Thiosemicarbazonecopper/Halido Systems: Structure and DFT Analysis of the Magnetic Coupling
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Compounds
2.2. Crystal Structure
2.3. Infrared Spectroscopy
2.4. Electronic Paramagnetic Resonance
2.5. Computational Studies
2.5.1. Thermodynamics
2.5.2. Magnetic Properties
Compound | Reference | Jcalc (cm−1) | Jexp (cm−1) |
---|---|---|---|
[{CuLI}2] (2) | - | 1.50 | −14.03 |
[{CuL(HCOO)}2] | [52] | 1.50 | −2.8 |
[{CuL(tfa)}2] | [55] | 1.26 | −3.3 |
[{Cu(HL)(tfa)}2][tfa]2 | [55] | 1.56 | −0.3 |
[{CuL}2(ox)]∙2H2O | [91] | 0.03 | −4.30 |
[{Cu(HL)}2(ox)](NO3)2 | [91] | 3.30 | 5.37 |
Compound | Basis Set * | ΔE (cm−1) | J (cm−1) |
---|---|---|---|
1 | a | −10.36 | −5.18 |
b | −1.22 | −0.61 | |
c | 7.20 | 3.60 | |
d | 6.76 | 3.38 | |
e | −77.61 | −38.80 | |
f | −28.88 | −14.44 | |
2 | a | 3.38 | 1.69 |
b | 2.55 | 1.27 | |
c | 4.61 | 2.30 | |
f | −72.76 | −36.38 |
3. Materials and Methods
3.1. Materials
3.2. Preparation of the Compounds
3.2.1. Compound 1 [{CuLCl}2]
3.2.2. Compound 2 [{CuLI}2]
3.2.3. Compound 3 [Cu(HL)Cl2].H2O
3.2.4. Compound 4 [Cu2(H2L)I4]
3.3. Physical Measurements
3.4. X-ray Crystallographic Studies
3.5. Theoretical Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kahn, O. Molecular Magnetism; VCH Publishers Inc.: New York, NY, USA, 1993. [Google Scholar]
- Campbell, M.J.M. Transition metal complexes of thiosemicarbazide and thiosemicarbazones. Coord. Chem. Rev. 1975, 15, 279–319. [Google Scholar] [CrossRef]
- Agrawal, K.C.; Sartorelli, A.C. Alpha-(N)_Heterocyclic Carboxaldehyde Thiosemicarbazones. In Handbook of Experimental Pharmacology; Sartorelli, A.C., Johns, D.G., Eds.; Springer: Berlin, Germany, 1975; pp. 793–807. [Google Scholar]
- Sartorelli, A.C.; Agrawal, K.C.; Tsiftsoglou, A.S.; Colleen Moore, E. Characterization of the biochemical mechanism of action of α-(N)-heterocyclic carboxaldehyde thiosemicarbazones. Adv. Enzym. Regul. 1977, 15, 117–139. [Google Scholar] [CrossRef]
- Agrawal, K.C.; Sartorelli, A.C. The Chemistry and Biological Activity of alpha-(N)-Heterocyclic Carboxaldehyde Thiosemicarbazones. Prog. Med. Chem. 1978, 15, 321–356. [Google Scholar]
- Colleen Moore, E.; Sartorelli, A.C. Inhibition of ribonucleotide reductase by α-(N)-heterocyclic carboxaldehyde thiosemicarbazones. Pharmacol. Ther. 1984, 24, 439–447. [Google Scholar] [CrossRef]
- Padhye, S. Transition Metal Complexes of Semicarbazones and Thiosemicarbazones. Coord. Chem. Rev. 1985, 63, 127–160. [Google Scholar] [CrossRef]
- West, D.X.; Padhye, S.B.; Sonawane, P.B. Structural and physical correlations in the biological properties of transition Metal heterocyclic thiosemicarbazone and S-alkyldithiocarbazate complexes. In Complex Chemistry; Structure and Bonding; Springer: Berlin, Germany, 1991; Volume 76, pp. 1–50. [Google Scholar]
- West, D.X.; Liberta, A.E.; Padhye, S.B.; Chikate, R.C.; Sonawane, P.B.; Kumbhar, A.S.; Yerande, R.G. Thiosemicarbazone complexes of copper (I1): Structural and biological studies. Coord. Chem. Rev. 1993, 123, 49–71. [Google Scholar] [CrossRef]
- Liu, M.-C.; Lin, T.-S.; Sartorelli, A.C. Chemical and Biological Properties of Cytotoxic alpha-(N)-Heterocyclic Carboxaldehyde Thiosemicarbazones. Prog. Med. Chem. 1995, 32, 1–35. [Google Scholar]
- Casas, J.S.; García-Tasende, M.S.; Sordo, J. Main group metal complexes of semicarbazones and thiosemicarbazones. A structural review. Coord. Chem. Rev. 2000, 209, 197–261. [Google Scholar] [CrossRef]
- Blower, P.J.; Castle, T.C.; Cowley, A.R.; Dilworth, J.R.; Donnelly, P.S.; Labisbal, E.; Sowrey, F.E.; Teat, J.; Went, M.J. Structural trends in copper (II) bis (thiosemicarbazone) radiopharmaceuticals. Dalton Trans. 2003, 4416–4425. [Google Scholar] [CrossRef]
- Quiroga, A.G.; Navarro Ranninger, C. Contribution to the SAR field of metalated and coordination complexes Studies of the palladium and platinum derivatives with selected thiosemicarbazones as antitumoral drugs. Coord. Chem. Rev. 2004, 248, 119–133. [Google Scholar] [CrossRef]
- Beraldo, H. Semicarbazonas e tiosemicarbazonas: O amplo perfil farmacológico e usos clínicos. Quim. Nov. 2004, 27, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Christlieb, M.; Cowley, A.R.; Dilworth, J.R.; Donnelly, P.S.; Paterson, B.M.; Struthers, H.S.R.; White, J.M. New bimetallic compounds based on the bis(thiosemicarbazonato) motif. Dalton Trans. 2007, 327–331. [Google Scholar] [CrossRef]
- Pedrido, R.; Romero, M.J.; Bermejo, M.R.; Martínez-Calvo, M.; González-Noya, A.M.; Zaragoza, G. Coordinative trends of a tridentate thiosemicarbazone ligand: Synthesis, characterization, luminescence studies and desulfurization processes. Dalton Trans. 2009, 8329–8340. [Google Scholar] [CrossRef]
