallic Acceptor Building Blocks
3. Properties and Applications of Anthracene-Containing Metallacycles and Metallacages
3.1. Host-Guest Chemistry
3.2. Stimulus Response
3.3. Molecular Sensing
3.4. Light Harvesting and Biomedical Applications
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gianneschi, N.C.; Masar, M.S.; Mirkin, C.A. Development of a Coordination Chemistry-Based Approach for Functional Supramolecular Structures. Acc. Chem. Res. 2005, 38, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Atwood, J.L.; Barbour, L.J.; Hardie, M.J.; Raston, C.L. Metal sulfonatocalix[4,5]arene complexes: Bi-layers, capsules, spheres, tubular arrays and beyond. Coord. Chem. Rev. 2001, 222, 3–32. [Google Scholar] [CrossRef]
- Cook, T.R.; Zheng, Y.-R.; Stang, P.J. Metal–organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem. Rev. 2013, 113, 734–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Wang, Y.-X.; Yang, H.-B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev. 2016, 45, 2656–2693. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Q.; Khalil-Cruz, L.E.; Khashab, N.M.; Yu, G.; Huang, F. Pillararene-based supramolecular systems for theranostics and bioapplications. Sci. China Chem. 2021, 64, 688–700. [Google Scholar] [CrossRef]
- Tuo, W.; Xu, Y.; Fan, Y.; Li, J.; Qiu, M.; Xiong, X.; Li, X.; Sun, Y. Biomedical applications of Pt (II) metallacycle/metallacage-based agents: From mono-chemotherapy to versatile imaging contrasts and theranostic platforms. Coord. Chem. Rev. 2021, 443, 214017. [Google Scholar] [CrossRef]
- Cook, T.R.; Stang, P.J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 2015, 115, 7001–7045. [Google Scholar] [CrossRef]
- Wu, G.-Y.; Chen, L.-J.; Xu, L.; Zhao, X.-L.; Yang, H.-B. Construction of supramolecular hexagonal metallacycles via coordination-driven self-assembly: Structure, properties and application. Coord. Chem. Rev. 2018, 369, 39–75. [Google Scholar] [CrossRef]
- Ballester, P.; Fujita, M.; Rebek, J. Molecular containers. Chem. Soc. Rev. 2015, 44, 392–393. [Google Scholar] [CrossRef]
- Samanta, S.K.; Isaacs, L. Biomedical applications of metal organic polygons and polyhedra (MOPs). Coord. Chem. Rev. 2020, 410, 213181. [Google Scholar] [CrossRef]
- Li, Y.; Yu, J.-G.; Ma, L.-L.; Li, M.; An, Y.-Y.; Han, Y.-F. Strategies for the construction of supramolecular assemblies from poly-NHC ligand precursors. Sci. China Chem. 2021, 64, 701–718. [Google Scholar] [CrossRef]
- Zarra, S.; Wood, D.M.; Roberts, D.A.; Nitschke, J.R. Molecular containers in complex chemical systems. Chem. Soc. Rev. 2015, 44, 419–432. [Google Scholar] [CrossRef] [Green Version]
- Dey, N.; Haynes, C.J. Supramolecular Coordination Complexes as Optical Biosensors. ChemPlusChem 2021, 86, 418–433. [Google Scholar] [CrossRef]
- Yoshizawa, M.; Klosterman, J.K. Molecular architectures of multi-anthracene assemblies. Chem. Soc. Rev. 2014, 43, 1885–1898. [Google Scholar] [CrossRef]
- Yoshizawa, M.; Catti, L. Bent Anthracene Dimers as Versatile Building Blocks for Supramolecular Capsules. Acc. Chem. Res. 2019, 52, 2392–2404. [Google Scholar] [CrossRef]
- Wright, W.H. Ultraviolet Properties of Crystalline Anthracene. Chem. Rev. 1967, 67, 581–597. [Google Scholar] [CrossRef]
