Organic–Inorganic Manganese (II) Halide Hybrid Combining the Two Isomers Cis/Trans of [MnCl4(H2O)2]: Crystal Structure, Physical Properties, Pharmacokinetics and Biological Evaluation
Abstract
:1. Introduction
2. Experimental Design
2.1. Materials and Synthesis
2.2. X-ray Data Collection
2.3. Thermal Analysis
2.4. Spectroscopic Measurements
2.5. Magnetic Measurements
2.6. Pharmacokinetics
2.7. Antimicrobial Activity
2.7.1. Microbial Strains
2.7.2. Agar Diffusion Assay
2.7.3. Determination of the Minimum Inhibitory Concentration (MIC)
2.8. Anti-Lipase Activity Assay
3. Results and Discussion
3.1. Crystal Structure of (C5H14N2)[MnCl4(H2O)2]
3.2. Thermal Decomposition of (C5H14N2)[MnCl4(H2O)2]
3.3. Infrared Spectroscopy
3.4. Optical Study
3.5. Magnetic Properties
3.6. Biological Activities
3.6.1. Bioavailability and Pharmacokinetic Findings
3.6.2. Antimicrobial Activity
3.6.3. Anti-Lipase Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dolbecq, A.; Dumas, E.; Mayer, C.R.; Mialane, P. Hybrid organic− inorganic polyoxometalate compounds: From structural diversity to applications. Chem. Rev. 2010, 110, 6009–6048. [Google Scholar] [CrossRef]
- Allen, F.H.; Hoy, V.J.; Howard, J.A.; Thalladi, V.R.; Desiraju, G.R.; Wilson, C.C.; McIntyre, G.J. Crystal engineering and correspondence between molecular and crystal structures. Are 2-and 3-aminophenols anomalous. J. Am. Chem. Soc. 1997, 119, 477–3480. [Google Scholar] [CrossRef]
- Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic–inorganic nanocomposites. J. Mat. Chem. 2005, 15, 3559–3592. [Google Scholar] [CrossRef]
- Sayer, I.; Dege, N.; Ghalla, H.; Moliterni, A.; Naïli, H. Crystal structure, DFT studies and thermal characterization of new luminescent stannate (IV) based inorganic-organic hybrid compound. J. Mol Struct. 2021, 1224, 129–266. [Google Scholar] [CrossRef]
- Hfidhi, N.; Bkhairia, I.; Atoui, D.; Boonmak, J.; Nasri, M.; Salem, R.B.; Youngme, S.; Naïli, H. Catalytic and biological valorization of a supramolecular mononuclear copper complex based 4-aminopyridine. Appl. Organomet. Chem. 2019, 33, 4793. [Google Scholar] [CrossRef]
- Nicole, L.; Laberty-Robert, C.; Rozes, L.; Sanchez, C. Hybrid materials science: A promised land for the integrative design of multifunctional materials. Nanoscale 2014, 6, 6267–6292. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.H.; Tong, M.; Chen, X. Metal-organic molecular architectures with 2, 2′-bipyridyl-like and carboxylate ligands. Coord. Chem. Rev. 2005, 249, 545–565. [Google Scholar] [CrossRef]
- Bu, X.H.; Tong, M.; Chang, H.; Kitagawa, S.; Batten, S. A Neutral 3D Copper Coordination Polymer Showing 1D Open Channels and the First Interpenetrating NbO-Type Network. Angew. Chem. Int. Ed. 2004, 43, 192–195. [Google Scholar] [CrossRef]
- Gómez, V.; Corbella, M. Crystal Structure and Magnetic Properties of the Dinuclear MnII Compound [Mn2(bpy)4(2-ClC6H4COO)2](ClO4)22EtOH. J. Chem. Crystallogr. 2011, 41, 843–846. [Google Scholar] [CrossRef]
- Pardasani, R.T.; Pardasani, P. Molar magnetic moment of manganese (II) complex with phosphate Schiff-base, In Magnetic Properties of Paramagnetic Compounds. Magn. Susceptibility Data 2021, 1, 702–703. [Google Scholar]