- Yu, Y.; Kalinowski, D.S.; Kovacevic, Z.; Siafakas, A.R.; Jansson, P.J.; Stefani, C.; Lovejoy, D.B.; Sharpe, P.C.; Bernhardt, P.V.; Richardson, D.R. Thiosemicarbazones from the old to new: Iron chelators that are more than just ribonucleotide reductase inhibitors. J. Med. Chem. 2009, 52, 5271–5294. [Google Scholar] [CrossRef]
- Lobana, T.S.; Sharma, R.; Bawa, G.; Khanna, S. Bonding and structure trends of thiosemicarbazone derivatives of metals—An overview. Coord. Chem. Rev. 2009, 253, 977–1055. [Google Scholar] [CrossRef]
- Matesanz, A.I.; Souza, P. alpha-N-heterocyclic thiosemicarbazone derivatives as potential antitumor agents: A structure-activity relationships approach. Mini Rev. Med. Chem. 2009, 9, 1389–1396. [Google Scholar] [CrossRef] [Green Version]
- Jansson, P.J.; Sharpe, P.C.; Bernhardt, P.V.; Richardson, D.R. Novel Thiosemicarbazones of the ApT and DpT Series and Their Copper Complexes: Identification of Pronounced Redox Activity and Characterization of Their Antitumor Activity. J. Med. Chem. 2010, 53, 5759–5769. [Google Scholar] [CrossRef]
- Paterson, B.M.; Donnelly, P.S. Copper complexes of bis(thiosemicarbazones): From chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals. Chem. Soc. Rev. 2011, 40, 3005. [Google Scholar] [CrossRef]
- García-Tojal, J.; Gil-García, R.; Gómez-Saiz, P.; Ugalde, M. Pyridine-2-carbaldehyde Thiosemicarbazonecopper System: Extending Some Findings to Other Thiosemicarbazone and Coordination Compounds. Curr. Inorg. Chem. 2011, 1, 189–210. [Google Scholar] [CrossRef]
- Bacher, F.; Enyedy, É.A.; Nagy, N.V.; Rockenbauer, A.; Bognár, G.M.; Trondl, R.; Novak, M.S.; Klapproth, E.; Arion, V.B. Copper(II) Complexes with Highly Water-Soluble L- and D-Proline− Thiosemicarbazone Conjugates as Potential Inhibitors of Topoisomerase IIα. Inorg. Chem. 2013, 52, 8895–8908. [Google Scholar] [CrossRef] [Green Version]
- Park, K.C.; Fouani, L.; Jansson, P.J.; Wooi, D.; Sahni, S.; Lane, D.J.R.; Palanimuthu, D.; Lok, H.C.; Kovačević, Z.; Huang, M.L.H.; et al. Copper and conquer: Copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics 2016, 8, 874–886. [Google Scholar] [CrossRef]
- Pósa, V.; Hajdu, B.; Tóth, G.; Dömötör, O.; Kowol, C.R.; Keppler, B.K.; Spengler, G.; Gyurcsik, B.; Enyedy, É.A. The coordination modes of (thio)semicarbazone copper(II) complexes strongly modulate the solution chemical properties and mechanism of anticancer activity. J. Inorg. Biochem. 2022, 231, 111786. [Google Scholar] [CrossRef]
- Priyarega, S.; Haribabu, J.; Karvembu, R. Development of thiosemicarbazone-based transition metal complexes as homogeneous catalysts for various organic transformations. Inorg. Chim. Acta 2022, 532, 120742. [Google Scholar] [CrossRef]
- Parrilha, G.L.; dos Santos, R.G.; Beraldo, H. Applications of radiocomplexes with thiosemicarbazones and bis(thiosemicarbazones) in diagnostic and therapeutic nuclear medicine. Coord. Chem. Rev. 2022, 458, 214418. [Google Scholar] [CrossRef]
- Antholine, W.E.; Knight, J.M.; Petering, D.H. Some Properties of Copper and Zinc 2-Formylpyridine Thiosemicarbazone. Inorg. Chem. 1977, 16, 569–574. [Google Scholar] [CrossRef]
- Knight, J.M.; Whelan, H.; Petering, D.H. Electronic substituent effects upon properties of 5-substituted-2-formylpyridine thiosemicarbazones and their metal complexes. J. Inorg. Biochem. 1979, 11, 327–338. [Google Scholar] [CrossRef]
- Beraldo, H.; Tosi, L. Spectroscopic studies of metal complexes containing π-delocalized sulfur ligands. The pre-resonance Raman spectra of the antitumor agent 2-formylpyridine thiosemicarbazone and its Cu(II) and Zn(II) complexes. Inorg. Chim. Acta 1986, 125, 173–182. [Google Scholar] [CrossRef]
- Ainscough, E.W.; Brodie, A.M.; Denny, W.A.; Finlay, G.J.; Ranford, J.D. Nitrogen, sulfur and oxygen donor adducts with copper(II) complexes of antitumor 2-formylpyridinethiosemicarbazone analogs: Physicochemical and cytotoxic studies. J. Inorg. Biochem. 1998, 70, 175–185. [Google Scholar] [CrossRef]
- Dömötör, O.; May, N.V.; Pelivan, K.; Kiss, T.; Keppler, B.K.; Kowol, C.R.; Enyedy, É.A. A comparative study of α-N-pyridyl thiosemicarbazones: Spectroscopic properties, solution stability and copper(II) complexation. Inorg. Chim. Acta 2018, 472, 264–275. [Google Scholar] [CrossRef] [Green Version]
- Ainscough, E.W.; Baker, E.N.; Brodie, A.M.; Cresswell, R.J.; Ranford, J.D.; Waters, J.M. The characterization of both the coordinated and non-coordinated saccharinate ion. The syntheses and crystal structures of aqua(2-formylpyridine thiosemicarbazonato)(saccharinato-N)copper(II) hemihydrate and 2,2′-bipyridyl-(2-formylpyridine thiosemicarbaz. Inorg. Chim. Acta 1990, 172, 185–190. [Google Scholar] [CrossRef]
