Metal Complexes of Schiff Bases Prepared from Quinoline-3-Carbohydrazide with 2-Nitrobenzaldehyde, 2-Chlorobenzaldehyde and 2,4-Dihydroxybenzaldehyde: Structure and Biological Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Schiff Base Ligands
2.2. X-ray Structures of NQ and CQ
2.3. Synthesis of Metal Complexes
2.4. Physical Properties of Complexes
2.5. Magnetic Susceptibility of Metal Complexes
2.6. FTIR Spectra of Metal Complexes
-HC=N-N=C-OH | ↔ | -HC=N-N(H)-C=O | ↔ | -HC(−)-N=N-C=O |
I | II | III |
2.7. 1H-NMR Study of Complexes
2.8. Biological Activity of Ligands and Complexes (Antiproliferative Activity)
3. Materials and Methods
3.1. Materials and Instruments
3.2. General Procedure for Synthesis Quinoline-3-Carbohydrazide (PQ)
3.3. Synthesis of Schiff Base Ligand
3.3.1. Synthesis of (E)-N’-(2-Nitrobenzylidene) Quinoline-3-Carbohydrazide, NQ
3.3.2. Synthesis of (E)-N’-(2-Chlorobenzylidene) Quinoline-3-Carbohydrazide, CQ
3.3.3. Synthesis of (E)-N’-(2,4-Dihydroxybenzylidene) Quinoline-3-carbohydrazide, HQ
3.4. Synthesis of Metal Complexes
3.4.1. Synthesis of NQ Complexes
- Cu-NQ: 67% yield, green color, m.p.: 220–222 °C, elemental analysis %: C 52.35, H 3.48, N 14.46, calculated % for CuL2Cl(OH)·H2O: C 52.72, H 3.51, N 14.47.
- Cd-NQ: 72% yield, reddish-brown color, m.p.: >300 °C, elemental analysis %: C 54.35, H 3.52, N 14.92, calculated % for CdL3(OH)2·H2O: C 54.43, H 3.58, N 14.94.
- Cr-NQ: 68% yield, green color, m.p.: 283–285 °C (dec), elemental analysis %: C 51.66, H, 2.99, N 14.22, calculated % for CrL2Cl2(OH)·H2O: C 51.14, H 3.41, N 14.03.
- Fe-NQ: 66% yield, black color, m.p.: 78–80 °C, elemental analysis %: C 50.90, H, 3.47, N 13.86, calculated % for FeL2Cl2(OH)·H2O: C 50.89, H 3.39, N 13.97.
- Co-NQ: 67% yield, blue color, m.p.: 100–102 °C, elemental analysis %: C 53.57, H 3.78, N 14.95, calculated % for CoL2Cl(OH)·H2O: C 53.03, H 3.53, N 14.55.
- Ni-NQ: 59% yield, reddish-brown color, m.p.: >300 °C, elemental analysis %: C 53.05, H 3.09, N 14.49, calculated % for NiL2Cl2: C 53.02, H 3.14, N 14.55.
3.4.2. Synthesis of CQ Complexes
- Cu-CQ: 58% yield, green color, m.p.: 233–235 °C, elemental analysis %: C, 54.29, H 3.57, N 11.94, calculated % for CuL2Cl(OH)·H2O: C 54.19, H 3.61, N 11.15.
- Cd-CQ: 70% yield, yellow color, m.p.: >300 °C, elemental analysis %: C 55.94, H 3.77, N 11.62, calculated % for CdL3(OH)2·H2O: C 56.01, H 3.69, N 11.53.
- Cr-CQ: 65% yield, green color, m.p.: 235–237 °C, elemental analysis %: C 52.72, H 3.26, N 11.02, calculated % for CrL2Cl2(OH)·H2O: C 52.53, H 3.50, N 10.81.
- Fe-CQ: 69% yield, yellow-green color, m.p.: 204–206 °C, elemental analysis %: C 52.45, H 3.25, N 10.65, calculated % for FeL2Cl2(OH)·H2O: C 52.27, H 3.48, N 10.76.