- Huang, J.; Su, J.-H.; Tian, H. The development of anthracene derivatives for organic light-emitting diodes. J. Mater. Chem. 2012, 22, 10977–10989. [Google Scholar] [CrossRef]
- Sun, Y.; Stang, P.J. Metallacycles, metallacages, and their aggregate/optical behavior. Aggregate 2021, 2, e94. [Google Scholar] [CrossRef]
- Tidmarsh, I.S.; Faust, T.B.; Adams, H.; Harding, L.P.; Russo, L.; Clegg, W.; Ward, M.D. Octanuclear cubic coordination cages. J. Am. Chem. Soc. 2008, 130, 15167–15175. [Google Scholar] [CrossRef]
- Vasylevskyi, S.I.; Regeta, K.; Ruggi, A.; Petoud, S.; Piguet, C.; Fromm, K.M. cis- and trans-9,10-di(1H-imidazol-1-yl)-anthracene based coordination polymers of ZnII and CdII: Synthesis, crystal structures and luminescence properties. Dalton Trans. 2018, 47, 596–607. [Google Scholar] [CrossRef] [Green Version]
- Sinha, N.; Hahn, F.E. Metallosupramolecular Architectures Obtained from Poly-N-heterocyclic Carbene Ligands. Acc. Chem. Res. 2017, 50, 2167–2184. [Google Scholar] [CrossRef]
- Kuehl, C.J.; Mayne, C.L.; Arif, A.M.; Stang, P.J. Coordination-Driven Assembly of Molecular Rectangles via an Organometallic “Clip”. Org. Lett. 2000, 2, 3727–3729. [Google Scholar] [CrossRef]
- Brocker, E.R.; Anderson, S.E.; Northrop, B.H.; Stang, P.J.; Bowers, M.T. Structures of Metallosupramolecular Coordination Assemblies Can Be Obtained by Ion Mobility Spectrometry−Mass Spectrometry. J. Am. Chem. Soc. 2010, 132, 13486–13494. [Google Scholar] [CrossRef] [Green Version]
- Ronson, T.K.; Pilgrim, B.S.; Nitschke, J.R. Pathway-Dependent Post-assembly Modification of an Anthracene-Edged MII4L6 Tetrahedron. J. Am. Chem. Soc. 2016, 138, 10417–10420. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Stoddart, J.F. Emergent behavior in nanoconfined molecular containers. Chem 2021, 7, 919–947. [Google Scholar] [CrossRef]
- Karslyan, E.E.; Borissova, A.O.; Perekalin, D.S. Ligand Design for Site-Selective Metal Coordination: Synthesis of Transition-Metal Complexes with η6-Coordination of the Central Ring of Anthracene. Angew. Chem. Int. Ed. 2017, 56, 5584–5587. [Google Scholar] [CrossRef]
- Luo, D.; Wu, L.-X.; Zhang, Y.; Huang, Y.-L.; Chen, X.-L.; Zhou, X.-P.; Li, D. Self-assembly of a photoluminescent metal-organic cage and its spontaneous aggregation in dilute solutions enabling time-dependent emission enhancement. Sci. China Chem. 2022, 65, 1105–1111. [Google Scholar] [CrossRef]
- Lehn, J.M. Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self-organization. Angew. Chem. Int. Ed. 1990, 29, 1304–1319. [Google Scholar] [CrossRef]
- Li, C.; Jia, P.-P.; Xu, Y.-L.; Ding, F.; Yang, W.-C.; Sun, Y.; Li, X.-P.; Yin, G.-Q.; Xu, L.; Yang, G.-F. Photoacoustic imaging-guided chemo-photothermal combinational therapy based on emissive Pt (II) metallacycle-loaded biomimic melanin dots. Sci. China Chem. 2021, 64, 134–142. [Google Scholar] [CrossRef]
- Kishi, N.; Li, Z.; Yoza, K.; Akita, M.; Yoshizawa, M. An M2L4 molecular capsule with an anthracene shell: Encapsulation of large guests up to 1 nm. J. Am. Chem. Soc. 2011, 13, 11438–11441. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, H.-Y.; Zhang, Z.-Y.; Liu, Y. Tunable Luminescent Lanthanide Supramolecular Assembly Based on Photoreaction of Anthracene. J. Am. Chem. Soc. 2017, 139, 7168–7171. [Google Scholar] [CrossRef] [PubMed]