- Ainscough, E.W.; Brodie, A.M.; Ranford, J.D.; Waters, J.M. Reaction of Nitrogen and Sulphur Donor Ligands with the Antiturnour Complex [{CuL(MeCO2)}2](HL = 2-formylpyridine thiosemicarbazone) and the single-crystal X-ray structure of [CuL(bipy)]ClO4(bipy = 2,2′-bipyridyl). J. Chem. Soc. Dalton Trans. 1991, 1737–1742. [Google Scholar] [CrossRef]
- Gómez-Saiz, P.; García-Tojal, J.; Diez-Gómez, V.; Gil-García, R.; Pizarro, J.L.; Arriortua, M.I.; Rojo, T. Indirect evidences of desulfurization of a thiosemicarbazonecopper(II) system in aqueous basic medium. Inorg. Chem. Commun. 2005, 8, 259–262. [Google Scholar] [CrossRef]
- Ainscough, E.W.; Brodie, A.M.; Ranford, J.D.; Waters, J.M. Preparation and Characterization of Complexes of the Antitumour Copper(II) 2-Formylpyridine Thiosemicarbazone (HL) System and the Single-crystal X-ray Structures of [{Cu(HL)(CF3CO2)}2][CF3CO2]2 and [Cu(HL)(H2O)(ClO4)2].2H2O. J. Chem. Soc. Dalton Trans. 1991, 8, 2125–2131. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Haribabu, J.; Dhanabalan, A.K.; Swaminathan, S.; Sun, S.; Dibwe, D.F.; Bhuvanesh, N.; Awale, S.; Karvembu, R. Thiosemicarbazone(s)-anchored water soluble mono- A nd bimetallic Cu(ii) complexes: Enzyme-like activities, biomolecular interactions, anticancer property and real-time live cytotoxicity. Dalton Trans. 2020, 49, 9411–9424. [Google Scholar] [CrossRef]
- Al-Riyahee, A.A.A.; Horton, P.N.; Coles, S.J.; Amoroso, A.J.; Pope, S. Ni(II), Cu(II) and Zn(II) complexes of functionalised thiosemicarbazone ligands: Syntheses and reactivity, characterization and structural studies. Polyhedron 2022, 225, 116079. [Google Scholar] [CrossRef]
- García-Tojal, J.; Rojo, T. An appraisal of structural, spectroscopic and magnetic aspects of the pyridine-2-carbaldehyde thiosemicarbazonecopper(II) compounds. Polyhedron 1999, 18, 1123–1130. [Google Scholar] [CrossRef]
- Joseph, M.; Suni, V.; Prathapachandra Kurup, M.R.; Nethaji, M.; Kishore, A.; Bhat, S.G. Structural, spectral and antimicrobial studies of copper(II) complexes of 2-benzoylpyridine N(4)-cyclohexyl thiosemicarbazone. Polyhedron 2004, 23, 3069–3080. [Google Scholar] [CrossRef]
- Bleaney, B.; Bowers, K.D. Anomalous Paramagnetism of Copper Acetate. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1952, 214, 451–465. [Google Scholar] [CrossRef]
- Aguirre, M.D.C.; Borrás, J.; Castiñeiras, A.; Garcĩa-Monteagudo, J.M.; Garcĩa-Santos, I.; Niclõs, J.; West, D.X. Synthesis, characterization, and properties of some copper(II) complexes of 2-pyridineformamide thiosemicarbazone (HAm4DH). Eur. J. Inorg. Chem. 2006, 2006, 1231–1244. [Google Scholar] [CrossRef]
- Kolotilov, S.V.; Cador, O.; Golhen, S.; Shvets, O.; Ilyin, V.G.; Pavlishchuk, V.V.; Ouahab, L. Synthesis, structure, sorption and magnetic properties of Ni(II) and Cu(II) complexes with thiosemicarbazone of 2-hydroxybenzaldehyde, bridged by 4,4′-bipyridine. Inorg. Chim. Acta 2007, 360, 1883–1889. [Google Scholar] [CrossRef]
- Revenko, M.D.; Bourosh, P.N.; Stratulat, E.F.; Gdaniec, M.; Lipkowski, Y.; Korzha, I.D.; Simonov, Y.A. Synthesis and structure of copper(II) coordination compounds with 8-quinolinecarboxaldehyde thio- and 4-phenylthiosemicarbazones. Russ. J. Inorg. Chem. 2010, 55, 1387–1397. [Google Scholar] [CrossRef]
- Revenco, M.D.; Palamarciuc, O.V.; Bourosh, P.N.; Lipkowski, J.; Gdaniec, M.; Simonov, Y.A.; Clérac, R. New template reactions of salicylaldehyde S-methyl-isothiosemicarbazone with 2-formylpyridine promoted by Ni(II) or Cu(II) metal ions. Inorg. Chim. Acta 2011, 368, 157–164. [Google Scholar] [CrossRef]
- Saha, N.C.; Pradhan, R.; Das, M.; Khatun, N.; Mitra, D.; Samanta, A.; Slawin, A.M.Z.; Jana, A.D.; Klanke, J.; Rentschler, E. Synthesis, characterization, X-ray crystallography, and antimicrobial activities of Ni (II) and Cu (II) complexes with a salicylaldehyde-based thiosemicarbazone ligand. J. Coord. Chem. 2014, 67, 286–299. [Google Scholar] [CrossRef]
- Uraev, A.I.; Nefedov, S.E.; Lyssenko, K.A.; Vlasenko, V.G.; Ikorskii, V.N.; Garnovskii, D.A.; Makarova, N.I.; Levchenkov, S.I.; Shcherbakov, I.N.; Milenkovic, M.R.; et al. Synthesis, structure, spectroscopic studies and magnetic based on aminomethylene derivatives of pyrazole-5-one (thione). Poly 2020, 188, 114623. [Google Scholar] [CrossRef]