- Co-CQ: 62% yield, green color, m.p.: 220–222 °C, elemental analysis %: C 54.89, H 3.81, N 11.97, calculated % for CoL2Cl(OH)·H2O: C 54.53, H 3.63, N 11.22.
- Ni-CQ: 66% yield, orange color, m.p.: 240–242 °C, elemental analysis %: C 54.25, H 3.01, N 10.91, calculated % for NiL2Cl2: C 54.51, H 3.23, N 11.22.
3.4.3. Synthesis of HQ Complexes
- Cu-HQ: 62% yield, dark-yellow color, m.p.: 222–224 °C, elemental analysis % C 53.92, H 3.20, N, 10.75, calculated % for CuL2Cl(OH)·H2O: C 54.55, H 3.90, N 11.23.
- Cd-HQ: 72% yield, pale-yellow color, m.p.: 273–275 °C, elemental analysis %: C 56.40, H 3.78, N, 11.75, calculated % for CdL3(OH)2·H2O: C 56.39, H 3.99, N 11.60.
- Cr-HQ: 69% yield, orange color, m.p.: 108–110 °C, elemental analysis %: C, 56.73, H 3.59, N 11.47, calculated % for CrL2Cl(OH)2: C, 55.48, H, 3.83; N, 11.42.
- Fe-HQ: 65% yield, brown color, m.p.: >300 °C, elemental analysis: C 52.80, H 3.70, N 10.75, calculated % for FeL2Cl2(OH)·H2O: C 52.60, H 3.76, N 10.82.
- Co-HQ: 69% yield, reddish-brown color, m.p.: >300 °C, elemental analysis %: C 54.90, H 3.65, N 11.95, calculated % for CoL2Cl(OH)·H2O: C 54.89, H 3.93, N 11.30.
- Ni-HQ: 66% yield, orange color, m.p.: 285–287 °C, elemental analysis %: C 56.10, H 3.61, N 10.5, calculated % for NiL2Cl(OH): C 56.27, H 3.75, Cl 4.88, N 11.58.
3.5. Antiproliferative Activity
3.5.1. Cells and Cell Culture Conditions
3.5.2. Cell Proliferation Assay (MTT)
3.5.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schiff, H. Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen. Justus Liebigs Ann. Chem. 1864, 131, 118–119. [Google Scholar] [CrossRef]
- Da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.; de Fátima, Â. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res. 2011, 2, 1–8. [Google Scholar] [CrossRef]
- Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff bases: A versatile pharmacophore. J. Catal. 2013, 2013, 893512. [Google Scholar] [CrossRef]
- Kostova, I.; Saso, L. Advances in research of Schiff-base metal complexes as potent antioxidants. Curr. Med. Chem. 2013, 20, 4609–4632. [Google Scholar] [CrossRef]
- Yousif, E.; Majeed, A.; Al-Sammarrae, K.; Salih, N.; Salimon, J.; Abdullah, B. Metal complexes of Schiff base: Preparation, characterization and antibacterial activity. Arab. J. Chem. 2017, 10, S1639–S1644. [Google Scholar] [CrossRef]
- Vadivel, T.; Dhamodaran, M. Synthesis, characterization and antibacterial studies of ruthenium (III) complexes derived from chitosan Schiff base. Int. J. Biol. Macromol. 2016, 90, 44–52. [Google Scholar] [CrossRef]
- Xavier, A.; Srividhya, N. Synthesis and study of Schiff base ligands. IOSR J. Appl. Chem. 2014, 7, 6–15. [Google Scholar] [CrossRef]
- Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem. 2015, 97, 871–910. [Google Scholar] [CrossRef]
