Deep Eutectic Solvent-Mediated Synthesis of Ni3V2O8/N-Doped RGO for Visible-Light-Driven H2 Evolution and Simultaneous Degradation of Dyes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural and Morphological Characterization
2.2. Optical and Photo/Electrochemical Properties
2.3. Photochemical H2 Evolution
2.4. Photocatalytic Degradation of Dyes
2.5. Mechanism of Photocatalysis
3. Experimental
3.1. Materials
3.2. Synthesis of Ni3V2O8 (NiV)
3.3. Synthesis of NRGO
3.4. Synthesis of Ni3V2O8/NRGO (NiV/NR)
3.5. Photocatalytic Hydrogen Evolution
3.6. Dye Degradation Studies
3.7. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, C.; Xie, L.; Wang, S.; Dai, Y.; Yin, L. Photocatalytic hydrogen evolution by degradation of organic pollutants over quantum dots doped nitrogen carbide. Chemosphere 2021, 291, 132873. [Google Scholar] [CrossRef] [PubMed]
- Faber, M.S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542. [Google Scholar] [CrossRef]
- Parashuram, L.; Prashanth, M.; Krishnaiah, P.; Kumar, C.P.; Alharti, F.A.; Kumar, K.Y.; Jeon, B.-H.; Raghu, M. Nitrogen doped carbon spheres from Tamarindus indica shell decorated with vanadium pentoxide; photoelectrochemical water splitting, photochemical hydrogen evolution & degradation of Bisphenol, A. Chemosphere 2021, 287, 132348. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, R.; Zhu, R.; Zhao, H.; Lu, Q.; Chen, Z.; Hu, J. CdS-based artificial leaf for photocatalytic hydrogen evolution and simulta-neous degradation of biological wastewater. Chemosphere 2022, 301, 134713. [Google Scholar] [CrossRef] [PubMed]
- Mahala, C.; Sharma, M.D.; Basu, M. Type-II Heterostructure of ZnO and Carbon Dots Demonstrates Enhanced Photoanodic Performance in Photoelectrochemical Water Splitting. Inorg. Chem. 2020, 59, 6988–6999. [Google Scholar] [CrossRef]
- Ren, D.; Liang, Z.; Ng, Y.H.; Zhang, P.; Xiang, Q.; Li, X. Strongly coupled 2D-2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution. Chem. Eng. J. 2020, 390, 124496. [Google Scholar] [CrossRef]
- Furukawa, H.; Yaghi, O.M. Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. J. Am. Chem. Soc. 2009, 131, 8875–8883. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, X.; Waterhouse, G.I.N.; Zhang, Z.M.; Yu, L.M. Efficient photoelectrocatalytic degradation of azo-dyes over polypyr-role/titanium oxide/reduced graphene oxide electrodes under visible light: Performance evaluation and mechanism insights. Chemosphere 2021, 288, 132509. [Google Scholar]
- Karaman, C.; Karaman, O.; Show, P.-L.; Karimi-Maleh, H.; Zare, N. Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: Equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach. Chemosphere 2021, 290, 133346. [Google Scholar] [CrossRef] [PubMed]
- Alkorbi, A.S.; Kumar, K.Y.; Prashanth, M.; Parashuram, L.; Abate, A.; Alharti, F.A.; Jeon, B.-H.; Raghu, M. Samarium vanadate affixed sulfur self doped g-C3N4 heterojunction; photocatalytic, photoelectrocatalytic hydrogen evolution and dye degradation. Int. J. Hydrogen Energy 2022, 47, 12988–13003. [Google Scholar] [CrossRef]
- Eysseric, E.; Gagnon, C.; Segura, P.A. Uncovering transformation products of four organic contaminants of concern by photodegradation experiments and analysis of real samples from a local river. Chemosphere 2022, 293, 133408. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Unnarkat, A.; Patel, F.; Shah, M.; Shah, P. A comprehensive review on spinel based novel catalysts for visible light assisted dye degradation. Process. Saf. Environ. Prot. 2022, 161, 703–722. [Google Scholar] [CrossRef]