- Novoa, N.; Justaud, F.; Hamon, P.; Roisnel, T.; Cador, O.; Le Guennic, B.; Manzur, C.; Carrillo, D.; Hamon, J.R. Doubly phenoxide-bridged binuclear copper(II) complexes with ono tridentate schiff base ligand: Synthesis, structural, magnetic and theoretical studies Dedicated to Dr. Claude Lapinte for his outstanding contribution to organometallic molecular wires. Polyhedron 2015, 86, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Bazhin, D.N.; Kudyakova, Y.S.; Slepukhin, P.A.; Burgart, Y.V.; Malysheva, N.N.; Kozitsina, A.N.; Ivanova, A.V.; Bogomyakov, A.S.; Saloutin, V.I. Dinuclear copper(ii) complex with novel N,N′,N″,O-tetradentate Schiff base ligand containing trifluoromethylpyrazole and hydrazone moieties. Mendeleev Commun. 2018, 28, 202–204. [Google Scholar] [CrossRef]
- Peña, Q.; Sciortino, G.; Maréchal, J.-D.; Bertaina, S.; Simaan, A.J.; Lorenzo, J.; Capdevila, M.; Bayón, P.; Iranzo, O.; Palacios, O. Copper(II) N,N,O-Chelating Complexes as Potential Anticancer Agents. Inorg. Chem. 2021, 60, 2939–2952. [Google Scholar] [CrossRef]
- Gil-García, R.; Gómez-Saiz, P.; Díez-Gómez, V.; Madariaga, G.; Insausti, M.; Lezama, L.; Vicente, J.; García-Tojal, J. Thiosemicarbazonecopper(II) compounds with halide/hexafluorosilicate anions: Structure, water clusters, non-covalent interactions and magnetism. Polyhedron 2014, 81, 675–686. [Google Scholar] [CrossRef]
- Gómez-Saiz, P.; García-Tojal, J.; Mendia, A.; Donnadieu, B.; Lezama, L.; Pizarro, J.L.; Arriortua, M.I.; Rojo, T. Coordination Modes in a Tridentate NNS (Thiosemicarbazonato)copper(II) System Containing Oxygen-Donor Coligands—Structures of [{Cu(L)(X)}2] (X = Formato, Propionato, Nitrito). Eur. J. Inorg. Chem. 2003, 3, 518–527. [Google Scholar] [CrossRef]
- Gil-García, R.; Gómez-Saiz, P.; Díez-Gómez, V.; Donnadieu, B.; Insausti, M.; Lezama, L.; García-Tojal, J. Polymorphism and magnetic properties in thiosemicarbazonecopper(II)-sulfate compounds. Polyhedron 2013, 54, 243–251. [Google Scholar] [CrossRef]
- García-Tojal, J.; Urtiaga, M.K.; Cortés, R.; Lezama, L.; Rojo, T.; Arriortua, M.I. Synthesis, structure, spectroscopic and magnetic properties of two copper(II) dimers containing pyridine-2-carbaldehyde thiosemicarbazonate (L), [{CuL(X)}2](X = Cl or Br). J. Chem. Soc. Dalton Trans. 1994, 15, 2233–2238. [Google Scholar] [CrossRef]
- Gómez-Saiz, P.; Gil-García, R.; Maestro, M.A.; Pizarro, J.L.; Arriortua, M.I.; Lezama, L.; Rojo, T.; González-Álvarez, M.; Borrás, J.; García-Tojal, J. Structure, magnetic properties and nuclease activity of pyridine-2-carbaldehyde thiosemicarbazonecopper(II) complexes. J. Inorg. Biochem. 2008, 102, 1910–1920. [Google Scholar] [CrossRef] [PubMed]
- García-Tojal, J.; Lezama, L.; Pizarro, J.L.; Insausti, M.; Arriortua, M.I.; Rojo, T. Spectroscopic and magnetic properties of copper(II) complexes derived from pyridine-2-carbaldehyde thiosemicarbazone. Structures of [Cu(NO3)(C7H8N4S)(H2O)](NO3) and [{Cu(NCS)(C7H7N4S)}2]. Polyhedron 1999, 18, 3703–3711. [Google Scholar] [CrossRef]
- Gómez-Saiz, P.; García-Tojal, J.; Maestro, M.A.; Mahía, J.; Arnáiz, F.J.; Lezama, L.; Rojo, T. New 1,3,4-Oxadiazolecopper(II) Derivatives Obtained from Thiosemicarbazone Complexes. Eur. J. Inorg. Chem. 2003, 14, 2639–2650. [Google Scholar] [CrossRef]
- Gómez-Saiz, P.; García-Tojal, J.; Maestro, M.A.; Arnaiz, F.J.; Rojo, T. Evidence of Desulfurization in the Oxidative Cyclization of Thiosemicarbazones. Conversion to 1,3,4-Oxadiazole Derivatives. Inorg. Chem. 2002, 41, 1345–1347. [Google Scholar] [CrossRef]
- Bingham, A.G.; Bögge, H.; Müller, A.; Ainscough, E.W.; Brodie, A.M. Synthetic, Spectroscopic, and X-ray Crystallographic Studies on Binuclear Copper(II) Complexes with a Tridentate NNS-bonding 2-Formylpyridine Thiosemicarbazone Ligand. The Characterization of Both Neutral and Deprotonated Co-ordinated Ligand Structures. J. Chem. Soc. Dalton Trans. 1987, 3, 493–499. [Google Scholar] [CrossRef]
- Ainscough, E.W.; Brodie, M.; Ranford, J.D.; Waters, J.M.; Murray, K.S. The reaction of the pyrophosphate ion with the antitumour [{CuL(CH3COO)}2] (HL = 2-formylpyridine thiosemicarbazone) the single-crystal X-ray structure of [(CuL)4P2O7] ·NH2O. Inorg. Chim. Acta 1992, 197, 107–115. [Google Scholar] [CrossRef]
- Lobana, T.S.; Khanna, S.; Butcher, R.J. 2-Benzoylpyridine thiosemicarbazone as a novel reagent for the single pot synthesis of dinuclear CuI–CuII complexes: Formation of stable copper(ii)–iodide bonds. Dalton Trans. 2012, 41, 4845–4851. [Google Scholar] [CrossRef]
- Kumar, S.M.; Dhahagani, K.; Rajesh, J.; Anitha, K.; Chakkaravarthi, G.; Kanakachalam, N.; Marappan, M.; Rajagopal, G. Synthesis, structural analysis and cytotoxic effect of copper (II) -thiosemicarbazone complexes having heterocyclic bases: A selective naked eye sensor for F À and CN À. Polyhedron 2015, 85, 830–840. [Google Scholar] [CrossRef]
