Magnetocaloric Effect of Two Gd-Based Frameworks
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. General Information
4.2. Synthesis of Gd5(C4O4)(HCOO)3(CO3)2(OH)6·2.5H2O (1)
4.3. Synthesis of Gd2(OH)4SO4 (2)
4.4. X-ray Crystallographic Analysis of 1 and 2
4.5. The Bond Valence Sum (BVS) Analysis of 1 and 2
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Warburg, E. Magnetische Untersuchungen. Ann. Phys. 1881, 249, 141–164. [Google Scholar] [CrossRef] [Green Version]
- Weiss, P.; Piccard, A. Le phénomène magnétocalorique. J. Phys. Theor. Appl. 1917, 7, 103–109. [Google Scholar] [CrossRef]
- Hornibrook, J.M.; Colless, J.I.; Conway Lamb, I.D.; Pauka, S.J.; Lu, H.; Gossard, A.C.; Watson, J.D.; Gardner, G.C.; Fallahi, S.; Manfra, M.J.; et al. Cryogenic Control Architecture for Large-Scale Quantum Computing. Phys. Rev. Appl. 2015, 3, 024010. [Google Scholar] [CrossRef]
- Fang, T.T. Missing Matter Found in the Cosmic Web. Nature 2018, 558, 375–376. [Google Scholar] [CrossRef]
- Shirron, P.J. Design of the PIXIE Adiabatic Demagnetization Refrigerators. Cryogenics 2012, 52, 140–144. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Pérez, M.-J.; Montero, O.; Evangelisti, M.; Luis, F.; Sesé, J.; Cardona-Serra, S.; Coronado, E. Fragmenting Gadolinium: Mononuclear Polyoxometalate-Based Magnetic Coolers for Ultra-Low Temperatures. Adv. Mater. 2012, 24, 4301–4305. [Google Scholar] [CrossRef] [Green Version]
- Cho, A. Helium-3 Shortage Could Put Freeze on Low-Temperature Research. Science 2009, 326, 778–779. [Google Scholar] [CrossRef]
- Lorusso, G.; Sharples, J.W.; Palacios, E.; Roubeau, O.; Brechin, E.K.; Sessoli, R.; Rossin, A.; Tuna, F.; McInnes, E.J.L.; Collison, D.; et al. A Dense Metal-Organic Framework for Enhanced Magnetic Refrigeration. Adv. Mater. 2013, 25, 4653–4656. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhang, Q.-C.; Pan, Y.-Y.; Long, L.-S.; Zheng, L.-S. Magnetocaloric Effect and Thermal Conductivity of Gd(OH)3 and Gd2O(OH)4(H2O)2. Chem. Commun. 2015, 51, 7317–7320. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-C.; Qin, L.; Meng, Z.-S.; Yang, D.-F.; Wu, C.; Fu, Z.; Zheng, Y.-Z.; Liu, J.-L.; Tarasenko, R.; Orendáč, M.; et al. Study of a Magnetic-Cooling Material Gd(OH)CO3. J. Mater. Chem. A 2014, 2, 9851–9858. [Google Scholar] [CrossRef] [Green Version]
- Palacios, E.; Rodríguez-Velamazán, J.A.; Evangelisti, M.; McIntyre, G.J.; Lorusso, G.; Visser, D.; de Jongh, L.J.; Boatner, L.A. Magnetic Structure and Magnetocalorics of GdPO4. Phys. Rev. B 2014, 90, 214423. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-C.; Prokleška, J.; Xu, W.-J.; Liu, J.-L.; Liu, J.; Zhang, W.-X.; Jia, J.-H.; Sechovský, V.; Tong, M.-L. A Brilliant Cryogenic Magnetic Coolant: Magnetic and Magnetocaloric Study of Ferromagnetically Coupled GdF3. J. Mater. Chem. C 2015, 3, 12206–12211. [Google Scholar] [CrossRef]