- Prashanth, K.S.; Raghu, M.S.; Alharthi, F.A.; Sreenivasa, S.; Devi, V.S.A.; Krishnaiah, P.; Rajamma, D.B.; Akshatha, S.; Hun, J.B.; Parashuram, L. Solar light sensitive hybrid Ce4+/3+ doped perovskite magnesium zirconate nano cubes for photo-catalytic hydrogen evolution and organic pollutant degradation in water. J. Environ. Chem. Eng. 2021, 9, 105364. [Google Scholar] [CrossRef]
- Naidu, R.; Espana, V.A.A.; Liu, Y.; Jit, J. Emerging contaminants in the environment: Risk-based analysis for better management. Chemosphere 2016, 154, 350–357. [Google Scholar] [CrossRef]
- Rizzo, L.; Malato, S.; Antakyali, D.; Beretsou, V.G.; Đolić, M.B.; Gernjak, W.; Heath, E.; Ivancev-Tumbas, I.; Karaolia, P.; Ribeiro, A.R.L.; et al. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci. Total Environ. 2019, 655, 986–1008. [Google Scholar] [CrossRef]
- Kulkarni, A.K.; Praveen, C.S.; Sethi, Y.A.; Panmand, R.P.; Arbuj, S.S.; Naik, S.D.; Ghule, A.V.; Kale, B.B. Nanostructured N-doped orthorhombic Nb2O5 as an efficient stable photocatalyst for hydrogen generation under visible light. Dalton T. 2017, 46, 14859–14868. [Google Scholar] [CrossRef]
- Li, M.; Han, N.; Zhang, X.; Wang, S.; Jiang, M.; Bokhari, A.; Zhang, W.; Race, M.; Shen, Z.; Chen, R.; et al. Perovskite oxide for emerging photo(electro)catalysis in energy and environment. Environ. Res. 2022, 205, 112544. [Google Scholar] [CrossRef]
- Dutta, T.; Kim, K.-H.; Uchimiya, M.; Kwon, E.E.; Jeon, B.-H.; Deep, A.; Yun, S.-T. Global demand for rare earth resources and strategies for green mining. Environ. Res. 2016, 150, 182–190. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Huang, X.; Bi, Y. Engineering the surface atomic structure of FeVO4 nanocrystals for use as highly active and stable electrocatalysts for oxygen evolution. J. Mater. Chem. A 2019, 7, 10949–10953. [Google Scholar] [CrossRef]
- Du, X.; Zhang, X.; Li, Y.; Zhao, M. Construction of unique NiCo2S4@Ni3V2O8 hierarchical heterostructures arrays on Ni foam as an efficient electrocatalyst with high stability for water oxidation. Int. J. Hydrogen Energy 2018, 43, 19955–19964. [Google Scholar] [CrossRef]
- Liu, M.-C.; Kong, L.-B.; Kang, L.; Li, X.; Walsh, F.C.; Xing, M.; Lu, C.; Ma, X.-J.; Luo, Y.-C. Synthesis and characterization of M3V2O8 (M = Ni or Co) based nanostructures: A new family of high performance pseudocapacitive materials. J. Mater. Chem. A 2014, 2, 4919–4926. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Fan, S.; Hu, M.; Lu, J.; Li, J.; Huang, Z.; Kang, F.; Lv, R. High areal specific capacity of Ni3V2O8/carbon cloth hierarchical structures as flexible anodes for sodium—Ion batteries. J. Mater. Chem. 2017, 5, 15517–15524. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, X.; Li, C.; Li, Y.; Chen, X.; Gao, X.; Chen, C.; Guang, Z.; Liu, P. Construction of hydrangea-like ZnCo2O4/Ni3V2O8 hierarchical nanostructures for asymmetric all-solid-state supercapacitors. Ceram. Int. 2019, 45, 15451–15457. [Google Scholar] [CrossRef]
- Eshaq, G.; Wang, S.; Sun, H.; Sillanpaa, M. Superior performance of FeVO4@CeO2 uniform core-shell nanostructures in heter-ogeneous Fenton-sonophotocatalytic degradation of 4-nitrophenol. J Hazard. Mater. 2020, 382, 121059. [Google Scholar] [CrossRef]
- Ramavathu, L.N.; Harapanahalli, S.R.; Pernapati, N.; Tumma, B.N. Synthesis and characterization of Nickel Metavanadate (Ni3V2O8)-application as photocatalyst and supercapacitor. Int. J. Nano Dimens. 2021, 12, 411–421. [Google Scholar]
