High-Temperature Interactions of Silicon-Aluminum Oxynitrides (Sialons) with Sodium Fluoride
Abstract
:1. Introduction
- Fluorides of light metals (e.g., Li, Na, Ca, Mg, and Al) can be effective auxiliary additives for the fabrication of SiAlONs including glasses;
- Some possible negative side effects have to be kept in mind when fluorides are used;
- An excess of fluorine in the composition of oxynitride may be undesirable considering some of the mechanical properties;
- Fluorides are corrosive media for oxynitride ceramics and may induce their decomposition and changes in the phase compositions.
2. Results and Discussion
2.1. Starting Materials
2.2. Synthesis and Characterization of β-SiAlON:NaF
3. Materials and Methods
3.1. Materials
3.2. Preparation of SiAlON:NaF
3.3. Phase Composition
3.4. Micro Images and Elemental Composition
3.5. Density Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kargin, Y.F.; Akhmadullina, N.S.; Solntsev, K.A. Ceramic materials and phosphors based on silicon nitride and sialon. Inorg. Mater. 2014, 50, 1325–1342. [Google Scholar] [CrossRef]
- Akhmadullina, N.S.; Shishilov, O.N.; Kargin, Y.F. Sensitization eff ects in nitride materials doped with rare-earth metals ions. Russ. Chem. Bull. 2020, 69, 825–837. [Google Scholar] [CrossRef]
- Yan, D.-S. Enhancing materials design capability through understanding multicomponent phase relationships. Pure Appl. Chem. 1998, 70, 509–515. [Google Scholar] [CrossRef]
- Kurama, S.; Hermann, M.; Mandal, H. The effect of processing conditions, amount of additives and composition on the microstructures and mechanical properties of α-SiAlON ceramics. J. Eur. Ceram. Soc. 2002, 22, 109–119. [Google Scholar] [CrossRef]
- Thompson, D.P. Cooking up tougher ceramics. Nature 2002, 417, 237. [Google Scholar] [CrossRef]
- Heimann, R.B. Silicon Nitride, a Close to Ideal Ceramic Material for Medical Application. Ceramics 2021, 4, 208–223. [Google Scholar] [CrossRef]
- Shtansky, D.V.; Matveev, A.T.; Permyakova, E.S.; Leybo, D.V.; Konopatsky, A.S.; Sorokin, P.B. Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids. Nanomaterials 2022, 12, 2810. [Google Scholar] [CrossRef]
- Jack, K.H. Sialons and related nitrogen ceramics. J. Mater. Sci. 1976, 11, 1135–1158. [Google Scholar] [CrossRef]
- Gauckler, L.J.; Lukas, H.L.; Petzow, G. Contribution to the Phase Diagram Si3N4-AlN-Al2O3-SiO2. J. Am. Ceram. Soc. 1975, 58, 346–347. [Google Scholar] [CrossRef]
- Hampshire, S. SiAlONs and the Representation of Phase Relationships. Encyclopedia of Materials: Technical Ceramics and Glasses, V. 2; Elsevier: Amsterdam, The Netherlands, 2021; pp. 119–127. [Google Scholar] [CrossRef]
- Xue, C.; Wang, D.; Zhang, J. Wear Mechanisms and Notch Formation of Whisker-Reinforced Alumina and Sialon Ceramic Tools during High-Speed Turning of Inconel 718. Materials 2022, 15, 3860. [Google Scholar] [CrossRef]
- Metel, A.; Volosova, M.; Mustafaev, E.; Melnik, Y.; Seleznev, A.; Grigoriev, S. Plasma-Beam Processing of Tools Made of SiAlON Dielectric Ceramics to Increase Wear Resistance When Cutting Nickel–Chromium Alloys. Coatings 2022, 12, 469. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Volosova, M.A.; Fedorov, S.V.; Okunkova, A.A.; Pivkin, P.M.; Peretyagin, P.Y.; Eshov, A. Development of DLC-Coated Solid SiAlON/TiN Ceramic End Mills for Nickel Alloy Machining: Problems and Prospects. Coatings 2021, 11, 532. [Google Scholar] [CrossRef]
- Jack, K.H.; Wilson, W.I. Ceramics based on the Si-Al-O-N and Related Systems. Nat. Phys. Sci. 1972, 238, 28–29. [Google Scholar] [CrossRef]