- Mukherjee, P.; Wu, Y.; Lampronti, G.I.; Dutton, S.E. Magnetic Properties of Monoclinic Lanthanide Orthoborates, LnBO3, Ln = Gd, Tb, Dy, Ho, Er, Yb. Mater. Res. Bull. 2018, 98, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.-B.; Kong, X.-J.; Zhang, Q.-C.; Orendáč, M.; Prokleška, J.; Ren, Y.-P.; Long, L.-S.; Zheng, Z.; Zheng, L.-S. Beauty, Symmetry, and Magnetocaloric Effect—Four-Shell Keplerates with 104 Lanthanide Atoms. J. Am. Chem. Soc. 2014, 136, 17938–17941. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.-M.; Hu, Z.-B.; Lin, Q.; Cheng, W.; Cao, J.-P.; Cui, C.-H.; Mei, H.; Song, Y.; Xu, Y. Exploring the Performance Improvement of Magnetocaloric Effect Based Gd-Exclusive Cluster Gd60. J. Am. Chem. Soc. 2018, 140, 11219–11222. [Google Scholar] [CrossRef]
- Chen, W.; Liao, P.; Yu, Y.; Zheng, Z.; Chen, X.; Zheng, Y. A Mixed-Ligand Approach for a Gigantic and Hollow Heterometallic Cage {Ni64RE96} for Gas Separation and Magnetic Cooling Applications. Angew. Chem. Int. Ed. 2016, 55, 9375–9379. [Google Scholar] [CrossRef]
- Evangelisti, M.; Roubeau, O.; Palacios, E.; Camón, A.; Hooper, T.N.; Brechin, E.K.; Alonso, J.J. Cryogenic Magnetocaloric Effect in a Ferromagnetic Molecular Dimer. Angew. Chem. Int. Ed. 2011, 50, 6606–6609. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.J.; Zhao, J.P.; Tao, J.; Jia, J.M.; Han, S.D.; Li, Y.; Chen, Y.C.; Bu, X.H. An Unprecedented Decanuclear GdIII Cluster for Magnetic Refrigeration. Inorg. Chem. 2013, 52, 9163–9165. [Google Scholar] [CrossRef]
- Guo, F.-S.; Chen, Y.-C.; Mao, L.-L.; Lin, W.-Q.; Leng, J.-D.; Tarasenko, R.; Orendáč, M.; Prokleška, J.; Sechovský, V.; Tong, M.-L. Anion-Templated Assembly and Magnetocaloric Properties of a Nanoscale {Gd38} Cage versus a {Gd48} Barrel. Chem. Eur. J. 2013, 19, 14876–14885. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Jiang, Y.H.; Zhuang, G.L.; Liu, D.P.; Liao, H.G.; Kong, X.J.; Long, L.S.; Zheng, L.S. A Gigantic Molecular Wheel of {Gd140}: A New Member of the Molecular Wheel Family. J. Am. Chem. Soc. 2017, 139, 18178–18181. [Google Scholar] [CrossRef]
- Das, M.; Roy, S.; Mandal, P. Giant Reversible Magnetocaloric Effect in a Multiferroic GdFeO3 Single Crystal. Phys. Rev. B 2017, 96, 174405. [Google Scholar] [CrossRef]
- Jia, J.-H.; Ke, Y.-J.; Li, X.; Zhang, H.-R.; Yu, Z.-P.; Cheng, Z.-H.; Zhai, K.; Liu, Z.-Y.; Wang, J.-F. A Large Magnetocaloric Effect of GdCoO3-δ Epitaxial Thin Films Prepared by a Polymer Assisted Spin-Coating Method. J. Mater. Chem. C 2019, 7, 14970–14976. [Google Scholar] [CrossRef]
- Ashtar, M.; Bai, Y.; Xu, L.; Wan, Z.; Wei, Z.; Liu, Y.; Marwat, M.A.; Tian, Z. Structure and Magnetic Properties of Melilite-Type Compounds RE2Be2GeO7 (RE = Pr, Nd, Gd–Yb) with Rare-Earth Ions on Shastry–Sutherland Lattice. Inorg. Chem. 2021, 60, 3626–3634. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.-Y.; Zhao, J.-P.; Liu, T.; Liu, F.-C. Gadolinium Sulfate Modified by Formate to Obtain Optimized Magneto-Caloric Effect. Inorg. Chem. 2015, 54, 5249–5256. [Google Scholar] [CrossRef]
