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Abstract: In this paper, we have used a saturated five-membered N-Heterocyclic carbene (5SIDipp = 1,3-
bis-(2,6-diisopropylphenyl)imidazolin-2-ylidine) for the synthesis of SNHC-haloboranes adducts
and their further nucleophilic substitutions to put unusual functional groups at the central boron
atom. The reaction of 5-SIDipp with RBCl2 yields Lewis-base adducts, 5-SIDipp·RBCl2 [R = H (1),
Ph (2)]. The hydrolysis of 1 gives the NHC stabilized boric acid, 5-SIDipp·B(OH)3 (3), selectively.
Replacement of chlorine atoms from 1 and 2 with one equivalent of AgOTf led to the formation
of 5-SIDipp·HBCl(OTf) (4) and 5-SIDipp·PhBCl(OTf) (5a), where all the substituents on the boron
atoms are different. The addition of two equivalents of AgNO3 to 2 leads to the formation of rare
di-nitro substituted 5-SIDipp·BPh(NO3)2 (6). Further, the reaction of 5-SIDipp with B(C6F5)3 in
tetrahydrofuran and diethyl ether shows a frustrated Lewis pair type small molecule activated
products, 7 and 8.

Keywords: saturated NHC; NHC-haloboranes; nucleophilic substitution; tetra-coordinate boron

1. Introduction

While less than two decades ago, the N-heterocyclic carbene-borane adducts were
conceived rare and exotic, they are now readily accessible owing to rapid synthetic
development and constitute an important class of compounds because they display
different chemistry from the most existing classes of boron compounds such as bo-
ranes or borates [1]. Since the unveiling of the concept that NHC·boranes undergo
nucleophilic substitution at boron by the groups of Fensterbank, Lacôte, Malacria, and
Curran, the chemistry of these systems has flourished [2–6]. However, these systems
largely rely on imidazole-2-ylidene type carbenes. Braunschweig and coworkers recently
broadened the range of Lewis base by demonstrating nucleophilic addition and substi-
tution of cyclic alkyl amino carbene (cAAC) BH3 adduct [7]. In our previous works, we
have shown the nucleophilic substitution at 5-SIDipp·MeBCl2 (5-SIDipp = 1,3,-bis-(2,6-
diisopropylphenyl)imidazolin-2-ylidine) [8]. Further, we have explored the substitution
at 6-SIDipp·BH3 (6-SIDpp = 1,3-di(2,6-diisopropylphenyl) tetrahydropyrimidine-2-ylidene)
center and the introduction of rare functional groups such as -OTf, –NO3 [9]. Although the
saturated NHCs are more nucleophilic than its unsaturated analogue, the earlier work on
the synthesis of more than two dozen of NHC·borane and haloborane complexes relied
on the unsaturated five-membered NHC [1–6,10–16]. Clearly, the extension of unexplored
carbenes in NHC·borane chemistry is desirable, as it may lead to the discovery of a range
of interesting new applications. Due to our current interest in 5-SIDipp [17–19], we have
prepared here haloboranes 5SIDipp·BHCl2, 1 and 5SIDipp·BPhCl2, 2 and studied their
substitution reactions with AgOTf, AgNO3, and water. Furthermore, we have shown that

Inorganics 2022, 10, 97. https://doi.org/10.3390/inorganics10070097 https://www.mdpi.com/journal/inorganics

https://doi.org/10.3390/inorganics10070097
https://doi.org/10.3390/inorganics10070097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/inorganics
https://www.mdpi.com
https://orcid.org/0000-0002-4955-5408
https://doi.org/10.3390/inorganics10070097
https://www.mdpi.com/journal/inorganics
https://www.mdpi.com/article/10.3390/inorganics10070097?type=check_update&version=2


Inorganics 2022, 10, 97 2 of 13

the combination 5-SIDipp and B(C6F5)3 led to the activation of THF and diethyl ether via
frustrated Lewis pair (FLP) way. Our results are reported herein.