- Zhang, S.; Zhao, Y.; Zhou, J.; Ming, H.; Wang, C.H.; Jing, X.; Zhang, Q. Structural design enables highly-efficient green emission with preferable blue light excitation from zero-dimensional manganese (II) hybrids. J. Chem. Eng. 2021, 421, 129886. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Han, B.; Wang, X.; Wang, Z.; Xue, C.; Wu, T. New insights into Mn–Mn coupling interaction-directed photoluminescence quenching mechanism in Mn2+-doped semiconductors. J. Am. Chem. Soc. 2020, 142, 6649–6660. [Google Scholar] [CrossRef] [PubMed]
- Morad, V.; Cherniukh, I.; Pöttschacher, L.; Shynkarenko, Y.; Yakunin, S.; Kovalenko, M.V. Manganese (II) in tetrahedral halide environment: Factors governing bright green luminescence. Chem. Mater. 2019, 31, 10161–10169. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Chi, F.; Zhao, L.; Wei, X.; Chen, Y.; Yin, M. Luminescence properties of a new green emitting long afterglow phosphor Ca14Zn6Ga10O35: Mn2+, Ge4+. J. Lumin. 2019, 206, 234–239. [Google Scholar] [CrossRef]
- Mhadhbi, N.; Dgachi, S.; Belgacem, S.; Ben Ahmed, A.; Henry, N.; Loiseau, T.; Nasr, S.; Badraoui, R.; Naïli, H. Design, theoretical study, druggability, pharmacokinetics and properties evolution of a new organo-bromocadmate compound as prospective anticancer agent. J. Mol. Struct. 2023, 1274, 134439. [Google Scholar] [CrossRef]
- Drzewiecki, A.; Padlyak, B.; Adamiv, V.; Burak, Y.; Teslyuk, I. EPR spectroscopy of Cu2+ and Mn2+ in borate glasses. Nukleonika 2013, 58, 379–385. [Google Scholar]
- Chen, J.; Zhang, Q.; Zheng, F.K.; Liu, Z.F.; Wang, S.H.; Wu, A.Q.; Guo, G.C. Intense photo-and tribo-luminescence of three tetrahedral manganese (II) dihalides with chelating bidentate phosphine oxide ligand. Dalton Trans. 2015, 44, 3289–3294. [Google Scholar] [CrossRef]
- Zhai, B.; Song, L.L.; Wang, W.J.; Li, Z.Y.; Li, S.Z.; Zhang, F.L.; Zang, Y.B. Structures and magnetic properties of 3D manganese (II)-and 2D pillar-layered copper (II)-organic framework derived from mixed carboxylate ligands. J. Solid State Chem. 2018, 264, 29–34. [Google Scholar] [CrossRef]
- Li, C.; Bai, X.; Guo, Y.; Zou, B. Tunable emission properties of manganese chloride small single crystals by pyridine incorporation. ACS Omeg. 2019, 4, 8039–8045. [Google Scholar] [CrossRef] [PubMed]
- Derbel, M.A.; Jlassi, R.; Roisnel, T.; Badraoui, R.; Krayem, N.; Al-Ghulikah, H.; Rekik, W.; Naïli, H. The effect of partial substitution of chloride by bromide in the 0-D hybrid material (C4H12N2)[CuCl4]·2H2O: Structural, vibrational, thermal, in silico and biological characterizations. J. Coordination Chem. 2022, 75, 2628–2645. [Google Scholar] [CrossRef]
- Jabeur, W.; Korb, M.; Al-Otaibi, J.; Čižmár, E.; Badraoui, R.; Zeleňákg, V.; Naïli, H. Physico-chemical characterizations and Biological evaluation of a new semiconducting metal˗organic compound based on pyrimidine frameworks. Inorg. Chem. Commun. 2022, 139, 109279. [Google Scholar] [CrossRef]
- Hchicha, K.; Korb, M.; Badraoui, R.; Naïli, H. A novel sulfate-bridged binuclear copper (II) complex: Structure, optical, ADMET and in vivo approach in a murine model of bone metastasis. New J. Chem. 2021, 45, 13775–13784. [Google Scholar] [CrossRef]
- Singh, K.; Kumar, Y.; Puri, P.; Sharma, C.; Aneja, K.R. Antimicrobial, spectral and thermal studies of divalent cobalt, nickel, copper and zinc complexes with triazole Schiff bases. Arab. J. Chem. 2017, 10, S978–S987. [Google Scholar] [CrossRef]