- Jayakumar, K.; Sithambaresan, M.; Aiswarya, N.; Kurup, M.R.P. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Synthesis and spectral characterization of mono- and binuclear thiosemicarbazone: Crystal structure of a novel sulfur bridged copper (II). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 139, 28–36. [Google Scholar] [CrossRef]
- Indoria, S.; Lobana, T.S.; Singh, D.; Kumari, S.; Kumari, P.; Bala, T.; Kamal, A.; Jassal, A.K.; García Santos, I.; Castineiras, A.; et al. Stabilization of Cu II -I Bonds Using 2-Benzoylpyridine Thiosemicarbazones—Synthesis, Structure, Spectroscopy, Fluorescence, and Cyclic Voltammetry. Eur. J. Inorg. Chem. 2015, 2015, 5106–5117. [Google Scholar] [CrossRef]
- Kaushal, M.; Lobana, T.S.; Nim, L.; Kaur, J.; Bala, R.; Hundal, G.; Arora, D.S.; Garcia-Santos, I.; Duff, C.E.; Jasinski, J.P. Synthesis, structures, antimicrobial activity and biosafety evaluation of pyridine-2-formaldehyde-N-susbtituted-thiosemicarbazonates of copper(ii). New J. Chem. 2018, 42, 15879–15894. [Google Scholar] [CrossRef]
- Tom, L.; Aiswarya, N.; Sreejith, S.S.; Kurup, M.R.P. Self-organized three dimensional architectures based on non-covalent interactions in square planar Cu(II) thiosemicarbazone: Solvent mediated crystallization and EPR based correlation study. Inorg. Chim. Acta 2018, 473, 223–235. [Google Scholar] [CrossRef]
- Kaushal, M.; Lobana, T.S.; Nim, L.; Bala, R.; Arora, D.S.; Garcia-Santos, I.; Duff, C.E.; Jasinski, J.P. Synthesis of 2-acetylpyridine- N -substituted thiosemicarbazonates of copper(ii) with high antimicrobial activity against methicillin resistant S. aureus, K. pneumoniae 1 and C. albicans. New J. Chem. 2019, 43, 11727–11742. [Google Scholar] [CrossRef]
- Jin, J.; Hu, J.; Qin, Y.; Zhang, J.; Zhao, J.; Yue, L.; Hou, H. In vitro and in vivo anticancer activity of a thiourea tripyridyl dinuclear Cu(ii) complex. New J. Chem. 2019, 43, 19286–19297. [Google Scholar] [CrossRef]
- Lobana, T.S.; Kaushal, M.; Bala, R.; Nim, L.; Paul, K.; Arora, D.S.; Bhatia, A.; Arora, S.; Jasinski, J.P. Di-2-pyridylketone-N1-substituted thiosemicarbazone derivatives of copper(II): Biosafe antimicrobial potential and high anticancer activity against immortalized L6 rat skeletal muscle cells. J. Inorg. Biochem. 2020, 212, 111205. [Google Scholar] [CrossRef] [PubMed]
- Calvary, C.A.; Hietsoi, O.; Hofsommer, D.T.; Brun, H.C.; Costello, A.M.; Mashuta, M.S.; Spurgeon, J.M.; Buchanan, R.M.; Grapperhaus, C.A. Copper bis(thiosemicarbazone) Complexes with Pendent Polyamines: Effects of Proton Relays and Charged Moieties on Electrocatalytic HER. Eur. J. Inorg. Chem. 2021, 2021, 267–275. [Google Scholar] [CrossRef]
- Mohan, B.; Choudhary, M. Synthesis, crystal structure, computational study and anti-virus effect of mixed ligand copper (II) complex with ONS donor Schiff base and 1, 10-phenanthroline. J. Mol. Struct. 2021, 1246, 131246. [Google Scholar] [CrossRef] [PubMed]
- García-Tojal, J.; García-Jaca, J.; Cortés, R.; Rojo, T.; Urtiaga, M.K.; Arriortua, M.I. Synthesis and spectroscopic properties of two pyridine-2-carbaldehyde thiosemicarbazonecopper(II) compounds: [CuX2(C7H8N4S) ]. H20 (X = Br, Cl). Crystal structure of the bromo complex. Inorg. Chim. Acta 1996, 249, 25–32. [Google Scholar] [CrossRef]
- Addison, A.W.; Rao, T.N.; Reedijk, J.; van Rijn, J.; Verschoor, G.C. Synthesis, Structure, and Spectroscopic Properties of Copper(II) Compounds containing Nitrogen-Sulphur Donor Ligands; the Crystal and Molecular Structure of Aqua[1,7-bis(N-methylbenzimidazol-2′-yl)- 2,6-dithiaheptane]copper(II) Perchlorate. J. Chem. Soc. Dalton Trans. 1984, 1349–1356. [Google Scholar] [CrossRef]
- Gil-García, R.; Zichner, R.; Díez-Gómez, V.; Donnadieu, B.; Madariaga, G.; Insausti, M.; Lezama, L.; Vitoria, P.; Pedrosa, M.R.; García-Tojal, J. Polyoxometallate-thiosemicarbazone hybrid compounds. Eur. J. Inorg. Chem. 2010, 2010, 4513–4525. [Google Scholar] [CrossRef]
- Gatto, C.C.; Lima, F.C.; Miguel, P.M. Copper(II) complexes with semicarbazones: Synthesis, characterization and noncovalent interactions in their crystal structures. J. Chem. Sci. 2020, 132, 146. [Google Scholar] [CrossRef]
- Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, tau4. Dalton Trans. 2007, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Urtiaga, M.K.; Arriortua, M.I.; García-Tojal, J.; Rojo, T. Pyridine-2-carbaldehyde thiosemicarbazone hydrochloride monohydrate, 2C7H9N4S+.2Cl−.2H2O. Acta Crystallogr. 1995, C51, 2172–2174. [Google Scholar] [CrossRef]
