Effect of CuO Loading on the Photocatalytic Activity of SrTiO3 for Hydrogen Evolution
Abstract
:1. Introduction
2. Results
2.1. Characterization of Photocatalyst
2.2. Effect of Loading Amount of CuO on Hydrogen Evolution Activity over SrTiO3
2.3. Effects of Type and Concentration of Electron Donors on Hydrogen Evolution over CuO-SrTiO3
2.4. Effect of Reaction Temperature on Hydrogen Evolution over CuO-SrTiO3
2.5. Effect of Amount of Photocatalyst on Hydrogen Evolution
2.6. Photocatalytic Hydrogen Evolution Activity of 1.5% CuO-SrTiO3
3. Materials and Methods
3.1. Materials
3.2. Preparation of CuO-SrTiO3 Photocatalyst
3.3. Characterization Techniques
3.4. Photocatalytic Water Splitting Experiments of CuO-SrTiO3 Photocatalyst
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ganguly, P.; Harb, M.; Cao, Z.; Cavallo, L.; Breen, A.; Dervin, S.; Dionysiou, D.D.; Pillai, S.C. 2D Nanomaterials for Photocatalytic Hydrogen Production. ACS Energy Lett. 2019, 4, 1687–1709. [Google Scholar] [CrossRef]
- Ni, M.; Leung, M.K.H.; Leung, D.Y.C.; Sumathy, K. A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production. Renew. Sustain. Energy Rev. 2007, 11, 401–425. [Google Scholar] [CrossRef]
- Holladay, J.D.; Hu, J.; King, D.L.; Wang, Y. An Overview of Hydrogen Production Technologies. Catal. Today 2009, 139, 244–260. [Google Scholar] [CrossRef]
- Navarro, R.M.; Sánchez-Sánchez, M.C.; Alvarez-Galvan, M.C.; del Valle, F.; Fierro, J.L.G. Hydrogen Production from Renewable Sources: Biomass and Photocatalytic Opportunities. Energy Environ. Sci. 2009, 2, 35–54. [Google Scholar] [CrossRef]
- Navarro, R.M.; Peña, M.A.; Fierro, J.L.G. Hydrogen Production Reactions from Carbon Feedstocks: Fossil Fuels and Biomass. Chem. Rev. 2007, 107, 3952–3991. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef]
- Iwashina, K.; Kudo, A. Rh-Doped SrTiO3 Photocatalyst Electrode Showing Cathodic Photocurrent for Water Splitting under Visible-Light Irradiation. J. Am. Chem. Soc. 2011, 133, 13272–13275. [Google Scholar] [CrossRef]
- Rioche, C.; Kulkarni, S.; Meunier, F.C.; Breen, J.P.; Burch, R. Steam Reforming of Model Compounds and Fast Pyrolysis Bio-Oil on Supported Noble Metal Catalysts. Appl. Catal. B Environ. 2005, 61, 130–139. [Google Scholar] [CrossRef]
- Sangle, A.L.; Singh, S.; Jian, J.; Bajpe, S.R.; Wang, H.; Khare, N.; MacManus-Driscoll, J.L. Very High Surface Area Mesoporous Thin Films of SrTiO3 Grown by Pulsed Laser Deposition and Application to Efficient Photoelectrochemical Water Splitting. Nano Lett. 2016, 16, 7338–7345. [Google Scholar] [CrossRef]
- Deluga, G.A.; Salge, J.R.; Schmidt, L.D.; Verykios, X.E. Renewable Hydrogen from Ethanol by Autothermal Reforming. Science 2004, 303, 993–997. [Google Scholar] [CrossRef]
- Jia, Y.; Zhao, D.; Li, M.; Han, H.; Li, C. La and Cr Co-Doped SrTiO3 as an H2 Evolution Photocatalyst for Construction of a Z-Scheme Overall Water Splitting System. Chin. J. Catal. 2018, 39, 421–430. [Google Scholar] [CrossRef]