- Browning, D.J. Pharmacology of chloroquine and hydroxychloroquine. In Hydroxychloroquine and Chloroquine Retinopathy; Springer: Berlin/Heidelberg, Germany, 2014; pp. 35–63. [Google Scholar]
- Katariya, K.D.; Shah, S.R.; Reddy, D. Anticancer, antimicrobial activities of quinoline based hydrazone analogues: Synthesis, characterization and molecular docking. Bioorganic Chem. 2020, 94, 103406. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, A.; Shaikh, A.; Singh, R.; Misra, A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 241–246. [Google Scholar] [CrossRef]
- Shittu, M.O.; Afolami, O.I. Improving the efficacy of chloroquine and hydroxychloroquine against SARS-CoV-2 may require zinc additives-A better synergy for future COVID-19 clinical trials. Infez. Med. 2020, 28, 192–197. [Google Scholar] [PubMed]
- Adsule, S.; Barve, V.; Chen, D.; Ahmed, F.; Dou, Q.P.; Padhye, S.; Sarkar, F.H. Novel Schiff Base Copper Complexes of Quinoline-2 Carboxaldehyde as Proteasome Inhibitors in Human Prostate Cancer Cells. J. Med. Chem. 2006, 49, 7242–7246. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.K.; Vibhute, B.T. Synthesis, characterization, anticancer and DNA photocleavage study of novel quinoline Schiff base and its metal complexes. Arab. J. Chem. 2021, 14, 103285. [Google Scholar] [CrossRef]
- Sherif, O.E.; Abdel-Kader, N.S. DFT calculations, spectroscopic studies, thermal analysis and biological activity of supramolecular Schiff base complexes. Arab. J. Chem. 2018, 11, 700–713. [Google Scholar] [CrossRef]
- Althobiti, H.A.; Zabin, S.A. New Schiff bases of 2-(quinolin-8-yloxy) acetohydrazide and their Cu (ii), and Zn (ii) metal complexes: Their in vitro antimicrobial potentials and in silico physicochemical and pharmacokinetics properties. Open Chem. 2020, 18, 591–607. [Google Scholar] [CrossRef]
- Kołodziej, B.; Grech, E.; Schilf, W.; Kamieński, B.; Pazio, A.; Woźniak, K. The NMR and X-ray study of L-arginine derived Schiff bases and its cadmium complexes. J. Mol. Struct. 2014, 1063, 145–152. [Google Scholar] [CrossRef]
- Keypour, H.; Shayesteh, M.; Golbedaghi, R.; Chehregani, A.; Blackman, A.G. Synthesis, characterization, and X-ray crystal structures of metal complexes with new Schiff-base ligands and their antibacterial activities. J. Coord. Chem. 2012, 65, 1004–1016. [Google Scholar] [CrossRef]
- Ali, M.A.; Mirza, A.H.; Bujang, F.H.; Hamid, M.H.S.; Bernhardt, P.V. Synthesis, characterization and X-ray crystallographic structural study of copper (II) and nickel (II) complexes of the 2-quinoline carboxaldehyde Schiff base of S-methyldithiocarbazate (Hqaldsme). Polyhedron 2006, 25, 3245–3252. [Google Scholar]
- Mirza, A.H.; Hamid, M.H.S.; Aripin, S.; Karim, M.R.; Arifuzzaman, M.; Ali, M.A.; Bernhardt, P.V. Synthesis, spectroscopy and X-ray crystal structures of some zinc (II) and cadmium (II) complexes of the 2-pyridinecarboxaldehyde Schiff bases of S-methyl-and S-benzyldithiocarbazates. Polyhedron 2014, 74, 16–23. [Google Scholar] [CrossRef]