- Morsali, A.; Ramazani, A.; Jamali, F.; Gouranlou, F. Crystal structure of pyridine-2-carbaldehyde thiosemicarbazonium perchlorate, (C7H9N4S)(ClO4). Z. Kristallogr. NCS 2001, 216, 607–608. [Google Scholar] [CrossRef]
- Biyushkin, V.N.; Chumakov, Y.N.; Samus, N.M.; Baka, I.O. Molecular structure and electronic structure of 2-pyridine-carbaldehyde thiosemicarbazone. J. Struct. Chem. 1987, 28, 119–121. [Google Scholar] [CrossRef]
- Taishang, H. Synthesis and molecular structure determination of 2-formylpyridine thiosemicarbazone. J. Xiamen Univ. 1993, 52, 741–744. [Google Scholar]
- Jin, Z.M.; Shen, L.; He, L.; Guo, H.; Wang, H.T. Pyridine-2-carbaldehyde thiosemicarbazone 1.75 hydrate. Acta Crystallogr. 2003, E59, o1909–o1911. [Google Scholar] [CrossRef]
- López-Torres, E.; Mendiola, M.A. Mercury complexes with the ligand benzaldehyde-N(4),N(4)-dimethylthiosemicarbazone. Inorg. Chim. Acta 2010, 363, 1275–1283. [Google Scholar] [CrossRef]
- Fathy, A.; Ibrahim, A.B.M.; Elkhalik, S.A.; Meurer, F.; Bodensteiner, M.; Abbas, S.M. Thiosemicarbazones and derived antimony complexes: Synthesis, structural analysis, and in vitro evaluation against bacterial, fungal and cancer cells. Inorganics 2022, 10, 172. [Google Scholar] [CrossRef]
- Bell, C.F.; Lott, K.A.K.; Hearn, N. Copper complexes of pyridine 2-aldehyde and 2-acetylpyridine thiosemicarbazones. Polyhedron 1987, 6, 39–44. [Google Scholar] [CrossRef]
- Lobana, T.S.; Rekha; Butcher, R.J.; Castiñeiras, A.; Bermejo, E.; Bharatam, P.V. Bonding Trends of Thiosemicarbazones in Mononuclear and Dinuclear Copper(I) Complexes: Syntheses, Structures, and Theoretical Aspects. Inorg. Chem. 2006, 45, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Lobana, T.S.; Sharma, R.; Castineiras, A.; Hundal, G.; Butcher, R.J. The influence of substituents (R) at N1 atom of thiophene-2-carbaldehyde thiosemicarbazones {(C4H3S)HC2{double bond, long}N3-N(H)-C1({double bond, long}S)N1HR} on bonding, nuclearity and H-bonded networks of copper(I) complexes. Inorg. Chim. Acta 2009, 362, 3547–3554. [Google Scholar] [CrossRef]
- Sharma, R.; Lobana, T.S.; Castineiras, A.; Butcher, R.J.; Akitsu, T. The influence of substituents at C 2 / N 1 atoms of pyridine-2- type of copper (I) complexes. Polyhedron 2019, 158, 449–457. [Google Scholar] [CrossRef]
- Ibrahim, A.B.M.; Farh, M.K.; Mayer, P. Copper complexes of new thiosemicarbazone ligands: Synthesis, structural studies and antimicrobial activity. Inorg. Chem. Commun. 2018, 94, 127–132. [Google Scholar] [CrossRef]
- Venegas-Yazigi, D.; Aravena, D.; Spodine, E.; Ruiz, E.; Alvarez, S. Structural and electronic effects on the exchange interactions in dinuclear bis (phenoxo) -bridged copper (II) complexes. Coord. Chem. Rev. 2010, 254, 2086–2095. [Google Scholar] [CrossRef]
- Naskar, S.; Naskar, S.; Mayer-Figge, H.; Sheldrick, W.S.; Corbella, M.; Tercero, J.; Chattopadhyay, S.K. Study of copper(II) complexes of two diacetyl monooxime thiosemicarbazones: X-ray crystal structure and magneto-structural correlation of [Cu(dmoTSCH)Cl] 2·H 2O (dmoTSCH = monoanion of diacetyl monooxime thiosemicarbazone). Polyhedron 2012, 35, 77–86. [Google Scholar] [CrossRef]
- Gómez-Saiz, P.; García-Tojal, J.; Maestro, M.; Mahía, J.; Lezama, L.; Rojo, T. Coordination modes in a (thiosemicarbazone)copper(II)/oxalato system—Structures of [{Cu(L)}2(ox)]·2H2O, [Cu(HL)(ox)(H2O)], [{Cu(HL)}2(ox)]-[Cu(ox)2]·2H2O and [{Cu(HL)}2(ox)](NO3)2. Eur. J. Inorg. Chem. 2003, 2003, 2123–2132. [Google Scholar] [CrossRef]
- Ruiz, E.; Cano, J.; Alvarez, S.; Alemany, P. Broken symmetry approach to calculation of exchange coupling constants for homobinuclear and heterobinuclear transition metal complexes. J. Comput. Chem. 1999, 20, 1391–1400. [Google Scholar] [CrossRef]
- Soler, J.M.; Artacho, M.; Gale, J.D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 2002, 14, 2745–2779. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental theory to exchange-coupling. Coord. Chem. Rev. 2009, 253, 526–563. [Google Scholar] [CrossRef]
- Soek, R.N.; Tiago, T.L.; Garbelini, E.R.; Crespan, E.d.R.; Pineider, F.; Poneti, G.; Machado, G.S.; Ribeiro, R.R.; Hörner, M.; Nunes, F.S. Structural, Magnetic, Spectroscopic and Density Functional Theory (DFT) Analysis of Bis((1-((E)-2-pyridinylmethylidene)semicarbazone)copper(II)sulfate) Dihydrate Complex. ChemistrySelect 2017, 2, 8451–8458. [Google Scholar] [CrossRef]
- Anderson, F.E.; Duca, C.J.; Scudi, J.V. Some heterocyclic thiosemicarbazones. J. Am. Chem. Soc. 1951, 73, 4967–4968. [Google Scholar] [CrossRef]
- WINEPR SimFonia, version 1.25; Bruker Analytische Messtecnik GmβH: Rheinstetten, Germany, 1996.