- Cerón, M.R.; Izquierdo, M.; Alegret, N.; Valdez, J.A.; Rodríguez-Fortea, A.; Olmstead, M.M.; Balch, A.L.; Poblet, J.M.; Echegoyen, L. Reactivity Differences of Sc 3 N@C 2n (2n = 68 and 80). Synthesis of the First Methanofullerene Derivatives of Sc 3 N@D 5h -C 80. Chem. Commun. 2016, 52, 64–67. [Google Scholar] [CrossRef]
- Wei, Y.; Wan, J.; Wang, J.; Zhang, X.; Yu, R.; Yang, N.; Wang, D. Hollow Multishelled Structured SrTiO3 with La/Rh Co-Doping for Enhanced Photocatalytic Water Splitting under Visible Light. Small 2021, 17, 2005345. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Terashima, C.; Sakai, H.; Fujishima, A.; Kudo, A.; Nakata, K. Photocatalytic Degradation of Gaseous Acetaldehyde over Rh-Doped SrTiO3 under Visible Light Irradiation. Chem. Lett. 2016, 45, 42–44. [Google Scholar] [CrossRef]
- Bi, Y.; Ehsan, M.F.; Huang, Y.; Jin, J.; He, T. Synthesis of Cr-Doped SrTiO3 Photocatalyst and Its Application in Visible-Light-Driven Transformation of CO2 into CH4. J. CO2 Util. 2015, 12, 43–48. [Google Scholar] [CrossRef]
- Liu, P.; Nisar, J.; Pathak, B.; Ahuja, R. Hybrid Density Functional Study on SrTiO3 for Visible Light Photocatalysis. Int. J. Hydrog. Energy 2012, 37, 11611–11617. [Google Scholar] [CrossRef]
- Zou, F.; Jiang, Z.; Qin, X.; Zhao, Y.; Jiang, L.; Zhi, J.; Xiao, T.; Edwards, P.P. Template-Free Synthesis of Mesoporous N-Doped SrTiO3 Perovskite with High Visible-Light-Driven Photocatalytic Activity. Chem. Commun. 2012, 48, 8514–8516. [Google Scholar] [CrossRef]
- Chen, W.; Liu, H.; Li, X.; Liu, S.; Gao, L.; Mao, L.; Fan, Z.; Shangguan, W.; Fang, W.; Liu, Y. Polymerizable Complex Synthesis of SrTiO3:(Cr/Ta) Photocatalysts to Improve Photocatalytic Water Splitting Activity under Visible Light. Appl. Catal. B Environ. 2016, 192, 145–151. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, N.; Yokosawa, T.; Osvet, A.; Miehlich, M.E.; Meyer, K.; Spiecker, E.; Schmuki, P. Intrinsically Activated SrTiO3: Photocatalytic H 2 Evolution from Neutral Aqueous Methanol Solution in the Absence of Any Noble Metal Cocatalyst. ACS Appl. Mater. Interfaces 2018, 10, 29532–29542. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, G.; Feng, Y.; Chen, W.; Chen, J.; Yu, Z.; Zhang, Y.; Wang, J.; Tang, L. CuS Co-Catalyst Modified Hydrogenated SrTiO3 Nanoparticles as an Efficient Photocatalyst for H 2 Evolution. Dalton Trans. 2021, 50, 7768–7775. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Qian, K.; Xuan, Y.; Lou, L.-L.; Yu, K.; Liu, S. Superior Performance in Visible-Light-Driven Hydrogen Evolution Reaction of Three-Dimensionally Ordered Macroporous SrTiO3 Decorated with ZnxCd1−xS. Front. Chem. Sci. Eng. 2021, 15, 1561–1571. [Google Scholar] [CrossRef]
- Yu, K.; Zhang, C.; Chang, Y.; Feng, Y.; Yang, Z.; Yang, T.; Lou, L.-L.; Liu, S. Novel Three-Dimensionally Ordered Macroporous SrTiO3 Photocatalysts with Remarkably Enhanced Hydrogen Production Performance. Appl. Catal. B Environ. 2017, 200, 514–520. [Google Scholar] [CrossRef]