- Mahmoud, W.H.; Mohamed, G.G.; Elsawy, H.A.; Radwan, M.A. Metal complexes of novel Schiff base derived from the condensation of 2-quinoline carboxaldehyde and ambroxol drug with some transition metal ions. Appl. Organomet. Chem. 2018, 32, e4392. [Google Scholar] [CrossRef]
- Bennour, H.A.; Elmagbari, F.M.; Hammouda, A.N.; EL-Ferjani, R.M.; Amer, Y.O.B.; Soliman, S.M.; Jackson, G.E. Synthesis, characterisation and density functional theory (DFT) studies of a triazine ring with a mixed ligand Schiff base complexes. Results Chem. 2023, 5, 100775. [Google Scholar] [CrossRef]
- Gudasi, K.B.; Patil, M.S.; Vadavi, R.S.; Shenoy, R.V.; Patil, S.A.; Nethaji, M. X-ray Crystal Structure of the N-(2-hydroxy-1-naphthalidene)phenylglycine Schiff Base. Synthesis and Characterization of its Transition Metal Complexes. Transit. Met. Chem. 2006, 31, 580–585. [Google Scholar] [CrossRef]
- Shabeeb, I.; Al-Essa, L.; Shtaiwi, M.; Al-Shalabi, E.; Younes, E.; Okasha, R.; Abu Sini, M. New Hydrazide-hydrazone Derivatives of Quinoline 3-Carboxylic Acid Hydrazide: Synthesis, Theoretical Modeling and Antibacterial Evaluation. Lett. Org. Chem. 2019, 16, 430–436. [Google Scholar] [CrossRef]
- Singh, R.; Samanta, S.; Mullick, P.; Ramesh, A.; Das, G. Al3+ sensing through different turn-on emission signals vis-à-vis two different excitations: Applications in biological and environmental realms. Anal. Chim. Acta 2018, 1025, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef]
- Chohan, Z.H.; Supuran, C.T. Antibacterial Zn (II) compounds of. Schiff bases derived from some benzothiazoles. Main Group Met. Chem. 2002, 25, 291–296. [Google Scholar]
- Chohan, Z.H. Biologically Active Transition Metal Chelates of Ni(II), Cu(II) and Zn(II) With 2-Aminothiazole-Derived Schiff-bases: Their Synthesis, Characterization and the Role of Anions (NO3, SO42−, C2O42−, and CH3CO2−) on Their Antibacterial Properties. Met.-Based Drugs 1999, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Angelusiu, M.V.; Barbuceanu, S.-F.; Draghici, C.; Almajan, G.L. New Cu (II), Co (II), Ni (II) complexes with aroyl-hydrazone based ligand. Synthesis, spectroscopic characterization and in vitro antibacterial evaluation. Eur. J. Med. Chem. 2010, 45, 2055–2062. [Google Scholar] [CrossRef]
- Dalal, M. A Textbook of Inorganic Chemistry–Volume 1; Dalal Institute: Rohtak, India, 2017. [Google Scholar]
- Housecroft, C.E.; Sharpe, A.G. Inorganic Chemistry; Pearson Education: London, UK, 2008; Volume 1. [Google Scholar]
- Blanchard, S.; Neese, F.; Bothe, E.; Bill, E.; Weyhermüller, T.; Wieghardt, K. Square planar vs tetrahedral coordination in diamagnetic complexes of nickel (II) containing two bidentate π-radical monoanions. Inorg. Chem. 2005, 44, 3636–3656. [Google Scholar] [CrossRef]