- McConnell, A.J.; Wood, C.S.; Neelakandan, P.P.; Nitschke, J.R. Stimuli-Responsive Metal–Ligand Assemblies. Chem. Rev. 2015, 115, 7729–7793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanmugaraju, S.; Mukherjee, P.S. Self-Assembled Discrete Molecules for Sensing Nitroaromatics. Chem. Eur. J. 2015, 21, 6656–6666. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Chakrabarty, R.; Mukherjee, P.S. Design, Synthesis, and Characterizations of a Series of Pt4 Macrocycles and Fluorescent Sensing of Fe3+/Cu2+/Ni2+ Through Metal Coordination. Inorg. Chem. 2009, 48, 549–556. [Google Scholar] [CrossRef]
- Mukherjee, P.S.; Min, K.S.; Arif, A.M.; Stang, P.J. Synthesis and Crystal Structure of Two New Discrete, Neutral Complexes of Manganese and Zinc Using a Rigid Organic Clip. Inorg. Chem. 2004, 43, 6345–6350. [Google Scholar] [CrossRef]
- Bar, A.K.; Shanmugaraju, S.; Chi, K.-W.; Mukherjee, P.S. Self-assembly of neutral and cationic PdII organometallic molecular rectangles: Synthesis, characterization and nitroaromatic sensing. Dalton Trans. 2011, 40, 2257–2267. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Mukherjee, P.S. Self-assembly of metal–organic hybrid nanoscopic rectangles. Dalton Trans. 2007, 36, 2542–2546. [Google Scholar] [CrossRef]
- Shanmugaraju, S.; Joshi, S.A.; Mukherjee, P.S. Self-Assembly of Metallamacrocycles Using a Dinuclear Organometallic Acceptor: Synthesis, Characterization, and Sensing Study. Inorg. Chem. 2011, 50, 11736–11745. [Google Scholar] [CrossRef]
- Shanmugaraju, S.; Bar, A.K.; Jadhav, H.; Moon, D.; Mukherjee, P.S. Coordination self-assembly of tetranuclear Pt(ii) macrocycles with an organometallic backbone for sensing of acyclic dicarboxylic acids. Dalton Trans. 2013, 42, 2998–3008. [Google Scholar] [CrossRef]
- Shanmugaraju, S.; Bar, A.K.; Joshi, S.A.; Patil, Y.P.; Mukherjee, P.S. Constructions of 2D-Metallamacrocycles Using Half-Sandwich RuII2 Precursors: Synthesis, Molecular Structures, and Self-Selection for a Single Linkage Isomer. Organometallics 2011, 30, 1951–1960. [Google Scholar] [CrossRef] [Green Version]
- Kryschenko, Y.K.; Seidel, S.R.; Muddiman, D.C.; Nepomuceno, A.I.; Stang, P.J. Coordination-Driven Self-Assembly of Supramolecular Cages: Heteroatom-Containing and Complementary Trigonal Prisms. J. Am. Chem. Soc. 2003, 125, 9647–9652. [Google Scholar] [CrossRef]
- Ghosh, S.; Gole, B.; Bar, A.K.; Mukherjee, P.S. Self-Assembly of Molecular Prisms via Pt3 Organometallic Acceptors and a Pt2 Organometallic Clip. Organometallics 2009, 28, 4288–4296. [Google Scholar] [CrossRef]
- Shan, W.L.; Lin, Y.J.; Hahn, F.E.; Jin, G.X. Highly Selective Synthesis of Iridium (III) Metalla [2] catenanes through Component Pre-Orientation by π⋅⋅⋅ π Stacking. Angew. Chem. Int. Ed. 2019, 58, 5882–5886. [Google Scholar] [CrossRef]
- Hahn, F.E.; Jahnke, M.C. Heterocyclic Carbenes: Synthesis and Coordination Chemistry. Angew. Chem. Int. Ed. 2008, 47, 3122–3172. [Google Scholar] [CrossRef]