- Chang, Y.; Yu, K.; Zhang, C.; Yang, Z.; Feng, Y.; Hao, H.; Jiang, Y.; Lou, L.-L.; Zhou, W.; Liu, S. Ternary CdS/Au/3DOM-SrTiO3 Composites with Synergistic Enhancement for Hydrogen Production from Visible-Light Photocatalytic Water Splitting. Appl. Catal. B Environ. 2017, 215, 74–84. [Google Scholar] [CrossRef]
- Ganapathy, M.; Hsu, Y.; Thomas, J.; Chang, C.T.; Alagan, V. Co-Catalyst Free SrTiO3 Nano-Cube for Efficient Photocatalytic Hydrogen Production. J. Mater. Sci. 2021, 56, 18976–18988. [Google Scholar] [CrossRef]
- Luo, Y.; Deng, B.; Pu, Y.; Liu, A.; Wang, J.; Ma, K.; Gao, F.; Gao, B.; Zou, W.; Dong, L. Interfacial Coupling Effects in G-C3N4/SrTiO3 Nanocomposites with Enhanced H2 Evolution under Visible Light Irradiation. Appl. Catal. B Environ. 2019, 247, 1–9. [Google Scholar] [CrossRef]
- Lu, L.; Lv, M.; Liu, G.; Xu, X. Photocatalytic Hydrogen Production over Solid Solutions between BiFeO3 and SrTiO3. Appl. Surf. Sci. 2017, 391, 535–541. [Google Scholar] [CrossRef]
- Vijay, A.; Bairagi, K.; Vaidya, S. Relating the Structure, Properties, and Activities of Nanostructured SrTiO3 and SrO–(SrTiO3)n (n = 1 and 2) for Photocatalytic Hydrogen Evolution. Mater. Adv. 2022, 3, 5055–5063. [Google Scholar] [CrossRef]
- Choudhary, S.; Solanki, A.; Upadhyay, S.; Singh, N.; Satsangi, V.R.; Shrivastav, R.; Dass, S. Nanostructured CuO/SrTiO3 Bilayered Thin Films for Photoelectrochemical Water Splitting. J. Solid State Electrochem. 2013, 17, 2531–2538. [Google Scholar] [CrossRef]
- Ahmadi, M.; Seyed Dorraji, M.S.; Hajimiri, I.; Rasoulifard, M.H. The Main Role of CuO Loading against Electron-Hole Recombination of SrTiO3: Improvement and Investigation of Photocatalytic Activity, Modeling and Optimization by Response Surface Methodology. J. Photochem. Photobiol. A. 2021, 404, 112886. [Google Scholar] [CrossRef]
- Banakhojasteh, S.; Beckert, S.; Gläser, R. Modification of SrTiO3 as a photocatalyst for hydrogen evolution from aqueous methanol solution. J. Photochem. Photobiol. A 2018, 366, 48–54. [Google Scholar] [CrossRef]
- Puangpetch, T.; Sreethawong, T.; Yoshikawa, S.; Chavadej, S. Hydrogen Production from Photocatalytic Water Splitting over Mesoporous-Assembled SrTiO3 Nanocrystal-Based Photocatalysts. J. Mol. Catal. Chem. 2009, 312, 97–106. [Google Scholar] [CrossRef]
- Yu, J.; Hai, Y.; Jaroniec, M. Photocatalytic Hydrogen Production over CuO-Modified Titania. J. Colloid Interface Sci. 2011, 357, 223–228. [Google Scholar] [CrossRef]
- Song, S.; Xu, L.; He, Z.; Ying, H.; Chen, J.; Xiao, X.; Yan, B. Photocatalytic Degradation of C.I. Direct Red 23 in Aqueous Solutions under UV Irradiation Using SrTiO3/CeO2 Composite as the Catalyst. J. Hazard. Mater. 2008, 152, 1301–1308. [Google Scholar] [CrossRef]