- Suganya, B.; Chandrasekaran, J.; Maruthamuthu, S.; Saravanakumar, B.; Vijayakumar, E. Hydrothermally Synthesized Zinc Vanadate Rods for Electrochemical Supercapacitance Analysis in Various Aqueous Electrolytes. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4510–4519. [Google Scholar] [CrossRef]
- Vesali-Kermani, E.; Habibi-Yangjeh, A.; Ghosh, S. Efficiently enhanced nitrogen fixation performance of g-C3N4 nanosheets by decorating Ni3V2O8 nanoparticles under visible-light irradiation. Ceram. Int. 2020, 46, 24472–24482. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, L. One-step in situ formation of 3D hollow sphere-like V2O5 incorporated Ni3V2O8 hybrids with enhanced photocatalytic performance. J. Hazard. Mater. 2021, 416, 125934. [Google Scholar] [CrossRef]
- Kumar, K.Y.; Saini, H.; Pandiarajan, D.; Prashanth, M.; Parashuram, L.; Raghu, M. Controllable synthesis of TiO2 chemically bonded graphene for photocatalytic hydrogen evolution and dye degradation. Catal. Today 2018, 340, 170–177. [Google Scholar] [CrossRef]
- Asgari, S.; Ziarani, G.M.; Badiei, A.; Setayeshmehr, M.; Kiani, M.; Pourjavadi, A. Electrospun Ag-decorated reduced GO-graft-chitosan composite nanofibers with visible light photocatalytic activity for antibacterial performance. Chemosphere 2022, 299, 134436. [Google Scholar] [CrossRef]
- Arumugam, M.; Lee, S.J.; Begildayeva, T.; Naik, S.S.; Yu, Y.; Lee, H.; Theerthagiri, J.; Choi, M.Y. Enhanced photocatalytic activity at multidimensional interface of 1D-Bi2S3@2D-GO/3D-BiOI ternary nanocomposites for tetracycline degradation under visible-light. J. Hazard. Mater. 2021, 404, 123868. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.Y.; Prashanth, M.; Parashuram, L.; Palanivel, B.; Alharti, F.A.; Jeon, B.-H.; Raghu, M. Gadolinium sesquisulfide anchored N-doped reduced graphene oxide for sensitive detection and degradation of carbendazim. Chemosphere 2022, 296, 134030. [Google Scholar] [CrossRef]
- Karmakar, A.; Srivastava, S.K. In situ fabricated nickel vanadate/N-doped reduced graphene oxide hybrid as an advanced electrocatalyst in alkaline hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 15054. [Google Scholar] [CrossRef] [Green Version]
- Arumugam, S.; Bavani, T.; Preeyanghaa, M.; Alaswad, S.O.; Neppolian, B.; Madhavan, J.; Murugesan, S. A facile synthesis of visible light driven Ni3V2O8 nano-cube/BiVO4 nanorod composite photocatalyst with enhanced photocatalytic activity towards degradation of acid orange 7, Chemosphere. Chemosphere 2022, 308, 136100. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Duan, F.; Liu, S.; Peng, C. Hierarchical flower-like Ni3V2O8/Co3V2O8 composites as advanced anode materials for lithium-ion batteries. Funct. Mater. Lett. 2020, 13, 2050014. [Google Scholar] [CrossRef]
- Yang, M.; Fu, X.; Zhang, J.; Wang, Z.; Wang, B.; He, L.; Wu, Z.; Cheng, H.; Pan, H.; Lu, Z. Hierarchical ultrafine Ni3V2O8 nano-particles anchored on rGO as high-performance anode materials for lithium-ion batteries. Energy Technol. 2019, 7, 1800784. [Google Scholar]
- Yu, X.; Zhang, J.; Zhang, J.; Niu, J.; Zhao, J.; Wei, Y.; Yao, B. Photocatalytic degradation of ciprofloxacin using Zn-doped Cu2O particles: Analysis of degradation pathways and intermediates. Chem. Eng. J. 2019, 374, 316–327. [Google Scholar] [CrossRef]