- Mhadhbi, N.; Issaoui, N.; Hamadou, W.S.; Jahoor, M.A.; Elhadi, A.S.; Adnan, M.; Naϊli, H.; Badraoui, R. Physico-Chemical Properties, Pharmacokinetics, Molecular Dcking and In-Vitro Pharmacological Study of a Cobalt(II) Complex Based on 2-Aminopyridine. ChemitrySelect 2022, 7, 103592. [Google Scholar]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Sheldrick, G. ShelXT-Integrated space-group and crystal-structure determination. Acta Cryst. 2015, 71, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Macek, L.; Bellmay, J.C.; Faber, K.; Milson, C.R.; Landee, C.P.; Dickie, D.A.; Turnbull, M.M. Transition of halide complexes of 4’-aminoacetophenone: Synthesis, structures, and magnetic behavior. Polyhedron 2023, 229, 116214. [Google Scholar] [CrossRef]
- Zammel, N.; Jedli, O.; Rebai, T.; Hamadou, W.S.; Elkahoui, S.; Jamal, A.; Alam, J.A.; Adnan, M.; Siddiqui, A.J.; Alreshidi, M.M.; et al. Kidney injury and oxidative damage alleviation by Zingiber officinale: Pharmacokinetics and protective approach in a combined murine model of osteoporosis. 3 Biotech 2022, 12, 112. [Google Scholar] [CrossRef]
- Badraoui, R.; Saeed, M.; Bouali, N.; Hamadou, W.S.; Elkahoui, S.; Alam, M.J.; Siddiqui, A.J.; Adnan, M.; Saoudi, M.; Rebai, T. Expression profiling of selected immune genes and trabecular microarchitecture in breast cancer skeletal metastases model: Effect of α–tocopherol acetate supplementation. Calcif. Tissue Int. 2022, 110, 475–488. [Google Scholar] [CrossRef]
- Jedli, O.; Ben-Nasr, H.; Zammel, N.; Rebai, T.; Saoudi, M.; Elkahoui, S.; Jamal, A.; Siddiqui, A.J.; Sulieman, A.E.; Alreshidi, M.M.; et al. Attenuation of ovalbumin-induced inflammation and lung oxidative injury in asthmatic rats by Zingiber officinale extract: Combined in silico and in vivo study on antioxidant potential, STAT6 and TNF-α pathways. 3 Biotech 2022, 12, 3249. [Google Scholar] [CrossRef]
- Badraoui, R.; Saoudi, M.; Hamadou, W.S.; Elkahoui, S.; Siddiqui, A.J.; Alam, J.M.; Jamal, A.; Adnan, M.; Suliemen, A.M.E.; Alreshidi, M.M.; et al. Antiviral effects of Artemisinin and its derivatives against SARS-CoV-2 main protease: Computational evidences and interactions with ACE2 allelic variants. Pharmaceuticals 2022, 15, 129. [Google Scholar] [CrossRef] [PubMed]
- Vanden Berghe, D. Screening methods for antibacterial and antiviral agents from higher plants. J. Plant Biochem. 1991, 6, 47–69. [Google Scholar]
- Melo, M.; Feitosa, J.; Freitas, A.; De Paula, R. Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydr. Polym. 2002, 49, 491–498. [Google Scholar] [CrossRef]
- Noumi, E.; Snoussi, M.; Anouar, E.H.; Alreshidi, M.; Veettil, V.N.; Elkahoui, S.; Adnan, M.; Patel, M.; Kadri, A.; Aouadi, K.; et al. HR-LCMS-Based Metabolite Profiling, Antioxidant, and Anticancer Properties of Teucrium polium L. Methanolic Extract: Computational and In Vitro Study. Antioxidants 2020, 9, 1089. [Google Scholar] [CrossRef] [PubMed]
- Lengsfeld, H.; Beaumier-Gallon, G.; Chahinian, H.; De Caro, A.; Verger, R.; Laugier, R.; Carrière, F. Physiology of gastrointestinal lipolysis and therapeutical use of lipases and digestive lipase inhibitors, Lipases and Phospholipases in Drug Development. Biochem. Pharmacol. 2004, 195–229. [Google Scholar]