- X-Area, Software Manual; STOE & Cie Gmbh: Darmstadt, Germany, 2015.
- Altomare, A.; Burla, M.C.; Camalli, M.; Cascarano, G.L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A.G.G.; Polidori, G.; Spagna, R. SIR97: A new tool for crystal structure determination and refinement. J. Appl. Crystallogr. 1999, 32, 115–119. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Becke, A.D. Density functional thermochemistry. 3.The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.T.; Yang, W.T.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Ruiz, E.; Alemany, P.; Alvarez, S.; Cano, J. Toward the prediction of magnetic coupling in molecular systems: Hydroxo- and alkoxo-bridged Cu(II) binuclear complexes. J. Am. Chem. Soc. 1997, 119, 1297–1303. [Google Scholar] [CrossRef]
- Ruiz, E.; Rodríguez-Fortea, A.; Cano, J.; Alvarez, S.; Alemany, P. About the calculation of exchange coupling constants in polynuclear transition metal complexes. J. Comput. Chem. 2003, 24, 982–989. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. Gaussian 03, revision B.4; Carnegie Mellon University: Pittsburgh, PA, USA, 2003. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, revision D.01; Gaussian Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Becke, A.D. Density-functional exchange energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Ruiz, E.; Cano, J.; Alvarez, S.; Alemany, P. Magnetic coupling in end-on azido-bridged transition metal complexes: A density functional study. J. Am. Chem. Soc. 1998, 120, 11122–11129. [Google Scholar] [CrossRef]
- Ruiz, E.; Alvarez, S.; Rodríguez-Fortea, A.; Alemany, P.; Pouillon, Y.; Massobrio, C. Electronic Structure and Magnetic Behavior in Polynuclear Transition-metal Compounds. In Magnetism: Molecules to Materials II: Models and Experiments; Miller, J.S., Drillon, M., Eds.; Wiley-VCH: Weinheim, Germany, 2001. [Google Scholar]
- Schäfer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 1994, 100, 5829–5835. [Google Scholar] [CrossRef]
- Schäfer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. [Google Scholar] [CrossRef] [Green Version]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Energy-adjusted a b i n i t i o pseudopotentials for the first row transition elements. J. Chem. Phys. 1987, 86, 866–872. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310. [Google Scholar] [CrossRef]
Compound [Donor Atom in the Coligand] | X′ | Cu···Cu′/Cu···X′ (Å) | Cu–X···Cu′ (°) | J (cm–1) |
---|---|---|---|---|
[{CuL(H2O)}2](SiF6)·4H2O [O] [51] | S | 3.5950(4)/2.7963(6) | 89.231 | +4.44 |
[{CuL(HCOO)}2] [O] [52] | S | 3.503(2)/2.820(2) | 86.34(5) | –2.80 |
[{CuL(H2O)}(1){CuL(SO4)} (2)]∙H2O [O] [53] | S (1), O (2) | 3.365(1)/2.354(3) (1), 2.8797(16) (2) | 80.49(4) (1), 101.97(13) (2) | –3.21 |
[{CuL(NO2)}2] [O] [52] | S | 3.554(1)/2.918(2) | 85.5(1) | –3.40 |
[{CuLCl}2] [Cl] [54] | S | 3.486(2)/2.760(2) | 87.01(4) | –3.91 |
[{(CuL)2(dca *)}(ClO4)]n [N] [55] | S | 3.5953(2)/2.8383(1) | 88.6(2)/85.4(2) | –3.30 |
[{CuL(NCS)}2] [N] [56] | S | 3.450(3)/2.754(5) (a) | 85.9(1) (a) | –5.09 |
[{CuLBr}2] [Br] [54] | S | 3.474(1)/2.743(2) | 87.12(5) | –5.21 |
[{CuLI}2] [I] [57] | S | 3.455(1)/2.775(1) | 85.80(4) | –14.03 |
[{Cu(L’)(NO3)}2] [O] [57,58] | S | 3.4482(2)/2.7659(6) | 85.83(2) | +6.88 |
[{Cu(L’)(H2O)}(1){Cu(L’)(SO4)} (2)]∙5H2O [O] [35,53] | S (1), S (2) | 3.435/2.8114(14) (1), 2.9114(13) (2) | 82.024 (1), 84.326 (2) | +5.5 |
[{Cu(L’)(H2O)}2][Cu(L’)(H2O)2]2(SiF6)2·8H2O [O] [51] | S | 3.351(2)/2.819(3) | 81.81 | +2.22 |
[{Cu(L’)Cl}2] [Cl] [51] | S | 3.587(1)/2.836(1) | 88.47 | –4.65 |
[{Cu(L’)Br}2] [Br] [57] | S | 3.577(2)/2.832(2) | 88.31 | –6.12 |
[{CuL(CH3COO)}2] [O] [59,60] | O | 3.442(1)/2.427(2) | 103.5(1) | –3.10 |
[{CuL(CH3CH2COO)}2] [O] [52] | O | 3.460(2)/2.387(2) | 105.35(9) | –3.30 |
[{CuL(tfa)}2] [O] [55] | O | 3.689(1)/2.632(3) | 105.7(1) | –3.30 |