- Credendino, R.; Falivene, L.; Cavallo, L. π-Face Donation from the Aromatic N-Substituent of N-Heterocyclic Carbene Ligands to Metal and Its Role in Catalysis. J. Am. Chem. Soc. 2012, 134, 8127–8135. [Google Scholar] [CrossRef]
- Velazquez, H.D.; Verpoort, F. N-heterocyclic carbene transition metal complexes for catalysis in aqueous media. Chem. Soc. Rev. 2012, 41, 7032–7060. [Google Scholar] [CrossRef]
- Visbal, R.; Gimeno, M.C. N-heterocyclic carbene metal complexes: Photoluminescence and applications. Chem. Soc. Rev. 2014, 43, 3551–3574. [Google Scholar] [CrossRef]
- Mercs, L.; Albrecht, M. Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications. Chem. Soc. Rev. 2010, 39, 1903–1912. [Google Scholar] [CrossRef]
- Lin, C.-X.; Kong, X.-F.; Li, Q.-S.; Zhang, Z.-Z.; Yuan, Y.-F.; Xu, F.-B. Dinuclear Ag(i) metallamacrocycles of bis-N-heterocyclic carbenes bridged by calixarene fragments: Synthesis, structure and chemosensing behavior. CrystEngComm 2013, 15, 6948–6962. [Google Scholar] [CrossRef]
- Megyes, T.; Jude, H.; Grósz, T.; Bakó, I.; Radnai, T.; Tárkányi, G.; Pálinkás, G.; Stang, P.J. X-ray diffraction and DOSY NMR characterization of self-assembled supramolecular metallocyclic species in solution. J. Am. Chem. Soc. 2005, 127, 10731–10738. [Google Scholar] [CrossRef]
- Goldberg, J.M.; Guard, L.M.; Wong, G.W.; Brayton, D.F.; Kaminsky, W.; Goldberg, K.I.; Heinekey, D.M. Preparation and Reactivity of Bimetallic (pincer)Ir Complexes. Organometallics 2020, 39, 3323–3334. [Google Scholar] [CrossRef]
- Resendiz, M.J.; Noveron, J.C.; Disteldorf, H.; Fischer, S.; Stang, P.J. A self-assembled supramolecular optical sensor for Ni (II), Cd (II), and Cr (III). Org. Lett. 2004, 6, 651–653. [Google Scholar] [CrossRef]
- Gong, J.-R.; Wan, L.-J.; Yuan, Q.-H.; Bai, C.-L.; Jude, H.; Stang, P.J. Mesoscopic self-organization of a self-assembled supramolecular rectangle on highly oriented pyrolytic graphite and Au (111) surfaces. Proc. Natl. Acad. Sci. USA 2005, 10, 971–974. [Google Scholar] [CrossRef] [Green Version]
- Kuehl, C.J.; Kryschenko, Y.K.; Radhakrishnan, U.; Seidel, S.R.; Huang, S.D.; Stang, P.J. Self-assembly of nanoscopic coordination cages of D3h symmetry. Proc. Natl. Acad. Sci. USA 2002, 99, 4932–4936. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.-R.; Yang, H.-B.; Northrop, B.H.; Ghosh, K.; Stang, P.J. Size selective self-sorting in coordination-driven self-assembly of finite ensembles. Inorg. Chem. 2008, 47, 4706–4711. [Google Scholar] [CrossRef]
- Yang, H.-B.; Ghosh, K.; Northrop, B.H.; Stang, P.J. Self-recognition in the coordination-driven self-assembly of three-dimensional M3L2 polyhedra. Org. Lett. 2007, 9, 1561–1564. [Google Scholar] [CrossRef]
- Das, N.; Mukherjee, P.S.; Arif, A.M.; Stang, P.J. Facile self-assembly of predesigned neutral 2D Pt-macrocycles via a new class of rigid oxygen donor linkers. J. Am. Chem. Soc. 2003, 125, 13950–13951. [Google Scholar] [CrossRef]
- Das, N.; Arif, A.M.; Stang, P.J.; Sieger, M.; Sarkar, B.; Kaim, W.; Fiedler, J. Self-assembly of heterobimetallic neutral macrocycles incorporating ferrocene Spacer groups: Spectroelectrochemical analysis of the double two-electron oxidation of a molecular rectangle. Inorg. Chem. 2005, 44, 5798–5804. [Google Scholar] [CrossRef]
