Alternative Synthesis of MCM-41 Using Inexpensive Precursors for CO2 Capture
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Synthesis and Functionalization
2.3. Characterization
2.4. CO2 Adsorption Testing
3. Results and Discussion
3.1. CO2 Adsorption Performance
3.2. FTIR with In Situ CO2 Adsorption
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shu, D.Y.; Deutz, S.; Winter, B.A.; Baumgärtner, N.; Leenders, L.; Bardow, A. The Role of Carbon Capture and Storage to Achieve Net-Zero Energy Systems: Trade-Offs between Economics and the Environment. Renew. Sustain. Energy Rev. 2023, 178, 113246. [Google Scholar] [CrossRef]
- Tan, Y.; Nookuea, W.; Li, H.; Thorin, E.; Yan, J. Property Impacts on Carbon Capture and Storage (CCS) Processes: A Review. Energy Convers. Manag. 2016, 118, 204–222. [Google Scholar] [CrossRef]
- Vorokhta, M.; Nováková, J.; Dopita, M.; Khalakhan, I.; Kopecký, V.; Švábová, M. Activated Three-Dimensionally Ordered Micromesoporous Carbons for CO2 Capture. Mater. Today Sustain. 2023, 24, 100509. [Google Scholar] [CrossRef]
- Cavallo, M.; Dosa, M.; Porcaro, N.G.; Bonino, F.; Piumetti, M.; Crocella, V. Shaped Natural and Synthetic Zeolites for CO2 Capture in a Wide Temperature Range. J. CO2 Util. 2023, 67, 102335. [Google Scholar] [CrossRef]
- Medina-Juárez, O.; Rangel-Vázquez, I.; Ojeda-López, R.; García-Sánchez, M.Á.; Rojas-González, F. Importance of the Polarity on Nanostructured Silica Materials to Optimize the Hydrolytic Condensation with Molecules Related to CO2 Adsorption. Environ. Sci. Pollut. Res. 2022, 29, 58472–58483. [Google Scholar] [CrossRef]
- Rocha, C.; Soria, M.A.; Madeira, L.M. Doping of Hydrotalcite-Based Sorbents with Different Interlayer Anions for CO2 Capture. Sep. Purif. Technol. 2020, 235, 116140. [Google Scholar] [CrossRef]
- Elsabawy, K.M.; Fallatah, A.M. Synthesis of Newly Wings like Structure Non-Crystalline Ni++-1,3,5-Tribenzyl-1,3,5-Triazine-2,4,6-(1H,3H,5H)-Trione Coordinated MOFs for CO2-Capture. J. Mol. Struct. 2019, 1177, 255–259. [Google Scholar] [CrossRef]
- Shen, Z.; Song, Y.; Yin, C.; Luo, X.; Wang, Y.; Li, X. Construction of Hierarchically Porous 3D Graphene-like Carbon Material by B, N Co-Doping for Enhanced CO2 Capture. Microporous Mesoporous Mater. 2021, 322, 111158. [Google Scholar] [CrossRef]
- Alkadhem, A.M.; Elgzoly, M.A.A.; Onaizi, S.A. Novel Amine-Functionalized Magnesium Oxide Adsorbents for CO2 Capture at Ambient Conditions. J. Environ. Chem. Eng. 2020, 8, 103968. [Google Scholar] [CrossRef]
- Zhao, H.; Hu, J.; Wang, J.; Zhou, L.; Liu, H. CO2 Capture by the Amine-Modified Mesoporous Materials. Acta Phys.-Chim. Sin. 2007, 23, 801–806. [Google Scholar] [CrossRef]
- Rao, N.; Wang, M.; Shang, Z.; Hou, Y.; Fan, G.; Li, J. CO2 Adsorption by Amine-Functionalized MCM-41: A Comparison between Impregnation and Grafting Modification Methods. Energy Fuels 2018, 32, 670–677. [Google Scholar] [CrossRef]
- Mello, M.R.; Phanon, D.; Silveira, G.Q.; Llewellyn, P.L.; Ronconi, C.M. Amine-Modified MCM-41 Mesoporous Silica for Carbon Dioxide Capture. Microporous Mesoporous Mater. 2011, 143, 174–179. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.; Guo, Q. Development of Hybrid Amine-Functionalized MCM-41 Sorbents for CO2 Capture. Chem. Eng. J. 2015, 260, 573–581. [Google Scholar] [CrossRef]