- Bandara, J.; Udawatta, C.P.K.; Rajapakse, C.S.K. Highly Stable CuO Incorporated TiO2 Catalyst for Photocatalytic Hydrogen Production from H2O. Photochem. Photobiol. Sci. 2005, 4, 857. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Kang, M. Hydrogen Production from Methanol/Water Decomposition in a Liquid Photosystem Using the Anatase Structure of Cu Loaded TiO2. Int. J. Hydrog. Energy 2007, 32, 3841–3848. [Google Scholar] [CrossRef]
- Qi, W.; Wang, C.; Yu, J.; Adimi, S.; Thomas, T.; Guo, H.; Liu, S.; Yang, M. MOF-Derived Porous Ternary Nickel Iron Nitride Nanocube as a Functional Catalyst toward Water Splitting Hydrogen Evolution for Solar to Chemical Energy Conversion. ACS Appl. Energy Mater. 2022, 5, 6155–6162. [Google Scholar] [CrossRef]
- Cheng, Z.; Qi, W.; Pang, C.H.; Thomas, T.; Wu, T.; Liu, S.; Yang, M. Recent Advances in Transition Metal Nitride-Based Materials for Photocatalytic Applications. Adv. Funct. Mater. 2021, 31, 2100553. [Google Scholar] [CrossRef]
- Korzhak, A.V.; Ermokhina, N.I.; Stroyuk, A.L.; Bukhtiyarov, V.K.; Raevskaya, A.E.; Litvin, V.I.; Kuchmiy, S.Y.; Ilyin, V.G.; Manorik, P.A. Photocatalytic Hydrogen Evolution over Mesoporous TiO2/Metal Nanocomposites. J. Photochem. Photobiol. Chem. 2008, 198, 126–134. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous Photocatalyst Materials for Water Splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, G.; Wang, Y. Study on the Photocatalytic Property of La-Doped CoO/SrTiO3 for Water Decomposition to Hydrogen. Catal. Commun. 2007, 8, 926–930. [Google Scholar] [CrossRef]
Photocatalysts | Amount of Hydrogen Evolution (µmol) |
---|---|
Pure SrTiO3 | 1.45 |
0.5 wt.% CuO-loaded SrTiO3 | 165 |
1.0 wt.% CuO-loaded SrTiO3 | 211 |
1.5 wt.% CuO-loaded SrTiO3 | 258 |
2.0 wt.% CuO-loaded SrTiO3 | 222 |
2.5 wt.% CuO-loaded SrTiO3 | 200 |
0.5 wt.% Pt-loaded SrTiO3 | 297 |
1.0 wt.% Pt-loaded SrTiO3 | 318 |
1.5 wt.% Pt-loaded SrTiO3 | 361 |
2.0 wt.% Pt-loaded SrTiO3 | 403 |
2.5 wt.% Pt-loaded SrTiO3 | 341 |
3.0 wt.% Pt-loaded SrTiO3 | 309 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mai, X.T.; Bui, D.N.; Pham, V.K.; Nguyen, T.H.L.; Nguyen, T.T.L.; Chau, H.D.; Tran, T.K.N. Effect of CuO Loading on the Photocatalytic Activity of SrTiO3 for Hydrogen Evolution. Inorganics 2022, 10, 130. https://doi.org/10.3390/inorganics10090130
Mai XT, Bui DN, Pham VK, Nguyen THL, Nguyen TTL, Chau HD, Tran TKN. Effect of CuO Loading on the Photocatalytic Activity of SrTiO3 for Hydrogen Evolution. Inorganics. 2022; 10(9):130. https://doi.org/10.3390/inorganics10090130
Chicago/Turabian StyleMai, Xuan Truong, Duc Nguyen Bui, Van Khang Pham, Thi Hien Lan Nguyen, Thi To Loan Nguyen, Hung Dung Chau, and Thi Kim Ngan Tran. 2022. "Effect of CuO Loading on the Photocatalytic Activity of SrTiO3 for Hydrogen Evolution" Inorganics 10, no. 9: 130. https://doi.org/10.3390/inorganics10090130
APA StyleMai, X. T., Bui, D. N., Pham, V. K., Nguyen, T. H. L., Nguyen, T. T. L., Chau, H. D., & Tran, T. K. N. (2022). Effect of CuO Loading on the Photocatalytic Activity of SrTiO3 for Hydrogen Evolution. Inorganics, 10(9), 130. https://doi.org/10.3390/inorganics10090130