- Cao, G.Z.; Metselaar, R. α′-Sialon Ceramics: A Review. Chem. Mater. 1991, 3, 242–252. [Google Scholar] [CrossRef]
- Wang, H.; Chen, J.; Liu, Y.G.; Huang, Z.H.; Fang, M.H. In-Situ Synthesis of (O′+β)-Sialon/Mullite Composite Materials from Coal Gangue. Interceram-Int. Ceram. Rev. 2015, 64, 112–115. [Google Scholar] [CrossRef]
- Anya, C.C.; Hendry, A. Hardness, indentation fracture toughness and compositional formula of X-phase sialon. J. Mater. Sci. 1994, 29, 527–533. [Google Scholar] [CrossRef]
- Thompson, D.P.; Korgul, P. Sialon X-phase. Progr. Nitrogen Ceram. 1983, 321, 375–380. [Google Scholar] [CrossRef]
- Ekström, T.; Nygren, M. SiAION Ceramics. J. Am. Ceram. Soc. 1992, 75, 259–276. [Google Scholar] [CrossRef]
- Biswas, M.; Bandyopadhyay, S.; Sarkar, S. Sintering behavior & microstructure of SPS processed pure 15R-SiAlON polytype. J. Alloys Compd. 2018, 768, 130–135. [Google Scholar] [CrossRef]
- Qin, H.; Li, Y.; Long, M.; Nie, X.; Jiang, P.; Xue, W. In situ synthesis mechanism of 15R–SiAlON reinforced Al2O3 refractories by Fe–Si liquid phase sintering. J. Am. Ceram. Soc. 2018, 101, 1870–1879. [Google Scholar] [CrossRef]
- Jack, K.H. The Fabrication of Dense Nitrogen Ceramics. Mater. Sci. Res. 1978, 11, 561–578. [Google Scholar] [CrossRef]
- Oyama, Y.; Kamigaito, O. Solid Solubility of Some Oxides in Si3N4. Jpn. J. Appl. Phys. 1971, 10, 1637. [Google Scholar] [CrossRef]
- Ekström, T.; Käll, P.O.; Nygren, M.; Olsson, P.O. Dense single-phase β-sialon ceramics by glass-encapsulated hot isostatic pressing. J. Mater. Sci. 1989, 24, 1853–1861. [Google Scholar] [CrossRef]
- Hampshire, S. Silicon Nitride Ceramics. Mater. Sci. Forum. 2009, 606, 27–41. [Google Scholar] [CrossRef]
- Sorrell, C.C. Silicon-nitride and related nitrogen ceramics. 1. Phase-equilibria and properties of reaction bonded and hot-pressed M-Si-O-N systems. J. Aust. Ceram. Soc. 1982, 18, 22–34. [Google Scholar]
- Ziegler, G.; Heinrich, J.; Wötting, G. Relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride. J. Mater. Sci. 1987, 22, 3041–3086. [Google Scholar] [CrossRef]
- White, G.V. New Synthesis Routes for SiAlON and SiAlON Ceramics. Key Eng. Mater. 2002, 206, 51–54. [Google Scholar] [CrossRef]
- Junming, X.; Qian, L.; Linhua, G. Effect of LiF on Densification and Mechanical Properties of Dy-α-Sialon Ceramics. J. Rare Earths 2006, 24, 225–227. [Google Scholar] [CrossRef]
- Ming, W.; Jiang, Z.; Luo, G.; Xu, Y.; He, W.; Xie, Z.; Shen, D.; Li, L. Progress in Transparent Nano-Ceramics and Their Potential Applications. Nanomaterials 2022, 12, 1491. [Google Scholar] [CrossRef]
- Goldstein, A.; Krell, A. Transparent Ceramics at 50: Progress Made and Further Prospects. J. Am. Ceram. Soc. 2016, 99, 3173–3197. [Google Scholar] [CrossRef]
- Qian, L.; Junming, X.; Wei, H. Ceramic Materials and Components for Energy and Environmental Applications; John Wiley & Sons: New York, NY, USA, 2010. [Google Scholar]
- Hampshire, S.; Hanifi, A.R.; Genson, A.; Pomeroy, M.J. Ca-Si-Al-O-N Glasses: Effects of Fluorine on Glass Formation and Properties. Key Eng. Mater. 2007, 352, 165–172. [Google Scholar] [CrossRef]
- Plachký, T.; Křesťan, J.; Korenko, M.; Medri, V.; Lenčéš, Z.; Šajgalík, P. Corrosion and oxidation behaviour of β-SiAlON ceramics via different processing route. J. Ceram. Soc. Jpn. 2009, 117, 482–488. [Google Scholar] [CrossRef]
- Shimada, S.; Tanaka, M.; Kiyono, H.; MacKenzie, K.J.D. Microstructure and properties of various fluorine-containing SiAlON ceramics synthesized by HIPing. J. Eur. Ceram. Soc. 2001, 21, 2811–2819. [Google Scholar] [CrossRef]