- Sanz, R.; Calleja, G.; Arencibia, A.; Sanz-Pérez, E.S. CO2 Capture with Pore-Expanded MCM-41 Silica Modified with Amino Groups by Double Functionalization. Microporous Mesoporous Mater. 2015, 209, 165–171. [Google Scholar] [CrossRef]
- Loganathan, S.; Tikmani, M.; Ghoshal, A.K. Novel Pore-Expanded MCM-41 for CO2 Capture: Synthesis and Characterization. Langmuir 2013, 29, 3491–3499. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.Y.; Chao, K.J.; Cheng, H.H.; Tan, C.S. Adsorption of CO2 onto Amine-Grafted Mesoporous Silicas. Sep. Purif. Technol. 2009, 70, 87–95. [Google Scholar] [CrossRef]
- Anyanwu, J.T.; Wang, Y.; Yang, R.T. CO2 Capture (Including Direct Air Capture) and Natural Gas Desulfurization of Amine-Grafted Hierarchical Bimodal Silica. Chem. Eng. J. 2022, 427, 131561. [Google Scholar] [CrossRef]
- Jin, X.; Ge, J.; Zhang, L.; Wu, Z.; Zhu, L.; Xiong, M. Synthesis of Hierarchically Ordered Porous Silica Materials for CO2 Capture: The Role of Pore Structure and Functionalized Amine. Inorganics 2022, 10, 87. [Google Scholar] [CrossRef]
- Ghaedi, H.; Zhao, M. Review on Template Removal Techniques for Synthesis of Mesoporous Silica Materials. Energy Fuels 2022, 36, 2424–2446. [Google Scholar] [CrossRef]
- Bacsik, Z.; Atluri, R.; Garcia-Bennett, A.E.; Hedin, N. Temperature-Induced Uptake of CO2 and Formation of Carbamates in Mesocaged Silica Modified with n-Propylamines. Langmuir 2010, 26, 10013–10024. [Google Scholar] [CrossRef]
- Edler, K.J.; White, J.W. Further Improvements in the Long-Range Order of MCM-41 Materials. Chem. Mater. 1997, 9, 1226–1233. [Google Scholar] [CrossRef]
- Grün, M.; Unger, K.K.; Matsumoto, A.; Tsutsumi, K. Novel Pathways for the Preparation of Mesoporous MCM-41 Materials: Control of Porosity and Morphology. Microporous Mesoporous Mater. 1999, 27, 207–216. [Google Scholar] [CrossRef]
- Araujo, A.S.; Jaroniec, M. Thermogravimetric Monitoring of the MCM-41 Synthesis. Thermochim. Acta 2000, 363, 175–180. [Google Scholar] [CrossRef]
- Marcilla, A.; Beltran, M.; Gómez-Siurana, A.; Martinez, I.; Berenguer, D. Template Removal in MCM-41 Type Materials by Solvent Extraction: Influence of the Treatment on the Textural Properties of the Material and the Effect on Its Behaviour as Catalyst for Reducing Tobacco Smoking Toxicity. Chem. Eng. Res. Des. 2011, 89, 2330–2343. [Google Scholar] [CrossRef]
- Rouquerol, J.; Rouquerol, F.; Llewellyn, P.; Maurin, G.; Sing, K.S.W. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014; ISBN 9780080970356. [Google Scholar]
- Su, G.; Yang, C.; Zhu, J.J. Fabrication of Gold Nanorods with Tunable Longitudinal Surface Plasmon Resonance Peaks by Reductive Dopamine. Langmuir 2015, 31, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Banjare, R.K.; Banjare, M.K.; Panda, S. Effect of Acetonitrile on the Colloidal Behavior of Conventional Cationic Surfactants: A Combined Conductivity, Surface Tension, Fluorescence and FTIR Study. J. Solut. Chem. 2020, 49, 34–51. [Google Scholar] [CrossRef]