- Willis, J.B.; Mellor, D.P. The magnetic susceptibility of some nickel complexes in solution. J. Am. Chem. Soc. 1947, 69, 1237–1240. [Google Scholar] [CrossRef]
- Emara, A.A.; El-Sayed, B.A.; Ahmed, E.-S.A. Syntheses, spectroscopic characterization and thermal behavior on novel binuclear transition metal complexes of hydrazones derived from 4, 6-diacetylresorcinol and oxalyldihydrazine. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2008, 69, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Kida, S. Magnetic and optical properties of low-spin cobalt (II) complexes. Inorg. Nucl. Chem. Lett. 1971, 7, 325–328. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A.; Ebenso, E.E. Quinoline and its derivatives as corrosion inhibitors: A review. Surf. Interfaces 2020, 21, 100634. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. Nat. Prod. Commun. 2022, 17, 1934578X211069721. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838. [Google Scholar] [CrossRef]
- Zalloum, H.; Zalloum, W.; Hameduh, T.; Salamat, H.A.; Zihlif, M. Anti-proliferative effect of potential LSD1/CoREST inhibitors based on molecular dynamics model for treatment of SH-SY5Y neuroblastoma cancer cell line. Asian Pac. J. Cancer Prev. APJCP 2022, 23, 3533. [Google Scholar] [CrossRef]
Code | ν NH2 | ν C=O | ν N=C (Quinoline) | ν -HC=N- (Azomethine) | ν C-NO2 | ν C-Cl | ν -C-OH |
---|---|---|---|---|---|---|---|
PQ | 3193 | 1656 | 1617 | ||||
NQ | 1645 | 1599 | 1619 | 1343 | |||
CQ | 1641 | 1595 | 1619 | 741 | |||
HQ | 1660 | 1608 | 1630 | 1493, 1455 |
Ligand | NQ | CQ | HQ |
---|---|---|---|
Cu | 2.06 | 2.17 | 1.96 |
Cd | Dia | −0.14 | −0.18 |
Cr | 3.93 | 3.77 | 3.75 |
Fe | 5.92 | 2.55 | 5.99 |
Co | 2.77 | 5.03 | 1.94 |
Ni | 3.51 | 2.96 | 2.95 |
Code | ν(C=O) | ν(-HC=N-) Azomethine | ν(-C=N-) Quinoline | M-O | M-N |
---|---|---|---|---|---|
NQ | 1645 | 1619 | 1599 | ||
Cu-NQ | 1693 | 1638 | 1620 | 564 | 475 |
Cd-NQ | 1668 | 1639 | 1621 | 565 | 477 |
Cr-NQ | 1686 | 1639 | 1601 | 500 | 474 |
Fe-NQ | 1705 | 1683 | 1669 | 518 | 471 |
Co-NQ | 1622 | 1603 | 1565 | 545 | 466 |
Ni-NQ | 1623 | 1594 | 1564 | 538 | 468 |
Code | ν(C=O) | ν(-HC=N-) Azomethine | ν(-C=N-) Quinoline | M-O | M-N |
---|---|---|---|---|---|
CQ | 1641 | 1619 | 1595 | ||
Cu-CQ | 1693 | 1643, 1618 | 1594 | 528 | 436 |
Cd-CQ | 1665 | 1639, 1622 | 1596 | 529 | 504 |
Cr-CQ | 1679 | 1640 | 1595 | 526 | 516 |
Fe-CQ | 1644 | 1620 | 1600 | 535 | 454 |
Co-CQ | 1651 | 1617 | 1596 | 529 | 432 |
Ni-CQ | 1682 | 1643, 1618 | 1597 | 503 | 441 |
Code | ν(C=O) | ν(-HC=N-) Azomethine | ν(-C=N-) Quinoline | ν(C-OH) Phenolic | M-O | M-N |
---|---|---|---|---|---|---|
HQ | 1660 | 1630 | 1608 | 1493, 1455 | ||
Cu-HQ | 1621 | 1592 | 1579 | 1497, 1443 | 600 | 505 |