- Said, M.; Boughzala, H. Structural characterization and physicochemical features of new coordination polymer homopiperazine-1, 4-diium tetrachlorocadmate (II). J. Mol. Struct. 2020, 1220, 128696. [Google Scholar] [CrossRef]
- Shi, Q.Z.; Xing, Z.; Cao, Y.N.; Ma, S.B.; Chen, L.Z. Synthesis, structure and dielectric properties of a Cd coordination polymer based on homopiperazine. J. Mol. Struct. 2017, 1130, 363–367. [Google Scholar] [CrossRef]
- Bourwina, M.; Msalmi, R.; Walha, S.; Turnbull, M.M.; Roisnel, T.; Costantino, F.; Naili, H. A new lead-free 1D hybrid copper perovskite and its structural, thermal, vibrational, optical and magnetic characterization. J. Mat. Chem C 2021, 9, 5970–5976. [Google Scholar] [CrossRef]
- Bai, X.; Zhong, H.; Chen, B.; Chen, C.; Han, J.; Zeng, R.; Zou, B. Pyridine-modulated Mn ion emission properties of C10H12N2MnBr4 and C5H6NMnBr3 single crystals. J. Phy. Chem C 2018, 122, 3130–3137. [Google Scholar] [CrossRef]
- Qaid, S.M.; Al-Asbahi, B.A.; Ghaithan, H.M.; AlSalhi, M.S. Optical and structural properties of CsPbBr3 perovskite quantum dots/PFO polymer composite thin films. J. Colloid Interface Sci. 2020, 563, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Tauc, J. (Ed.) Amorphous and Liquid Semiconductors; Springer Science & Business Media: Boston, MA, USA, 2012. [Google Scholar]
- Gagandeep; Singh, K.; Lark, B.S.; Sahota, H.S. Attenuation measurements in solutions of some carbohydrates. Nucl. Sci. Eng. 2000, 134, 208–217. [Google Scholar] [CrossRef]
- Studenyak, I.; Kranjčec, M.; Kurik, M. Urbach rule in solid state physics. Int. J. Opt. Appl. 2014, 4, 76–83. [Google Scholar]
- Landee, C.P.; Turnbull, M.M. A gentle introduction to magnetism: Units, fields, theory, and experiment. J. Coord. Chem. 2014, 67, 375–439. [Google Scholar] [CrossRef]
- Badraoui, R.; Adnan, M.; Bardakci, F.; Alreshidi, M.M. Chloroquine and hydroxychloroquine interact differently with ACE2 domains reported to bind with the coronavirus spike protein: Mediation by ACE2 Polymorphism. Molecules 2021, 26, 673. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, M.; Berditsch, M.; Hawecker, J.; Ardakani, M.F.; Gerthsen, D.; Ulrich, A.S. Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PG La as revealed by transmission and scanning electron microscopy. Antimicrob. Agents Chemother. 2010, 54, 3132–3142. [Google Scholar] [CrossRef] [PubMed]
- de Morais Junior, W.G.; Kamimura, E.S.; Ribeiro, E.; Pessela, B.C.; Cardoso, V.L.; de Resende, M.M. Optimization of the production and characterization of lipase from Candida rugosa and Geotrichum candidum in soybean molasses by submerged fermentation. Protein Expr. Purif. 2016, 123, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, C.; Falcocchio, S.; Xoxi, E.; Villo, L.; Nicolosi, G.; Pastor, F.; Diaz, P.; Saso, L. Inhibition of Candida rugosa lipase by saponins, flavonoids and alkaloids. J. Mol. Catal. B Enzym. 2006, 40, 138–143. [Google Scholar] [CrossRef]
- Badraoui, R.; Ben-Nasr, H.; Bardakçi, F.; Rebai, T. Pathophysiological impacts of exposure to an endocrine disruptor (tetradifon) on α–amylase and lipase activities associated metabolic disorders. Pestic. Biochem. Physiol. 2020, 167, 104606. [Google Scholar] [CrossRef] [PubMed]