[{Cu(HL)(tfa)}2][tfa]2 [O] [36,55] | O | 3.557(4)/2.519(4) | 104.8(1) | –0.20 |
[{Cu(HL)(SO4)}2] [O] [53,59] | O | 3.310(1)/2.306(2) | 102.7(1) | –0.75 |
[{Cu(L’)I}2] [I] [51] | I | 3.836/3.1797(6) | 82.56 | –4.76 |
Bonds and Angles | Compound 3 | Compound 4 |
---|---|---|
Cu–N1 | 2.0429(2) | − |
Cu–N2 | 1.9886(2) | − |
Cu–S | 2.3057(2) | 2.293(3) |
Cu–Cl1/I1 | 2.2465(2) | 2.6754(18) |
Cu–Cl2/I2 | 2.5896(2) | 2.6154(16) |
Cu–I1′ | − | 2.7761(17) |
C6–N2 | 1.2698(1) | 1.252(12) |
C7–N3 | 1.3355(1) | 1.331(12) |
C7–N4 | 1.3140(1) | 1.311(12) |
N2–N3 | 1.3453(1) | 1.365(10) |
C7–S | 1.7076(1) | 1.681(9) |
X1–Cu–X2 | 97.20(1) | 117.78(6) |
S–Cu–X1 | 95.29(1) | 118.25(9) |
S–Cu–X2 | 96.51(1) | 101.95(8) |
N2–Cu–N1 | 78.66(1) | − |
N2–Cu–Cl1 | 162.89(1) | − |
N1–Cu–S | 159.44(1) | − |
N2–Cu–Cl2 | 99.90(1) | − |
Cu–N2–N3 | 120.13(1) | − |
N2–N3–C7 | 118.20(1) | 121.9(7) |
N3–C7–N4 | 117.19(1) | 117.4(8) |
S–C7–N3 | 121.03(1) | 120.2(7) |
S–C7–N4 | 121.78(1) | 122.4(7) |
Isomer | ΔG (kcal/mol) |
---|---|
[Cu(HL)(OH2)3]2+ + Cl− → [Cu(HL)Cl(OH2)2]+ + H2O | |
[Cu(HL)Cl(OH2)2]+ trans | −29.99 |
[Cu(HL)Cl(OH2)2]+ cis | −34.39 |
[Cu(HL)(OH2)3]2+ + 2Cl− → [Cu(HL)Cl2(OH2)] + 2H2O | |
[Cu(HL)Cl2(OH2)] trans | −54.46 |
[Cu(HL)Cl2(OH2)] cis1 | −43.81 |
[Cu(HL)Cl2(OH2)] cis2 | −43.60 |
[Cu(HL)(OH2)3]2+ + 3Cl− → [Cu(HL)Cl3]− + 3H2O | |
[Cu(HL)Cl3]− | −56.37 |
[Cu(HL)(OH2)3]2+ + I− → [Cu(HL)I(OH2)2]+ + H2O | |
[Cu(HL)I(OH2)2]+ cis1 | −0.91 |
[Cu(HL)I(OH2)2]+ trans | −2.06 |
[Cu(HL)I(OH2)2]+ cis2 | −1.17 |
[Cu(HL)(OH2)3]2+ + 2I− → [Cu(HL)I2(OH2)] + 2H2O | |
[Cu(HL)I2(OH2)] trans | −2.02 |
[Cu(HL)I2(OH2)] cis1 | −1.15 |
[Cu(HL)I2(OH2)] cis2 | −1.75 |
[Cu(HL)(OH2)3]2+ + 3I− → [Cu(HL)I3]− + 3H2O | |
[Cu(HL)I3]− | −1.01 |
Isomer | ΔG (kcal/mol) |
---|---|
[CuL(OH2)3]+ + Cl− → [CuLCl(OH2)2] + H2O | |
[CuLCl(OH2)2] cis1 | −30.59 |
[CuLCl(OH2)2] trans | −28.58 |
[CuLCl(OH2)2] cis2 | −30.52 |
[CuL(OH2)3]+ + 2Cl− → [CuLCl2(OH2)]− + 2H2O | |
[CuLCl2(OH2)]− trans | −47.96 |
[CuLCl2(OH2)]− cis1 | −39.35 |
[CuLCl2(OH2)]− cis2 | −39.48 |
[CuL(OH2)3]+ + 3Cl− → [CuLCl3]2− + 3H2O | |
[CuLCl3]− | −35.33 |
[CuL(OH2)3]+ + I− → [CuLI(OH2)2] + H2O | |
[CuLI(OH2)2] cis1 | −0.87 |
[CuLI(OH2)2] trans | 1.67 |
[CuLI(OH2)2] cis2 | −0.54 |
[CuL(OH2)3]+ + 2I− → [CuLI2(OH2)]− + 2H2O | |
[CuLI2(OH2)]− trans | 0.30 |
[CuLI2(OH2)]− cis1 | 1.61 |
[CuLI2(OH2)]− cis2 | 0.74 |
[CuL(OH2)3]+ + 3I− → [CuLI3]2− + 3H2O | |
[CuLI3]− | 3.33 |
Atoms | Magnetic Moment (µB) |
---|---|
C | 0.000 |
H | 0.018 |
N | 0.212 |
S | 0.214 |
Cl | 0.154 |
Cu | 0.402 |
Total | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Pérez, A.; Marcos-Gómez, S.; Madariaga, G.; Zapico, M.; Vitoria, P.; Tercero, J.; Torres, M.B.; Lezama, L.; Cuevas, J.V.; Etxebarria, I.; et al. Thiosemicarbazonecopper/Halido Systems: Structure and DFT Analysis of the Magnetic Coupling. Inorganics 2023, 11, 31. https://doi.org/10.3390/inorganics11010031
Jiménez-Pérez A, Marcos-Gómez S, Madariaga G, Zapico M, Vitoria P, Tercero J, Torres MB, Lezama L, Cuevas JV, Etxebarria I, et al. Thiosemicarbazonecopper/Halido Systems: Structure and DFT Analysis of the Magnetic Coupling. Inorganics. 2023; 11(1):31. https://doi.org/10.3390/inorganics11010031
Chicago/Turabian StyleJiménez-Pérez, Alondra, Sara Marcos-Gómez, Gotzon Madariaga, Manuel Zapico, Pablo Vitoria, Javier Tercero, M. Begoña Torres, Luis Lezama, José Vicente Cuevas, Iñigo Etxebarria, and et al. 2023. "Thiosemicarbazonecopper/Halido Systems: Structure and DFT Analysis of the Magnetic Coupling" Inorganics 11, no. 1: 31. https://doi.org/10.3390/inorganics11010031
APA StyleJiménez-Pérez, A., Marcos-Gómez, S., Madariaga, G., Zapico, M., Vitoria, P., Tercero, J., Torres, M. B., Lezama, L., Cuevas, J. V., Etxebarria, I., & García-Tojal, J. (2023). Thiosemicarbazonecopper/Halido Systems: Structure and DFT Analysis of the Magnetic Coupling. Inorganics, 11(1), 31. https://doi.org/10.3390/inorganics11010031