Cd-HQ | 1646 | 1633 | 1612 | 1457, 1404 | 587 | 503 |
Cr-HQ | 1650 | 1624 | 1605 | 1456, 1438 | 593 | 533 |
Fe-HQ | 1620 | 1598 | 1551 | 1455, 1436 | 592 | 511 |
Co-HQ | 1606 | 1618 | 1528 | 1483, 1444 | 548 | 508 |
Ni-HQ | 1601 | 1565 | 1549 | 1440, 1401 | 594 | 507 |
-N-H | -HC=N- Azomethine | Quinoline (H1,3) | O-H | |
---|---|---|---|---|
NQ | 12.54 | 9.36 | 8.98, 8.93 | |
Cu-NQ | 12.56 | 9.84 (broad) | 9.02 (broad) | |
CQ | 12.43 | 9.36 | 8.98, 8.92 | |
Cd-CQ | 12.42 | 9.37 | 8.98, 8.92 | |
Ni-CQ | 12.47 | 9.43 (broad) | 8.98, 8.92 | |
HQ | 12.23 | 9.34 | 8.92, 8.57 | 11.36, 10.01 |
Co-HQ | 12.22 | 9.72 (broad), 9.36 | 8.91, 8.51 | 11.35, 10.00 |
Ni-CQ | 12.33 | 12.69 (broad) | 9.00, 8.59 | 11.36 |
Cell Line | MCF7 | K562 | Fibroblast |
---|---|---|---|
NQ | 37.8 ± 0.94 | 41.57 ± 1.04 | >50.00 |
Cu-NQ | 17.47 ± 0.44 | 17.13 ± 0.43 | 42.42 ± 1.06 |
Ni-NQ | 26.36 ± 0.66 | 57.42 ± 1.44 | >50.00 |
CQ | >50.00 | >50.00 | >50.00 |
Cu-CQ | >50.00 | >50.00 | >50.00 |
Fe-CQ | >50.00 | >50.00 | 28.5 ± 0.71 |
Co-CQ | >50.00 | 29.65 ± 0.74 | >50.00 |
HQ | 7.19 ± 0.18 | 2.03 ± 0.05 | >50.00 |
Cu-HQ | 1.19 ± 0.03 | 8.18 ± 0.2 | 77.6 ± 1.94 |
Fe-HQ | >50.00 | >50.00 | >50.00 |
Co-HQ | 27.65 ± 0.69 | 18.12 ± 0.45 | >50.00 |
Ni-HQ | 5.85 ± 0.15 | 2.32 ± 0.06 | >50.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sunjuk, M.; Al-Najjar, L.; Shtaiwi, M.; El-Eswed, B.I.; Sweidan, K.; Bernhardt, P.V.; Zalloum, H.; Al-Essa, L. Metal Complexes of Schiff Bases Prepared from Quinoline-3-Carbohydrazide with 2-Nitrobenzaldehyde, 2-Chlorobenzaldehyde and 2,4-Dihydroxybenzaldehyde: Structure and Biological Activity. Inorganics 2023, 11, 412. https://doi.org/10.3390/inorganics11100412
Sunjuk M, Al-Najjar L, Shtaiwi M, El-Eswed BI, Sweidan K, Bernhardt PV, Zalloum H, Al-Essa L. Metal Complexes of Schiff Bases Prepared from Quinoline-3-Carbohydrazide with 2-Nitrobenzaldehyde, 2-Chlorobenzaldehyde and 2,4-Dihydroxybenzaldehyde: Structure and Biological Activity. Inorganics. 2023; 11(10):412. https://doi.org/10.3390/inorganics11100412
Chicago/Turabian StyleSunjuk, Mahmoud, Lana Al-Najjar, Majed Shtaiwi, Bassam I. El-Eswed, Kamal Sweidan, Paul V Bernhardt, Hiba Zalloum, and Luay Al-Essa. 2023. "Metal Complexes of Schiff Bases Prepared from Quinoline-3-Carbohydrazide with 2-Nitrobenzaldehyde, 2-Chlorobenzaldehyde and 2,4-Dihydroxybenzaldehyde: Structure and Biological Activity" Inorganics 11, no. 10: 412. https://doi.org/10.3390/inorganics11100412
APA StyleSunjuk, M., Al-Najjar, L., Shtaiwi, M., El-Eswed, B. I., Sweidan, K., Bernhardt, P. V., Zalloum, H., & Al-Essa, L. (2023). Metal Complexes of Schiff Bases Prepared from Quinoline-3-Carbohydrazide with 2-Nitrobenzaldehyde, 2-Chlorobenzaldehyde and 2,4-Dihydroxybenzaldehyde: Structure and Biological Activity. Inorganics, 11(10), 412. https://doi.org/10.3390/inorganics11100412