- Çalişkan, F.; Tatli, Z.; Genson, A.; Hampshire, S. Pressureless sintering of β-SiAlON ceramic compositions using fluorine and oxide additive system. J. Eur. Ceram. Soc. 2012, 32, 1337–1342. [Google Scholar] [CrossRef]
- Plachký, T.; Křesťan, J.; Korenko, M.; Lenčéš, Z.; Šajgalík, P. Corrosion of β-SiAlON in Molten Aluminium, Cryolite and NaCl-KCl Mixture. Key Eng. Mater. 2009, 403, 133–134. [Google Scholar] [CrossRef]
- Yeh, C.; Lu, Z.W.; Froyen, S.; Zunger, A. Zinc-blende–wurtzite polytypism in semiconductors. Phys. Rev. B Condens. Matter Mater. Phys. 1992, 46, 10086–10097. [Google Scholar] [CrossRef]
- Heuer, A.H.; Lou, V.L.K. Volatility Diagrams for Silica, Silicon Nitride, and Silicon Carbide and Their Application to High-Temperature Decomposition and Oxidation. J. Am. Ceram. Soc. 1990, 73, 2789–2803. [Google Scholar] [CrossRef]
- Akhmadullina, N.S.; Lysenkov, A.S.; Konovalov, A.A.; Obraztsova, E.A.; Kim, K.A.; Kargin, Y.F. Synthesis and phases relationships of Si6–zAlzOzN8–z in a wide range of z. Ceram. Int. 2022, 48, 13348–13355. [Google Scholar] [CrossRef]
- Kushan, S.R.; Uzun, I.; Dogan, B.; Mandal, H. Experimental and Finite Element Study of the Thermal Conductivity of α-SiAlON Ceramics. J. Am. Ceram. Soc. 2007, 90, 3902–3907. [Google Scholar] [CrossRef]
- Yi, X.; Zhang, W.; Akiyama, T. Thermal conductivity of β-SiAlONs prepared by a combination of combustion synthesis and spark plasma sintering. Thermochim. Acta 2014, 576, 56–59. [Google Scholar] [CrossRef]
Sample | Si, at.% | Al, at.% | O, at.% | N, at.% |
---|---|---|---|---|
SiAlON-1 (Si5AlON7) | 35.1 | 5.6 | 9.5 | 49.8 |
Theoretical composition | 50.0 | 7.15 | 7.15 | 35.7 |
Generalized formula | Si5Al0.8O1.9N6.4 | |||
SiAlON-2 (Si4Al2O2N6) | 30.6 | 14.7 | 20.4 | 34.3 |
Theoretical composition | 28.6 | 14.3 | 14.3 | 42.8 |
Generalized formula | Si4Al1.9O2.7N4.5 |
Sample | Major Phase | Minor Phases |
---|---|---|
SiAlON-1:0.5%NaF | Si5AlON7 | Si4Al2O2N6 |
SiAlON-1:2.0%NaF | Si5AlON7 | Si4Al2O2N6 and Si3.1Al2.9O2.9N5.1 |
SiAlON-2:0.5%NaF | Si5AlON7 | Si3Al3O3N5 and Si3.1Al2.9O2.9N5.1 |
SiAlON-2:2.0%NaF | Si3.1Al2.9O2.9N5.1 | Si5AlON7 and Si3Al3O3N5 |
Sample | Si, at.% | Al, at.% | O, at.% | N, at.% | Si/Al | Density, g/cm3 |
---|---|---|---|---|---|---|
SiAlON-1 | 35.1 | 5.6 | 9.5 | 49.8 | 6.3 | 3.04 |
SiAlON-1:0.5%NaF | 17.9 | 6.5 | 28.7 | 47.0 | 2.8 | 3.10 |
SiAlON-1:2.0%NaF | 21.4 | 10.6 | 24.3 | 43.7 | 2.0 | 3.15 |
SiAlON-2 | 30.6 | 14.7 | 20.4 | 34.3 | 2.1 | 3.01 |
SiAlON-2:0.5%NaF | 28.3 | 10.0 | 14.7 | 46.9 | 2.8 | 3.11 |
SiAlON-2:2.0%NaF | 15.9 | 8.3 | 37.1 | 38.8 | 1.9 | 3.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmadullina, N.S.; Sirotinkin, V.P.; Ovsyannikov, N.A.; Lysenkov, A.S.; Kargin, Y.F. High-Temperature Interactions of Silicon-Aluminum Oxynitrides (Sialons) with Sodium Fluoride. Inorganics 2022, 10, 140. https://doi.org/10.3390/inorganics10090140
Akhmadullina NS, Sirotinkin VP, Ovsyannikov NA, Lysenkov AS, Kargin YF. High-Temperature Interactions of Silicon-Aluminum Oxynitrides (Sialons) with Sodium Fluoride. Inorganics. 2022; 10(9):140. https://doi.org/10.3390/inorganics10090140
Chicago/Turabian StyleAkhmadullina, Nailya S., Vladimir P. Sirotinkin, Nikolay A. Ovsyannikov, Anton S. Lysenkov, and Yury F. Kargin. 2022. "High-Temperature Interactions of Silicon-Aluminum Oxynitrides (Sialons) with Sodium Fluoride" Inorganics 10, no. 9: 140. https://doi.org/10.3390/inorganics10090140
APA StyleAkhmadullina, N. S., Sirotinkin, V. P., Ovsyannikov, N. A., Lysenkov, A. S., & Kargin, Y. F. (2022). High-Temperature Interactions of Silicon-Aluminum Oxynitrides (Sialons) with Sodium Fluoride. Inorganics, 10(9), 140. https://doi.org/10.3390/inorganics10090140