- Das, N.; Stang, P.J.; Arif, A.M.; Campana, C.F. Synthesis and structural characterization of carborane-containing neutral, self-assembled Pt-metallacycles. J. Org. Chem. 2005, 70, 10440–10446. [Google Scholar] [CrossRef]
- Huang, F.; Yang, H.-B.; Das, N.; Maran, U.; Arif, A.M.; Gibson, H.W.; Stang, P.J. Incorporating a flexible crown ether into neutral discrete self-assemblies driven by metal coordination. J. Org. Chem. 2006, 71, 6623–6625. [Google Scholar] [CrossRef]
- Das, N.; Ghosh, A.; Singh, O.M.; Stang, P.J. Facile synthesis of enantiopure chiral molecular rectangles exhibiting induced circular dichroism. Org. Lett. 2006, 8, 1701–1704. [Google Scholar] [CrossRef] [PubMed]
- Bar, A.K.; Gole, B.; Ghosh, S.; Mukherjee, P.S. Self-assembly of a PdII neutral molecular rectangle via a new organometallic Pd II 2 molecular clip and oxygen donor linker. Dalton Trans. 2009, 38, 6701–6704. [Google Scholar] [CrossRef] [PubMed]
- Debata, N.B.; Tripathy, D.; Chand, D.K. Self-assembled coordination complexes from various palladium(II) components and bidentate or polydentate ligands. Coord. Chem. Rev. 2012, 256, 1831–1945. [Google Scholar] [CrossRef]
- Sommer, S.K.; Henle, E.A.; Zakharov, L.N.; Pluth, M.D. Selection for a Single Self-Assembled Macrocycle from a Hybrid Metal–Ligand Hydrogen-Bonded (MLHB) Ligand Subunit. Inorg. Chem. 2015, 54, 6910–6916. [Google Scholar] [CrossRef] [PubMed]
- Yeung, M.C.-L.; Yam, V.W.-W. Luminescent cation sensors: From host–guest chemistry, supramolecular chemistry to reaction-based mechanisms. Chem. Soc. Rev. 2015, 44, 4192–4202. [Google Scholar] [CrossRef] [PubMed]
- Pluth, M.D.; Raymond, K.N. Reversible guest exchange mechanisms in supramolecular host–guest assemblies. Chem. Soc. Rev. 2007, 36, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yuan, D.; Hou, J.; Sedgwick, A.C.; Xu, S.; James, T.D.; Wang, L. Organic/inorganic supramolecular nano-systems based on host/guest interactions. Coord. Chem. Rev. 2021, 428, 213609. [Google Scholar] [CrossRef]
- Wei, P.; Yan, X.; Huang, F. Supramolecular polymers constructed by orthogonal self-assembly based on host–guest and metal–ligand interactions. Chem. Soc. Rev. 2015, 44, 815–832. [Google Scholar] [CrossRef] [Green Version]
- Qu, D.-H.; Wang, Q.-C.; Zhang, Q.-W.; Ma, X.; Tian, H. Photoresponsive host–guest functional systems. Chem. Rev. 2015, 115, 7543–7588. [Google Scholar] [CrossRef]
- Lee, H.; Elumalai, P.; Singh, N.; Kim, H.; Lee, S.U.; Chi, K.-W. Selective synthesis of ruthenium (II) metalla [2] catenane via solvent and guest-dependent self-assembly. J. Am. Chem. Soc. 2015, 137, 4674–4677. [Google Scholar] [CrossRef]
- Yamashina, M.; Sartin, M.M.; Sei, Y.; Akita, M.; Takeuchi, S.; Tahara, T.; Yoshizawa, M. Preparation of highly fluorescent host–guest complexes with tunable color upon encapsulation. J. Am. Chem. Soc. 2015, 137, 9266–9269. [Google Scholar] [CrossRef]