2. Results and Discussion

In our previous work, we have reported the first carbene MeBCl2 adduct via salt
metathesis procedure [8]. In this work, we have prepared the 5SIDipp·haloborane adducts
and shown their reactivities towards nucleophilic substitution. The addition of BHCl2·dioxane
in the solution of 5SIDipp in n-hexane gives the white precipitation of 5-SIDipp·BHCl2,
1 at room temperature (Scheme 1). The precipitate was further dissolved in toluene and
dichloromethane to afford colorless crystals of 1 at −36 ◦C. The 11B NMR spectrum of
1 displays a resonance at 6.9 ppm as a sharp singlet. The backbone four protons ap-
peared at 4.08 ppm in the 1H NMR spectrum. 1 is characterized by single-crystal X-
ray diffraction studies (Figure 1). 1 is crystalized in the monoclinic P21/n space group.
The B–C bond length in 1 [1.628(7) Å] is in good accordance with the previously re-
ported 5-SIDipp·MeBCl2 [1.6261(19) Å], but considerably longer compared to that in
the 5-SIDipp·BH3 [1.593(4) Å] [8]. The increase in the bond length can be ascribed to
the enhancement of steric hindrance at the central boron atom. The average B–Cl dis-
tance is 1.86 Å, which matches with the previously reported carbene-haloborane adducts
(NHC·BCl3, NHC·BRCl2, and NHC·BR2Cl).
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clarity). Selected bond lengths [Å] or angles [deg]: C5–N1 1.337(5), C5–N2 1.329(6), C25–N1 1.491(6),
C26–N2 1.477(6), C5–B1 1.628(7), B1–Cl1 1.865(5), B1–Cl2 1.869(5); N1–C5–N2 109.2(4), N1–C5–B1
128.9(4), N2–C5–B1 121.9(4), Cl1–B1–Cl2 110.1(3).
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The reaction of 1.1 equivalent of PhBCl2 with 5-SIDipp in n-hexane gives an immediate
white precipitate formation of 5-SIDipp·PhBCl2 (2) (Scheme 1). The 11B NMR spectrum
of 2 shows one resonance at 1.8 ppm. 2 crystallizes in the monoclinic P21/n space group
(Figure 2). The carbene carbon atom C5 is tri-coordinated and features a trigonal-planar
geometry, and the boron atom connected with the C5 atom adopts a tetrahedral geometry.
The B−CNHC bond distance is 1.6661(10) Å, which is slightly longer in comparison to that
in 1 due to the steric congestion of the phenyl group at the boron center. The B–Cl bonds
are 1.8992(8) Å and 1.8698(8) Å, which match with the previously reported B–Cl bond
distance [8].
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1.6661(10), B20–C21 1.6204(10), B20–Cl1 1.8992(8), B20–Cl2 1.8698(8); N1–C5–N2 108.63(6), N1–C5–B20
127.41(6), N2–C5–B20 123.20(6), C5–B20–Cl1 100.88(4), C5–B20–C21 110.99(5), Cl1–B20–Cl2 106.42(4).

Treatment of 1.05 equivalents of water in a dichloromethane solution of 1 hydrolyzes
all the B–H and B–Cl bonds and forms NHC-stabilized boric acid, 5-SIDipp·B(OH)3, 3
(Scheme 2) exclusively. In our earlier work, we have reported the isolation of 6-SIDipp·B(OH)3
as a minor product from the reaction of Br2/H2O with 6-SIDipp·BH3 [9]. Replacement
of the chloride and the hydride groups by hydroxide moieties in 3 is accompanied by an
upfield shift in the 11B NMR spectrum (−1.6 ppm) from that of 1. 3 crystallizes in the
monoclinic P21/c space group (Figure 3). The central boron-carbon distance is 1.650(5) Å,
which is marginally shorter compared to that in 6-SIDipp·B(OH)3. The average B– (OH)
bond distances are 1.38 Å.