- Huo, C.; Ouyang, J.; Yang, H. CuO Nanoparticles Encapsulated inside Al-MCM-41 Mesoporous Materials via Direct Synthetic Route. Sci. Rep. 2014, 4, 3682. [Google Scholar] [CrossRef]
- La-Salvia, N.; Lovón-Quintana, J.J.; Lovón, A.S.P.; Valença, G.P. Influence of Aluminum Addition in the Framework of MCM-41 Mesoporous Molecular Sieve Synthesized by Non-Hydrothermal Method in an Alkali-Free System. Mater. Res. 2017, 20, 1461–1469. [Google Scholar] [CrossRef]
- Li, L.L.; Sun, H.; Fang, C.J.; Xu, J.; Jin, J.Y.; Yan, C.H. Optical Sensors Based on Functionalized Mesoporous Silica SBA-15 for the Detection of Multianalytes (H+ and Cu2+) in Water. J. Mater. Chem. 2007, 17, 4492–4498. [Google Scholar] [CrossRef]
- Ganji, S.; Mutyala, S.; Neeli, C.K.P.; Rao, K.S.R.; Burri, D.R. Selective Hydrogenation of the CC Bond of α,β-Unsaturated Carbonyl Compounds over PdNPs–SBA-15 in a Water Medium. RSC Adv. 2013, 3, 11533–11538. [Google Scholar] [CrossRef]
- Medeiros de Paula, G.; do Nascimento Rocha de Paula, L.; Freire Rodrigues, M.G. Production of MCM-41 and SBA-15 Hybrid Silicas from Industrial Waste. Silicon 2022, 14, 439–447. [Google Scholar] [CrossRef]
- Qi, G.; Wang, Y.; Estevez, L.; Duan, X.; Anako, N.; Park, A.H.A.; Li, W.; Jones, C.W.; Giannelis, E.P. High Efficiency Nanocomposite Sorbents for CO2 Capture Based on Amine-Functionalized Mesoporous Capsules. Energy Environ. Sci. 2011, 4, 444–452. [Google Scholar] [CrossRef]
- Knöfel, C.; Martin, C.; Hornebecq, V.; Llewellyn, P.L. Study of Carbon Dioxide Adsorption on Mesoporous Aminopropylsilane-Functionalized Silica and Titania Combining Microcalorimetry and in Situ Infrared Spectroscopy. J. Phys. Chem. C 2009, 113, 21726–21734. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley & Sons, Ltd: Chichester, UK, 2004; ISBN 978-0-470-09307-8. [Google Scholar]
- Danon, A.; Stair, P.C.; Weitz, E. FTIR Study of CO2 Adsorption on Amine-Grafted SBA-15: Elucidation of Adsorbed Species. J. Phys. Chem. C 2011, 115, 11540–11549. [Google Scholar] [CrossRef]
- Schmidt, R.; Stöcker, M.; Hansen, E.; Akporiaye, D.; Ellestad, O.H. MCM-41: A Model System for Adsorption Studies on Mesoporous Materials. Microporous Mater. 1995, 3, 443–448. [Google Scholar] [CrossRef]
- Wloch, J.; Rozwadowski, M.; Lezanska, M.; Erdmann, K. Analysis of the Pore Structure of the MCM-41 Materials. Appl. Surf. Sci. 2002, 191, 368–374. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Particle Technology Series; Springer: Dordrecht, The Netherlands, 2004; Volume 16, ISBN 978-90-481-6633-6. [Google Scholar]
- Kruk, M.; Jaroniec, M.; Sayari, A. Adsorption Study of Surface and Structural Properties of MCM-41 Materials of Different Pore Sizes. J. Phys. Chem. B 1997, 101, 583–589. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Builes, S.; Vega, L.F. Understanding CO2 Capture in Amine-Functionalized MCM-41 by Molecular Simulation. J. Phys. Chem. C 2012, 116, 3017–3024. [Google Scholar] [CrossRef]
- Chanapattharapol, K.C.; Krachuamram, S.; Youngme, S. Study of CO2 Adsorption on Iron Oxide Doped MCM-41. Microporous Mesoporous Mater. 2017, 245, 8–15. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.L. Spectrometric Identification of Organic Compounds, 7th ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; ISBN 0-471-39362-2. [Google Scholar]