- Kuwabara, J.; Stern, C.L.; Mirkin, C.A. A coordination chemistry approach to a multieffector enzyme mimic. J. Am. Chem. Soc. 2007, 129, 10074–10075. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.-M.; Zhang, S.X.-A. Stimuli-Induced Reversible Proton Transfer for Stimuli-Responsive Materials and Devices. Acc. Chem. Res. 2021, 54, 2216–2226. [Google Scholar] [CrossRef]
- Mellerup, S.K.; Wang, S. Boron-based stimuli responsive materials. Chem. Soc. Rev. 2019, 48, 3537–3549. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Jin, S.; Muhammad, N.; Guo, Z. Stimuli-responsive therapeutic metallodrugs. Chem. Rev. 2018, 119, 1138–1192. [Google Scholar] [CrossRef]
- Tang, J.-H.; Sun, Y.; Gong, Z.-L.; Li, Z.-Y.; Zhou, Z.; Wang, H.; Li, X.; Saha, M.L.; Zhong, Y.-W.; Stang, P.J. Temperature-Responsive Fluorescent Organoplatinum(II) Metallacycles. J. Am. Chem. Soc. 2018, 140, 7723–7729. [Google Scholar] [CrossRef]
- Chen, Z.; Tang, J.-H.; Chen, W.; Xu, Y.; Wang, H.; Zhang, Z.; Sepehrpour, H.; Cheng, G.-J.; Li, X.; Wang, P. Temperature-and mechanical-force-responsive self-assembled rhomboidal metallacycle. Organometallics 2019, 38, 4244–4249. [Google Scholar] [CrossRef]
- Yu, H.; Shi, J.; Li, M.; Pan, G.; Tong, H.; Xu, B.; Wang, M.; Tian, W. Discrete Platinum (II) Metallacycles with Inner-and Outer-Modified 9, 10-Distyrylanthracene: Design, Self-Assembly, and Luminescence Properties. Inorg. Chem. 2022, 61, 7231–7237. [Google Scholar] [CrossRef]
- Twilton, J.; Le, C.; Zhang, P.; Shaw, M.H.; Evans, R.W.; MacMillan, D.W.C. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 2017, 1, 0052. [Google Scholar] [CrossRef]
- Bisoyi, H.K.; Li, Q. Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications. Chem. Rev. 2016, 116, 15089–15166. [Google Scholar] [CrossRef]
- Becker, H.D. Unimolecular photochemistry of anthracenes. Chem. Rev. 1993, 93, 145–172. [Google Scholar] [CrossRef]
- Bai, S.; Wang, L.-F.; Wu, Z.-W.; Feng, T.; Han, Y.-F. Supramolecular-controlled regioselective photochemical [4 + 4] cycloaddition within Cp*Rh-based metallarectangles. Dalton Trans. 2022, 51, 8743–8748. [Google Scholar] [CrossRef]
- Bai, S.; Ma, L.-L.; Yang, T.; Wang, F.; Wang, L.-F.; Hahn, F.E.; Wang, Y.-Y.; Han, Y.-F. Supramolecular-induced regiocontrol over the photochemical [4 + 4] cyclodimerization of NHC-or azole-substituted anthracenes. Chem. Sci. 2021, 12, 2165–2171. [Google Scholar] [CrossRef]
- Omoto, K.; Tashiro, S.; Shionoya, M. Phase-Dependent Reactivity and Host–Guest Behaviors of a Metallo-Macrocycle in Liquid and Solid-State Photosensitized Oxygenation Reactions. J. Am. Chem. Soc. 2021, 143, 5406–5412. [Google Scholar] [CrossRef]
- He, Y.-Q.; Fudickar, W.; Tang, J.-H.; Wang, H.; Li, X.; Han, J.; Wang, Z.; Liu, M.; Zhong, Y.-W.; Linker, T. Capture and release of singlet oxygen in coordination-driven self-assembled organoplatinum (II) metallacycles. J. Am. Chem. Soc. 2020, 142, 2601–2608. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Sedgwick, A.C.; Hirao, T.; Sessler, J.L. Supramolecular fluorescent sensors: An historical overview and update. Coord. Chem. Rev. 2021, 427, 213560. [Google Scholar] [CrossRef] [PubMed]
- Mako, T.L.; Racicot, J.M.; Levine, M. Supramolecular Luminescent Sensors. Chem. Rev. 2019, 119, 322–477. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Zha, D.; Anslyn, E.V. Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing. Chem. Rev. 2015, 115, 7840–7892. [Google Scholar] [CrossRef]