Further, we added silver triflate to a dichloromethane solution of 1 at −78 ◦C, which
replaced one of the labile chlorine atoms by the triflate group (Scheme 2). In the 11B NMR
spectrum of 4, the resonance for the central boron atom appears at −3.4 ppm. The resonance
at −76.7 ppm in the 19F NMR is characteristic of the triflate group attached to the central
boron atom. Colorless crystals of 4 suitable for X-ray diffraction studies were grown from a
saturated toluene solution at 4 ◦C. The constitution of 4 was authenticated by a single-crystal
X-ray study (Figure 4). 4 crystallizes in the monoclinic space group P21/n. The relevant
bond length and angles are given in the legend of Figure 4. All the four substituents
on the central boron atom are different in 4. The central boron atom (B1) lies slightly
below the plane of an imidazolinium ring (torsion angles (deg): C(2)−N(1)−C(1)−B(1)
= 174.4(2) and C(3)−N(2)−C(1)−B(1) −166.5(2)) and the B−O bond is not orthogonal to
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the plane of the imidazolinium ring with the torsion angles N1−C1−B1−O1 = −41.6 (2)◦

and N2−C1−B1−O1 = 148.4 (2)◦. The B−OTf bond length is 1.515(2) Å, which is in good
agreement with the B−O bond length in our previously reported 5-SIDipp·BMeOTfCl
(B1−O3 1.503(3) Å) [8].

Treatment of one and two equivalents of AgOTf and AgNO3 with 2 in toluene afforded
mono-triflate and di-nitro substituted 5-SIDipp·boranes, respectively. Substitution of one
and two chlorine atoms from the tetra coordinated boron atom of 2 resulted in the formation
of 5-SIDipp·BPhCl(OTf), 5a, and 5-SIDipp-BPh(ONO2)2, 6 (Scheme 3). The functional
groups such as nitrate and triflate are rarely found to bind with the boron atom [5,9,20–26].
5a crystallizes in the monoclinic P21/n space group (Figure 5). The boron atom lies on a
tetrahedral geometry, which can be confirmed from the bond angles around the boron atoms
in 5a (C5–B2–Cl1 100.54(11), C5–B2–O1 106.51(13), and C5–B2–C7 118.55(14)). The B–CNHC
bond length in 5a (1.648(2) Å) is in well agreement with that in 2. The B–O and B–Cl bonds
in 5a is almost orthogonal to the plane (torsion angle: N1–C5–B2–Cl1 76.96(17)◦, N2-C5–
B2–Cl1 −89.6(2)◦ and torsion angle: N1–C5–B2–O1 −170.96(14)◦, N2–C5–B2–O1 22.5(2)◦,
respectively). However, the spectroscopic characterization of 5a becomes complicated
because of solvent-mediated slow hydrolysis. The only signal in the 11B NMR spectra of
the product, 5b appears at 30.9 ppm as a singlet, which is indicative of a three-coordinated
boron center, instead of a four-coordinated boron, as expected in 5a. We regrow the crystals
from the NMR tube and realized that there is hydrolysis taking place at the B–Cl bond
with adventitious water leading to 5-SIDipp stabilized borenium cation, with a triflate
as a counter anion (5b). The constitution of 5b rationalizes the resonance at 30.9 ppm in
the 11B NMR spectrum. Although the formation of the 5b clearly can be seen from the
molecular structure (Figure S2), but due to low-quality data we refrain from discussing its
structural parameters. However, even after repeated attempts, we were unable to stop this
hydrolysis and hence, could not characterize 5a spectroscopically. The CF3 group of the
triflate moiety in 5b resonates at −78.6 ppm in the 19F NMR, which is slightly different from
the resonances of triflates bound to the boron atom (−76.7 ppm in 4) and is characteristic
of the free triflate anion.

In the 11B|NMR, 6 shows resonance at 4.2 ppm, shifted slight low-field with respect to
that in 2 (1.9 ppm), presumably due to electron-withdrawing nature of the ONO2 moieties.
The solid-state structure of 6 also was confirmed by X-ray crystal analysis. 6 crystallizes in
the monoclinic P21/c space group (Figure 6) and important structural parameters are given
in the legend of Figure 6.
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Figure 5. The molecular structure of 5a. Hydrogen atoms are omitted for clarity. Selected bond
lengths [Å] or angles [deg]: N1–C5 1.341(2), N2–C5 1.330(2), C23–N1 1.485(2), C24–N2 1.482(2), C5–B2
1.648(2), B2–Cl1 1.8948(19), B2–O1 1.532(2); N1–C5–N2 109.30(14), N1–C5–B2 123.00(14), N2–C5–B2
126.57(14), C5–B2–Cl1 100.54(11), C5–B2–O1 106.51(13), C5–B2–C7 118.55(14).
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Figure 6. The molecular structure of 6. Hydrogen atoms are omitted for clarity. Selected bond
lengths [Å] or angles [deg]: N1−C1 1.337(3), C1−N2 1.340(3), N1−C2 1.480(3), N2–C3 1.484(3), C1–B1
1.662(4), B1–O5 1.535(4), B1–O6 1.522(3); N1–C1–N2 112.4(2), C1–N1–C2 112.4(2), C1–N2–C3 111.8(2),
C1–B1–O5 101.59(19), C1–B1–O6 109.7(2), O5–B1–O6 111.3(2), C1–B1–C28 118.4(2).