- Chen, F.; Yang, Q.; Li, X.; Zeng, G.; Wang, D.; Niu, C.; Zhao, J.; An, H.; Xie, T.; Deng, Y. Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: An efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation. Appl. Catal. B Environ. 2017, 200, 330–342. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, Z.; Ma, W.; Zhang, M.; Ji, R.; Yi, C.; Yan, Y. One-step fabrication of carbon decorated Co3O4/BiVO4 p-n heter-ostructure for enhanced visible-light photocatalytic properties. Chem. Phys. Lett. 2018, 706, 440–447. [Google Scholar] [CrossRef]
- Chen, F.; Yang, Q.; Sun, J.; Yao, F.; Wang, S.; Wang, Y.; Wang, X.; Li, X.; Niu, C.; Wang, D.; et al. Enhanced Photocatalytic Degradation of Tetracycline by AgI/BiVO4 Heterojunction under Visible-Light Irradiation: Mineralization Efficiency and Mechanism. ACS Appl. Mater. Interfaces 2016, 8, 32887–32900. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, J.; Huang, F. Enhanced visible light photocatalytic H2 evolution of metal-free g-C3N4/SiC heterostructured photocatalysts. Appl. Surf. Sci. 2017, 391, 449–456. [Google Scholar] [CrossRef]
- Jing, L.; Xu, Y.; Huang, S.; Xie, M.; He, M.; Xu, H.; Li, H.; Zhang, Q. Novel magnetic CoFe2O4/Ag/Ag3VO4 composites: Highly efficient visible light photocatalytic and antibacterial activity. Appl. Catal. B Environ. 2016, 199, 11–22. [Google Scholar] [CrossRef]
- Rafique, M.; Hamza, M.; Shakil, M.; Irshad, M.; Tahir, M.B.; Kabli, M.R. Highly efficient and visible light–driven nickel–doped vanadium oxide photocatalyst for degradation of Rhodamine B Dye. Appl. Nanosci. 2020, 10, 2365–2374. [Google Scholar] [CrossRef]
- Ranjana, R.; Rakshit, A.; Suresh, C.A. Role of nickel vanadate in photocatalytic degradation of azure a. J. Curr. Chem. Pharm. Sc. 2014, 4, 157–163. [Google Scholar]
Sl No. | Material | Pollutant | Time, min | Efficiency, % | H2 Evolution | Reference |
---|---|---|---|---|---|---|
1 | g-C3N4/Ni3V2O8 | Tetracycline HCl | 40 | 97.5 | -- | [27] |
2 | V2O5@Ni3V2O8 | Tetracycline HCl | 150 | 90 | -- | [28] |
3 | NiVO4/BiVO4 | Acid Orange 7 | 60 | 87 | -- | [34] |
4 | Ni doped V2O5 | Rhodamine B | 100 | 100 | -- | [43] |
5 | Nickel vanadate | Azure B | 180 | NA | -- | [44] |
6 | NiV/NR | Methyl orange Crystal violet | 100 80 | 94.6 96.7 | 12,546 µmol | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharthi, F.A.; Ababtain, A.S.; Aldubeikl, H.K.; Alanazi, H.S.; Hasan, I. Deep Eutectic Solvent-Mediated Synthesis of Ni3V2O8/N-Doped RGO for Visible-Light-Driven H2 Evolution and Simultaneous Degradation of Dyes. Inorganics 2023, 11, 67. https://doi.org/10.3390/inorganics11020067
Alharthi FA, Ababtain AS, Aldubeikl HK, Alanazi HS, Hasan I. Deep Eutectic Solvent-Mediated Synthesis of Ni3V2O8/N-Doped RGO for Visible-Light-Driven H2 Evolution and Simultaneous Degradation of Dyes. Inorganics. 2023; 11(2):67. https://doi.org/10.3390/inorganics11020067
Chicago/Turabian StyleAlharthi, Fahad A., Alanood Sulaiman Ababtain, Hend Khalid Aldubeikl, Hamdah S. Alanazi, and Imran Hasan. 2023. "Deep Eutectic Solvent-Mediated Synthesis of Ni3V2O8/N-Doped RGO for Visible-Light-Driven H2 Evolution and Simultaneous Degradation of Dyes" Inorganics 11, no. 2: 67. https://doi.org/10.3390/inorganics11020067
APA StyleAlharthi, F. A., Ababtain, A. S., Aldubeikl, H. K., Alanazi, H. S., & Hasan, I. (2023). Deep Eutectic Solvent-Mediated Synthesis of Ni3V2O8/N-Doped RGO for Visible-Light-Driven H2 Evolution and Simultaneous Degradation of Dyes. Inorganics, 11(2), 67. https://doi.org/10.3390/inorganics11020067