Sample | SBET (m2/g) | SDFT (m2/g) | VP (cm3/g) | DP NLDFT (nm) |
---|---|---|---|---|
S-C-W | 760 | 608 | 0.68 | 3.95 |
S-C-LT | 992 | 818 | 0.86 | 3.95 |
S-C-ST | 1602 | 1356 | 1.45 | 4.10 |
S-C-ST-g | 398 | 295 | 0.26 | 2.24–3.45 |
S-B-ST | 812 | 673 | 0.73 | 3.95 |
S-B-ST-g | 196 | 152 | 0.18 | 2.50–3.60 |
T-B-ST | 1200 | 886 | 0.66 | 2.24–3.10 |
T-B-ST-g | 138 | 121 | 0.083 | 1.77–2.67 |
Material | Amine-Modified Material | CO2 Adsorption | Reference | |||||
---|---|---|---|---|---|---|---|---|
Si Source | SBET (m2/g)/VP (cm3/g) | Modification | SBET (m2/g)/VP (cm3/g) | Temp. (°C) | CO2 Pressure (mmHg) | CO2 Adsorbed (mmol/g) | ||
MCM-41 | ISS | 760/0.68 | APTS, WG | --/-- | 25 | 760 | 1.29 | S-C-W-g |
MCM-41 | ISS | 992/0.86 | APTS, WG | --/-- | 25 | 760 | 1.09 | S-C-LT-g |
MCM-41 | ISS | 1602/1.45 | APTS, WG | 398/0.26 | 25 | 760 | 1.28 | S-C-ST-g |
MCM-41 | ISS | 812/0.73 | APTS, WG | 196/0.18 | 25 | 760 | 1.22 | S-B-ST-g |
MCM-41 | TEOS | 1200/0.66 | APTS, WG | 138/0.08 | 25 | 760 | 1.24 | T-B-ST-g |
MCM-41 | -- | 997/0.90 | APTS, WG | 958/0.51 | 70 | 114 | 1.88 | [13] |
MCM-41 | TEOS | 1059/0.68 | APTS, DG | 198/0.13 | Room temp. | 750 | 1.15 | [10] |
SBA-15 | TEOS | 548/0.95 | APTS, DG | 304/0.55 | 750 | 0.93 | ||
MCM-41 | TEOS | 894/1.28 | APTS, DG | 544/0.74 | 45 | 750 | 0.87 | [14] |
MCM-41 | TEOS | 992/0.69 | APTS, WG | 736/0.37 | 25 | 750 | 2.41 | [11] |
MCM-41 | -- | 1031/0.90 | APTS, DG | 17/0.04 | 20 | 750 | 1.07 | [12] |
30 | 750 | 0.96 | ||||||
MCM-41 | TEOS | 1045/2.59 | APTS, DG | --/-- | 30 | 750 | 1.20 | [15] |
MCM-41 | Sodium silicate Merck | 864/0.62 | APTS, DG | 207/0.13 | 30 | 3.8 | 0.39 | [16] |
SBA-15 | TEOS | 782/0.73 | APTS, DG | 280/0.29 | 60 | 114 | 1.06 | |
SBA-15 | TEOS | 766/1.32 | TRI-s, DG | 177/0.49 | 25 | 760 | 1.30 | [17] |
TRI-s, WG | 112/0.31 | 1.66 | ||||||
Bimodal silica | TEOS | 612/1.59 | TRI-s, DG | 203/0.96 | 1.73 | |||
TRI-s, WG | 71/0.56 | 1.96 | ||||||
Hierarchically Ordered Porous Silica | TEOS | 1045/0.58 | APTS, DG | 781/0.45 | 0 | 750 | 1.98 | [18] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aquino, G.D.; Moreno, M.S.; Piqueras, C.M.; Benedictto, G.P.; Pereyra, A.M. Alternative Synthesis of MCM-41 Using Inexpensive Precursors for CO2 Capture. Inorganics 2023, 11, 480. https://doi.org/10.3390/inorganics11120480
Aquino GD, Moreno MS, Piqueras CM, Benedictto GP, Pereyra AM. Alternative Synthesis of MCM-41 Using Inexpensive Precursors for CO2 Capture. Inorganics. 2023; 11(12):480. https://doi.org/10.3390/inorganics11120480
Chicago/Turabian StyleAquino, Guillermo D., M. Sergio Moreno, Cristian M. Piqueras, Germán P. Benedictto, and Andrea M. Pereyra. 2023. "Alternative Synthesis of MCM-41 Using Inexpensive Precursors for CO2 Capture" Inorganics 11, no. 12: 480. https://doi.org/10.3390/inorganics11120480
APA StyleAquino, G. D., Moreno, M. S., Piqueras, C. M., Benedictto, G. P., & Pereyra, A. M. (2023). Alternative Synthesis of MCM-41 Using Inexpensive Precursors for CO2 Capture. Inorganics, 11(12), 480. https://doi.org/10.3390/inorganics11120480