The combination of N-heterocyclic carbene and B(C6F5)3 has been exploited in FLP
chemistry [27]. In our previous work, we have demonstrated the adduct formation between
5-SIDipp and B(C6F5)3 [8]. We have prepared the adduct in toluene/n-hexane. When we
performed the same reaction in THF or diethyl ether, it led to the activation of those etheral
solvents. The THF solution of the 5-SIDipp·B(C6F5)3 was kept for 12 h at room temperature,
which afforded the zwitterionic species 7 in quantitative yield as a white solid (Scheme 4).
The molecular structure of 7 was additionally established by X-ray diffraction analysis
(Figure 7). 7 crystallizes in the triclinic P1 space group. One of the C–O bonds in the THF
molecule is cleaved, and as a result, the THF ring becomes acyclic and inserts between
the Lewis pairs. Similar to the case for 5-SIDipp·B(C6F5)3, 7 is not stable in solution at
room temperature, so we were unable to satisfactorily characterize it by NMR spectroscopy.
The 11B NMR resonance at −2.8 ppm is similar to those established for the tetra-coordinated
boron compounds. The C5 atom adopts a trigonal planar geometry, which is confirmed
by the sum of the bond angles [N1–C5–N2 112.29(15)◦, N1–C5–C6 125.21(15)◦, N2–C5-C6
122.50(14)◦]. The C5–C6 bond distance is marginally shorter compared to the adjacent
C–C bond (C5–C6 1.501(2) Å and C6–C7 1.539(2) Å). The boron atom adopts a tetrahedral
geometry. The C–O (1.404(2) Å) and the B–O (1.453(2) Å) bond distances are similar to the
other previously reported structures [28]. This reactivity was extended to diethyl ether
(DEE), which resulted in the isolation of imidazolinium salt with a borate counter-anion (8).
This compound presumably results from activation of the C–O bond of the diethyl ether
with concomitant elimination of two ethylene molecules (Scheme 4). A signal at 8.9 ppm in
the 1H NMR spectrum confirms the presence of an imidazolinium cation. The 11B NMR
displays the characteristic resonance at −4.2 ppm, which can be assigned to a tetrahedral
[(HO)B(C6F5)3] anion. X-ray crystallographic analysis later confirmed the structure of 8
(Figure 8).
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Figure 7. The molecular structure of 7. Hydrogen atoms are omitted for clarity. Selected bond
lengths [Å] or angles [deg]: N2–C5 1.322(2), N1–C5 1.327(2), N1–C22 1.479(2), N2–C21 1.484(2),
C5–C6 1.501(2), C6–C7 1.539(2), C9–O1 1.404(2), O1–B10 1.453(2); N1–C5–N2 112.29(15), N1–C5–C6
125.21(15), N2–C5–C6 122.50(14), C9–O1–B10 117.96(13).



Inorganics 2022, 10, 97 9 of 13
Inorganics 2022, 10, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 8. The molecular structure of 8. Hydrogen atoms except the H5 and H7 are omitted for clarity. 
Selected bond lengths [Å] or angles [deg]: N1–C5 1.3156(11), N2–C5 1.3174(12), C5–H5 0.950, N1–
C27 1.4810(13), N2–C26 1.4817(12), B1–O7 1.4696(12), O7–H1 0.83(2); N1–C5–N2 112.94(8), C27–N1–
C5 110.17(8), C26–N2–C5 109.91(8), B1–O7–H7 114.3(15). 