- Zhang, M.; Saha, M.L.; Wang, M.; Zhou, Z.; Song, B.; Lu, C.; Yan, X.; Li, X.; Huang, F.; Yin, S.; et al. Multicomponent Platinum(II) Cages with Tunable Emission and Amino Acid Sensing. J. Am. Chem. Soc. 2017, 139, 5067–5074. [Google Scholar] [CrossRef] [PubMed]
- Saha, M.L.; Yan, X.; Stang, P.J. Photophysical properties of organoplatinum(II) compounds and derived self-assembled metallacycles and metallacages: Fluorescence and its applications. Acc. Chem. Res. 2016, 49, 2527–2539. [Google Scholar] [CrossRef]
- Li, Z.; Yan, X.; Huang, F.; Sepehrpour, H.; Stang, P.J. Near-infrared emissive discrete platinum (II) metallacycles: Synthesis and application in ammonia detection. Org. Lett. 2017, 19, 5728–5731. [Google Scholar] [CrossRef]
- Yamashina, M.; Akita, M.; Hasegawa, T.; Hayashi, S.; Yoshizawa, M. A polyaromatic nanocapsule as a sucrose receptor in water. Sci. Adv. 2017, 3, e1701126. [Google Scholar] [CrossRef] [Green Version]
- Ajayaghosh, A.; Praveen, V.K.; Vijayakumar, C. Organogels as scaffolds for excitation energy transfer and light harvesting. Chem. Soc. Rev. 2008, 37, 109–122. [Google Scholar] [CrossRef]
- Hu, F.; Xu, S.; Liu, B. Photosensitizers with aggregation-induced emission: Materials and biomedical applications. Adv. Mater. 2018, 30, 1801350. [Google Scholar] [CrossRef]
- Jia, P.-P.; Xu, L.; Hu, Y.-X.; Li, W.-J.; Wang, X.-Q.; Ling, Q.-H.; Shi, X.; Yin, G.-Q.; Li, X.; Sun, H. Orthogonal self-assembly of a two-step fluorescence-resonance energy transfer system with improved photosensitization efficiency and photooxidation activity. J. Am. Chem. Soc. 2020, 143, 399–408. [Google Scholar] [CrossRef]
- Li, Y.; Rajasree, S.S.; Lee, G.Y.; Yu, J.; Tang, J.-H.; Ni, R.; Li, G.; Houk, K.N.; Deria, P.; Stang, P.J. Anthracene–Triphenylamine-Based Platinum (II) Metallacages as Synthetic Light-Harvesting Assembly. J. Am. Chem. Soc. 2021, 143, 2908–2919. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Q.; Shi, B.; Ge, F.; Liu, Y.; Mao, Z.; Zhu, H.; Wang, S.; Yu, G.; Huang, F. Dual-emissive platinum (II) metallacage with a sensitive oxygen response for imaging of hypoxia and imaging-guided chemotherapy. Angew. Chem. Int. Ed. 2020, 59, 20208–20214. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.-H.; Zhong, Y.-W. Anthracene-Containing Metallacycles and Metallacages: Structures, Properties, and Applications. Inorganics 2022, 10, 88. https://doi.org/10.3390/inorganics10070088
Tang J-H, Zhong Y-W. Anthracene-Containing Metallacycles and Metallacages: Structures, Properties, and Applications. Inorganics. 2022; 10(7):88. https://doi.org/10.3390/inorganics10070088
Chicago/Turabian StyleTang, Jian-Hong, and Yu-Wu Zhong. 2022. "Anthracene-Containing Metallacycles and Metallacages: Structures, Properties, and Applications" Inorganics 10, no. 7: 88. https://doi.org/10.3390/inorganics10070088
APA StyleTang, J. -H., & Zhong, Y. -W. (2022). Anthracene-Containing Metallacycles and Metallacages: Structures, Properties, and Applications. Inorganics, 10(7), 88. https://doi.org/10.3390/inorganics10070088