- Tang, Q.; Yang, Y.-L.; Zhang, N.; Liu, Z.; Zhang, S.-H.; Tang, F.-S.; Hu, J.-Y.; Zheng, Y.-Z.; Liang, F.-P. A Multifunctional Lanthanide Carbonate Cluster Based Metal–Organic Framework Exhibits High Proton Transport and Magnetic Entropy Change. Inorg. Chem. 2018, 57, 9020–9027. [Google Scholar] [CrossRef]
- Biswas, S.; Mondal, A.K.; Konar, S. Densely Packed Lanthanide Cubane Based 3D Metal–Organic Frameworks for Efficient Magnetic Refrigeration and Slow Magnetic Relaxation. Inorg. Chem. 2016, 55, 2085–2090. [Google Scholar] [CrossRef]
- Brown, I.D.; Altermatt, D. Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database. Acta Cryst. B 1985, 41, 244–247. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, S.; Alemany, P.; Casanova, D.; Cirera, J.; Llunell, M.; Avnir, D. Shape Maps and Polyhedral Interconversion Paths in Transition Metal Chemistry. Coord. Chem. Rev. 2005, 249, 1693–1708. [Google Scholar] [CrossRef]
- Biswas, S.; Jena, H.S.; Adhikary, A.; Konar, S. Two Isostructural 3D Lanthanide Coordination Networks (Ln = Gd3+, Dy3+) with Squashed Cuboid-Type Nanoscopic Cages Showing Significant Cryogenic Magnetic Refrigeration and Slow Magnetic Relaxation. Inorg. Chem. 2014, 53, 3926–3928. [Google Scholar] [CrossRef]
- Huang, Y.-T.; Lai, Y.-C.; Wang, S.-L. Intrinsic Green Phosphor Containing a {Y5O22} Pentamer Unit and a Carbonate Ligand Generated In Situ from Squaric Acid. Chem. Eur. J. 2012, 18, 8614–8616. [Google Scholar] [CrossRef]
- Liang, J.; Ma, R.; Geng, F.; Ebina, Y.; Sasaki, T. Ln2(OH)4SO4·nH2O (Ln = Pr to Tb; n ∼ 2): A New Family of Layered Rare-Earth Hydroxides Rigidly Pillared by Sulfate Ions. Chem. Mater. 2010, 22, 6001–6007. [Google Scholar] [CrossRef]
- Wang, X.; Molokeev, M.S.; Zhu, Q.; Li, J.-G. Controlled Hydrothermal Crystallization of Anhydrous Ln2(OH)4SO4(Ln = Eu-Lu, Y) as a New Family of Layered Rare Earth Metal Hydroxides. Chem. Eur. J. 2017, 23, 16034–16043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Qin, L.; Zhou, G.-J.; Ye, X.; He, J.; Zheng, Y.-Z. High-Performance Low-Temperature Magnetic Refrigerants Made of Gadolinium–Hydroxy–Chloride. J. Mater. Chem. C 2016, 4, 6473–6477. [Google Scholar] [CrossRef]
- Gschneidner, K.A., Jr.; Pecharsky, V.K.; Tsokol, A.O. Recent Developments in Magnetocaloric Materials. Rep. Prog. Phys. 2005, 68, 1479–1539. [Google Scholar] [CrossRef]
- Pecharsky, V.; Gschneidner, K.; Pecharsky, A.; Tishin, A. Thermodynamics of the Magnetocaloric Effect. Phys. Rev. B 2001, 64, 144406. [Google Scholar] [CrossRef]
- de Oliveira, N.A.; von Ranke, P.J. Magnetocaloric Effect around a Magnetic Phase Transition. Phys. Rev. B 2008, 77, 214439. [Google Scholar] [CrossRef]
- Evangelisti, M.; Brechin, E.K. Recipes for Enhanced Molecular Cooling. Dalton Trans. 2010, 39, 4672–4676. [Google Scholar] [CrossRef] [Green Version]