3. Conclusions 
In summary, we have prepared 5-SIDipp·haloboranes adducts, 5-SIDipp·HBCl2 (1), 

and 5-SIDipp·PhBCl2 (2) and shown the selective nucleophilic substitution at the tetra-
coordinated boron center to obtain several boranes with rare functional groups such as –
ONO2, –OTf, etc. The treatment of one equivalent of AgOTf with 1 and 2 led to the for-
mation of haloboranes, 5-SIDipp·BHCl(OTf), 4 and 5-SIDipp·BPhCl(OTf), 5a, respectively, 
where all three substituents of the boron atom are different. 5a was found to be unstable 
and undergoes hydrolysis in the presence of adventitious water to give hydroxyborenium 
cation, 5b. The treatment of two equivalents of AgNO3 forms a rare di-nitrate substituted 
NHC-coordinated borane (6). The combination of 5-SIDipp and B(C6F5)3 were shown to 
affect the C–O bond cleavage differently for THF and diethyl ether. As expected, the 5-
SIDipp/B(C6F5)3 combination in THF resulted in ring opening of the THF to produce bo-
rate 7. In the case of diethyl ether, the rupture of the C–O bond takes place along with the 
elimination of two molecules of ethylene, leading to the formation of an imidazolinium 
cation with tris (pentafluorophenyl) hydroxy borate as the counter anion (8). 

4. General Procedures and Instrumentation 
All manipulations were carried out in an inert atmosphere of argon using standard 

Schlenk techniques and in argon filled glove box. The solvents, especially toluene, tetra-
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Figure 8. The molecular structure of 8. Hydrogen atoms except the H5 and H7 are omitted for clarity.
Selected bond lengths [Å] or angles [deg]: N1–C5 1.3156(11), N2–C5 1.3174(12), C5–H5 0.950, N1–C27
1.4810(13), N2–C26 1.4817(12), B1–O7 1.4696(12), O7–H1 0.83(2); N1–C5–N2 112.94(8), C27–N1–C5
110.17(8), C26–N2–C5 109.91(8), B1–O7–H7 114.3(15).

3. Conclusions

In summary, we have prepared 5-SIDipp·haloboranes adducts, 5-SIDipp·HBCl2 (1),
and 5-SIDipp·PhBCl2 (2) and shown the selective nucleophilic substitution at the tetra-
coordinated boron center to obtain several boranes with rare functional groups such as
–ONO2, –OTf, etc. The treatment of one equivalent of AgOTf with 1 and 2 led to the for-
mation of haloboranes, 5-SIDipp·BHCl(OTf), 4 and 5-SIDipp·BPhCl(OTf), 5a, respectively,
where all three substituents of the boron atom are different. 5a was found to be unstable
and undergoes hydrolysis in the presence of adventitious water to give hydroxyborenium
cation, 5b. The treatment of two equivalents of AgNO3 forms a rare di-nitrate substituted
NHC-coordinated borane (6). The combination of 5-SIDipp and B(C6F5)3 were shown
to affect the C–O bond cleavage differently for THF and diethyl ether. As expected, the
5-SIDipp/B(C6F5)3 combination in THF resulted in ring opening of the THF to produce
borate 7. In the case of diethyl ether, the rupture of the C–O bond takes place along with
the elimination of two molecules of ethylene, leading to the formation of an imidazolinium
cation with tris (pentafluorophenyl) hydroxy borate as the counter anion (8).

4. General Procedures and Instrumentation

All manipulations were carried out in an inert atmosphere of argon using standard
Schlenk techniques and in argon filled glove box. The solvents, especially toluene, tetrahy-
drofuran, dichloromethane, and n-hexane were purified by MBRAUN solvent purification
system MB SPS-800. Other chemicals were purchased from Sigma Aldrich and TCI Chem-
icals and were used without further purification. The starting material, 5-SIDipp, was
synthesized by using the literature procedure [29]. 1H, 13C, 11B NMR, and 19F spectra
were recorded in CDCl3, using Bruker Avance DPX 400, or a Bruker Avance DPX 500
spectrometer. CDCl3 was dried by distillation over CaH2. Chemical shifts (δ) are given in
ppm. NMR spectra were referenced to external SiMe4 (1H and 13C), BF3·OEt2 (11B), CFCl3
(19F) respectively.

1: A slightly excess of BHCl2·dioxane (0.20 mL, 0.58 mmol) was added to a 10 mL
hexane solution of 5-SIDipp (0.20 g, 0.48 mmol) at room temperature in a Schlenk flask.
Stirring the resulted mixture for 2 h at room temperature resulted in the generation of a
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white precipitate. Colorless crystals of 1 were isolated after keeping the white powder in the
mixture of 1 mL dichloromethane and 2 mL toluene solution at −36 ◦C. Yield = 0.20 g (90%).

1H NMR (400 MHz, 298 K, CDCl3): δ = 1.29 (d, J = 6.88 Hz, 12 H, CH(CH3)2), 1.40
(d, J = 6.63 Hz, 12 H, CH(CH3)2), 3.17 (sept, J = 6.75 Hz, 4 H, CH(CH3)2), 4.08 (s, 4 H,
NCH2CH2N), 7.23 (d, J = 7.75 Hz, 4 H, Ar–H), 7.40 (t, J = 7.75 Hz, 2 H, Ar–H) ppm
(Figure S1).

13C{1H} NMR (101 MHz, 298 K, CDCl3): δ = 23.4, 26.0, 28.9, 53.1, 124.4, 129.8, 133.2,
146.1 ppm (Figure S2).

11B{1H} NMR (128 MHz, 298 K, CDCl3): δ = 6.9 (s, 1B, BHCl2) ppm (Figure S3).
2. A slightly excess of BPhCl2·dioxane (0.090 g, 0.58 mmol) was added to a 10 mL

hexane solution of 5-SIDipp (0.20 g, 0.48 mmol) at room temperature in a flask. Stirring
the resulted mixture for further 2 h at room temperature accessed a white precipitate.
Colorless crystals of 2 were isolated after keeping the white powder in the mixture of 1 mL
dichloromethane and 2 mL toluene solution. Yield = 0.24 g (90%).

1H NMR (400 MHz, 298 K, CDCl3): δ = 1.42 (d, J = 6.72 Hz, 12 H, CH(CH3)2), 1.51
(d, J = 6.65 Hz, 12 H, CH(CH3)2), 3.39 (sept, J = 6.75 Hz, 4 H, CH(CH3)2), 4.22 (s, 4 H,
NCH2CH2N), 6.95 (d, J = 6.88 Hz, 2 H, ortho–H of B-Ph), 7.25 (d, J = 7.75 Hz, 4 H, Ar–H),
7.26 (bs, 1 H, para-H of B–Ph), 7.44 (t, J = 7.73 Hz, 2 H, Ar–H), 7.49 (t, J = 7.88 Hz, meta–H of
B–Ph) ppm (Figure S4).

13C{1H} NMR (101 MHz, 298 K, CDCl3): δ = 23.2, 26.2, 28.9, 53.9, 124.2, 129.6, 133.5,
135.2, 145.7 ppm (Figure S5).

11B{1H} NMR (128 MHz, 298 K, CDCl3): δ = 1.8 (s, 1 B, BPhCl2) ppm (Figure S6).
3: 1.05 equivalent of water (0.01 g, 0.54 mmol) was added drop by drop to a 15 mL

dichloromethane solution of 1 (0.20 g, 0.53 mmol) at room temperature in a flask. Stirring the
resulted mixture for further 2 h at room temperature accessed a clear solution. The reaction
mixture was concentrated to 5 mL and kept at 4 ◦C to obtain the colorless crystals of 3.
Yield = 0.36 g (80%).

1H NMR (400 MHz, 298 K, CDCl3): δ = 1.31 (d, J = 6.97 Hz, 12 H, CH(CH3)2), 1.35
(d, J = 6.85 Hz, 12 H, CH(CH3)2), 3.07 (sept, J = 6.85 Hz, 4 H, CH(CH3)2), 4.06 (s, 4 H,
NCH2CH2N), 7.23 (d, J = 7.70 Hz, 4 H, Ar–H), 7.39 (t, J = 7.75 Hz, 2 H, Ar–H) ppm
(Figure S7).

13C{1H} NMR (101 MHz, 298 K, CDCl3): δ = 23.4, 25.4, 28.9, 53.3, 67.9, 124.2, 129.6,
133.1, 146.0 ppm (Figure S8).