- Shirron, P.J. Applications of the Magnetocaloric Effect in Single-Stage, Multi-Stage and Continuous Adiabatic Demagnetization Refrigerators. Cryogenics 2014, 62, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Shirron, P.J.; Canavan, E.R.; DiPirro, M.J.; Tuttle, J.G.; Yeager, C.J. A Multi-Stage Continuous–Duty Adiabatic Demagnetization Refrigerator. In Advances in Cryogenic Engineering; Shu, Q.S., Ed.; Springer: Boston, MA, USA, 2000; pp. 1629–1638. [Google Scholar]
- Sagawa, M.; Fujimura, S.; Togawa, N.; Yamamoto, H.; Matsuura, Y. New Material for Permanent Magnets on a Base of Nd and Fe (Invited). J. Appl. Phys. 1984, 55, 2083–2087. [Google Scholar] [CrossRef]
- You, C.Y.; Ping, D.H.; Hono, K. Magnetic Properties and Microstructure of Fe3B/Pr2Fe14B–Type Nanocomposite Magnets with Co and Cr Additions. J. Magn. Magn. Mater. 2006, 299, 136–144. [Google Scholar] [CrossRef]
- Dong, J.; Cui, P.; Shi, P.-F.; Cheng, P.; Zhao, B. Ultrastrong Alkali-Resisting Lanthanide-Zeolites Assembled by [Ln60] Nanocages. J. Am. Chem. Soc. 2015, 137, 15988–15991. [Google Scholar] [CrossRef] [PubMed]
- Abellán, G.; Espallargas, G.M.; Lorusso, G.; Evangelisti, M.; Coronado, E. Layered Gadolinium Hydroxides for Low–Temperature Magnetic Cooling. Chem. Commun. 2015, 51, 14207–14210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.-D.; Miao, X.-H.; Liu, S.-J.; Bu, X.-H. Magnetocaloric Effect and Slow Magnetic Relaxation in Two Dense (3,12)–Connected Lanthanide Complexes. Inorg. Chem. Front. 2014, 1, 549–552. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Compound | θ | −∆Sm/ J kg−1 K−1 (mJ cm−3 K−1) | Ref. | |
---|---|---|---|---|
7 T | 2 T | |||
GdF3 | +0.7 | 71.6 (506) * | 45.5 (322) | [12] |
Gd(HCOO)3 | −0.3 | 55.9 (216) * | 43.7 (169) * | [8] |
Gd(OH)CO3 | −1.05 | 66.4 (355) * | 33.7 (180) | [10] |
Gd(OH)3 | −1.69 | 62.0 (346) | 26.9 (150) | [9] |
Gd(OH)2Cl | −1.99 | 61.8 (319) | 17.6 (91) | [33] |
Gd3(OH)8Cl | −2.78 | 59.8 (310) | 14.2 (74) | [33] |
[Gd3(CO3)(OH)6]OH | −4.37 | 61.5 (262) | 10.1 (43) | [42] |
Gd2(OH)5Cl·1.5H2O | −3.1 | 51.9 (/) * | / | [43] |
Gd4(OH)4(SO4)4(H2O)4 | −1.57 | 51.3 (199) | 25.5 (99) | [44] |
[Gd60] | −3.71 | 48.0 (133) | 12.7 (35) | [15] |
1 | −2.25 | 59.8 (221) | 24.8 (92) | This |
2 | −2.78 | 57.6 (293) | 15.1 (77) | Work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.-L.; Xu, Q.-F.; Long, L.-S.; Zheng, L.-S. Magnetocaloric Effect of Two Gd-Based Frameworks. Inorganics 2022, 10, 91. https://doi.org/10.3390/inorganics10070091
Liu B-L, Xu Q-F, Long L-S, Zheng L-S. Magnetocaloric Effect of Two Gd-Based Frameworks. Inorganics. 2022; 10(7):91. https://doi.org/10.3390/inorganics10070091
Chicago/Turabian StyleLiu, Bo-Liang, Qiao-Fei Xu, La-Sheng Long, and Lan-Sun Zheng. 2022. "Magnetocaloric Effect of Two Gd-Based Frameworks" Inorganics 10, no. 7: 91. https://doi.org/10.3390/inorganics10070091
APA StyleLiu, B. -L., Xu, Q. -F., Long, L. -S., & Zheng, L. -S. (2022). Magnetocaloric Effect of Two Gd-Based Frameworks. Inorganics, 10(7), 91. https://doi.org/10.3390/inorganics10070091