11B{1H} NMR (128 MHz, 298 K, CDCl3): δ = −1.6 (s, 1 B, B(OH)3) ppm (Figure S9).
4: A DCM solution (20 mL) of 1 (0.47 g, 1 mmol) was added dropwise to a DCM

solution (20 mL) of previously weighed AgOTf (0.25 g, 1 mmol) at −78 ◦C in the absence of
light. A white precipitate of AgCl was formed immediately, and it was filtered through
frit filtration after the reaction mixture was warmed to room temperature. The colorless
toluene solution was concentrated (5 mL) and kept for crystallization at 4 ◦C, which
afforded colorless crystals of 4 after 1−2 day(s). Yield = 0.48 g (82%).

1H NMR (400 MHz, 298 K, CDCl3): δ = 1.31 (d, J = 6.88 Hz, 12 H, CH(CH3)2), 1.40
(d, J = 6.63 Hz, 12 H, CH(CH3)2), 3.13 (sept, J = 7.63 Hz, 4 H, CH(CH3)2), 4.11 (s, 4 H,
NCH2CH2N), 7.20 (d, J = 7.38 Hz, 4 H, Ar–H), 7.42 (t, J = 7.63 Hz, 2 H, Ar–H) ppm
(Figure S10).

13C{1H} NMR (101 MHz, 298 K, CDCl3): δ = 21.4, 23.2, 25.9, 26.3, 28.9, 53.4, 124.7,
128.2, 130.2, 132.4, 137.8, 145.7, 145.9 ppm (Figure S11).

11B{1H} NMR (128 MHz, 298 K, CDCl3): δ = 3.4 (s, 1 B, BH(OTf)Cl) ppm (Figure S12).
19F{1H} NMR (377 MHz, 298 K, CDCl3): δ = −76.7 (s, 3 F, OSO2CF3) ppm (Figure S13).
5b: A toluene solution (20 mL) of 2 (0.55 g, 1 mmol) was added dropwise to a toluene

solution (20 mL) of previously weighed AgOTf (0.25 g, 1 mmol) at −30 ◦C in the absence
of light. A white precipitate of AgCl formed immediately, and it was filtered through frit
filtration after the reaction mixture was warmed to room temperature. The colorless toluene
solution was concentrated (5 mL) and was kept for crystallization at 4 ◦C, which afforded
colorless crystals of 5b after 1 day. Yield = 0.25 g (45%).
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1H NMR (400 MHz, 298 K, CDCl3): δ = 1.24 (d, J = 6.88 Hz, 12 H, CH(CH3)2), 1.38
(d, J = 6.63 Hz, 12 H, CH(CH3)2), 2.99 (sept, J = 6.75 Hz, 4 H, CH(CH3)2), 4.59 (s, 4 H,
NCH2CH2N), 7.29 (d, J = 7.75 Hz, 4 H, Ar–H), 7.48 (t, J = 7.75 Hz, 2 H, Ar–H), 7.52 (t,
J = 7.50 Hz, 2 H, meta-H of B–Ph), 7.61 (t, J = 7.38 Hz, para–H of B–Ph), 8.25 (d, J = 6.75 Hz,
2 H, ortho–H of B–Ph) ppm (Figure S14).

13C{1H} NMR (101 MHz, 298 K, CDCl3): δ = 21.4, 23.8, 25.1, 29.2, 54.7, 125.0, 127.9,
129.0, 135.6, 137.8, 146.2 ppm (Figure S15).

11B{1H} NMR (128 MHz, 298 K, CDCl3): δ = 30.9 (s, 1 B, BPh(OH)) ppm (Figure S16).
19F{1H} NMR (377 MHz, 298 K, CDCl3): δ = −78.6 (s, 3 F, OSO2CF3) ppm (Figure S17).
6: A toluene solution (20 mL) of 2 (0.55 g, 1 mmol) was added dropwise to a toluene

solution (20 mL) of previously weighed AgNO3 (0.34 g, 2 mmol) at −30 ◦C in the absence
of light. A white precipitate of AgCl was formed slowly, and it was filtered via frit filtration
after 6 h. The colorless toluene solution was concentrated (5 mL) and was kept for crystal-
lization at 4 ◦C, which afforded colorless crystals of 6 after 2 days. Yield = 0.37 g (62%).

1H NMR (400 MHz, 298 K, CDCl3): δ = 1.12 (d, J = 6.75 Hz, 12 H, CH(CH3)2), 1.20
(d, J = 6.75 Hz, 12 H, CH(CH3)2), 3.13 (sept, J = 6.75 Hz, 4 H, CH(CH3)2), 4.15 (s, 4 H,
NCH2CH2N), 6.50 (d, J = 6.88 Hz, 2 H, ortho–H of B–Ph), 6.89 (t, J = 7.38 Hz, 2 H, meta–H
of B–Ph), 7.01 (t, J = 7.25 Hz, para−H of B–Ph), 7.24 (d, J = 7.88 Hz, 4 H, Ar–H), 7.46 (t,
J = 7.75 Hz, 2 H, Ar–H), ppm (Figures S18 and S19).

13C{1H} NMR (101 MHz, 298 K, CDCl3): δ = 22.4, 26.8, 28.8, 53.8, 124.6, 127.1, 131.6,
134.5, 146.2 ppm (Figure S20).

11B{1H} NMR (128 MHz, 298 K, CDCl3): δ = 4.2 (s, 1 B, BPh(NO3)2) ppm (Figure S21).
7: A THF solution (5 mL) of 5-SIDipp (0.382 g, 1 mmol) was added dropwise to a THF

solution (20 mL) of previously weighed B(C6F5)3 (0.512 g, 1 mmol) at room temperature.
The reaction mixture turned to a clear colorless solution immediately and run for 12 h.
The solution was dried completely and 3 mL of toluene solution was added to dissolve
the white solid product. Colorless crystals of 7 were afforded after keeping the toluene
solution for crystallization at 4 ◦C after 2 days. Yield = 0.45 g (46%). The formation of 7
was accompanied by some other side products, which could not be identified. Hence, we
did not have a spectroscopically pure product to record the 1H and 13C NMR.

11B{1H} NMR (128 MHz, 298 K, CDCl3): δ = −2.8 (s, 1 B, B(C6F5)3) ppm (Figure S23).
8: A diethyl ether solution (5 mL) of 5-SIDipp (0.382 g, 1 mmol) was added dropwise

to a diethyl ether solution (5 mL) of previously weighed B(C6F5)3 (0.512 g, 1 mmol) at room
temperature. The reaction mixture turned to a clear colorless solution immediately and run
for 12 h. The solution was dried completely and 3 mL of toluene solution was added to
dissolve the white solid product. Colorless crystals of 8 were afforded after keeping the
toluene solution for crystallization at 4 ◦C after 1 day. Yield = 0.78 g (85%).

1H NMR (400 MHz, 298 K, CDCl3): δ = 1.20 (d, J = 6.88 Hz, 12 H, CH(CH3)2), 1.35
(d, J = 6.88 Hz, 12 H, CH(CH3)2), 2.87 (sept, J = 6.75 Hz, 4 H, CH(CH3)2), 4.39 (s, 4 H,
NCH2CH2N), 7.29 (d, J = 7.75 Hz, 4 H, Ar–H), 7.54 (t, J = 7.88 Hz, 2 H, Ar–H), 8.90 (s, 1 H,
N–CH–N) ppm (Figure S24).

13C{1H} NMR (101 MHz, 298 K, CDCl3): δ = 23.9 24.4, 29.4, 53.6, 60.8 125.2, 128.6,
131.9, 145.6, 160.3 ppm (Figure S25).

11B{1H} NMR (128 MHz, 298 K, CDCl3): δ = −4.2 (s, 1 B, HO–B(C6F5)3) ppm (Figure S26).
19F{1H} NMR (377 MHz, 298 K, CDCl3): δ = −135.6, −162.4, −166.1 (15 F, B(C6F5)3)

ppm (Figure S27).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics10070097/s1. The Supplementary Materials contains
structural description of 1–8 and representative NMR spectra. The callouts of each Figure given in
the Supporting Information are provided in the main text. (accessed on 19 June). References [30–34]
are cited in the Supplementary Materials.
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