- Badraoui, R.; Sahnoun, Z.; Abdelmoula, N.B.; Hakim, A.; Fki, M.; Rebaï, T. May antioxidants status depletion by Tetradifon induce secondary genotoxicity in female Wistar rats via oxidative stress? Pestic. Biochem. Physiol. 2007, 88, 149–155. [Google Scholar] [CrossRef]
- Gohlke, H.; Klebe, G. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew. Chem. Int. Ed. 2002, 41, 2644–2676. [Google Scholar] [CrossRef]
- Soussi, A.; Gargouri, M.; Magné, C.; Ben-Nasr, H.; Kausar, M.A.; Siddiqui, A.; Saeed, M.; Snoussi, M.; Adnan, M.; El-Feki, A.; et al. (−)-Epigallocatechin gallate (EGCG) pharmacokinetics and molecular interactions towards amelioration of hyperglycemia, hyperlipidemia associated hepatorenal oxidative injury in rats. Chem. Biol. Interact. 2022, 368, 110230. [Google Scholar] [CrossRef] [PubMed]
- Akacha, A.; Badraoui, R.; Rebai, T.; Zourgui, L. Effect of Opuntia ficus indica extract on methotrexate-induced testicular injury: A biochemical, docking and histological study. J. Biomol. Struct. Dyn. 2022, 40, 4341–4351. [Google Scholar] [CrossRef] [PubMed]
D—H···A | D—H | H···A | D···A | D—H···A |
---|---|---|---|---|
N2—H2A···Cl2 iii | 0.81 (3) | 2.91 (3) | 3.503 (2) | 133 (3) |
N2—H2A···Cl2 iv | 0.81 (3) | 2.71 (3) | 3.3534 (19) | 138 (3) |
N2—H2A···O1 iii | 0.81 (3) | 2.64 (3) | 3.251 (3) | 134 (3) |
N2—H2B···Cl1 | 0.93 (3) | 2.24 (3) | 3.130 (2) | 160 (3) |
N6—H6A···Cl11 v | 0.87 (3) | 2.42 (3) | 3.203 (2) | 150 (2) |
N6—H6B···Cl12 vi | 0.89 (3) | 2.38 (3) | 3.258 (2) | 168 (2) |
O1—H1W1···Cl12 | 0.84 (3) | 2.29 (3) | 3.1310 (17) | 179 (3) |
O1—H1W2···Cl2 iv | 0.88 (3) | 2.29 (3) | 3.1472 (18) | 165 (3) |
O11—H11A···Cl12 vii | 0.77 (2) | 2.55 (3) | 3.3032 (17) | 165 (3) |
O11—H11B···Cl2 vii | 0.81 (2) | 2.44 (2) | 3.2447 (17) | 175 (3) |
Entry | 1 | ||
---|---|---|---|
Unit 1 (C5H14N2) | Unit 2 (MnCl4(H2O)2) | ||
Lipophilicity/ Druglikeness | TPSA (Å2) | 24.06 | 40.46 |
Consensus Log Po/w | 0.14 | 0.14 | |
Lipinskiˈs Rule | Yes | Yes | |
Bioavailability Score | 0.55 | 0.55 | |
Pharmacokinetics/ Medicinal Chemistry | GI absorption | Low | Low |
BBB permeant | No | No | |
P-gp substrate | No | No | |
CYP1A2 inhibition | No | No | |
CYP2C19 inhibition | No | No | |
CYP2C9 inhibition | No | No | |
CYP2D6 inhibition | No | No | |
CYP3A4 inhibition | No | No | |
Log Kp (cm/s) | −7.27 | −7.27 | |
Leadlikeness | No | No | |
Synthetic accessibility | 1.43 | 1.43 |
Bacterial Strain | Gram | Inhibition Zone Diameter (mm) | MIC (mg/mL) | |
---|---|---|---|---|
1 mg/mL | 2 mg/mL | |||
Escherichia coli | - | + | + | 1 |
Enterococcus feacalis | - | + | + | 1 |
Salmonella typhi | - | + | + | 1.3 |
Listeria monocytogenes | + | ++ | +++ | 2.5 |
Staphylococcus aureus | + | ++ | +++ | 2.5 |
Micrococcus luteus | + | ++ | +++ | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourwina, M.; Walha, S.; Krayem, N.; Badraoui, R.; Brahmi, F.; Alshammari, W.M.; Snoussi, M.; Turnbull, M.M.; Roisnel, T.; Naïli, H. Organic–Inorganic Manganese (II) Halide Hybrid Combining the Two Isomers Cis/Trans of [MnCl4(H2O)2]: Crystal Structure, Physical Properties, Pharmacokinetics and Biological Evaluation. Inorganics 2023, 11, 76. https://doi.org/10.3390/inorganics11020076
Bourwina M, Walha S, Krayem N, Badraoui R, Brahmi F, Alshammari WM, Snoussi M, Turnbull MM, Roisnel T, Naïli H. Organic–Inorganic Manganese (II) Halide Hybrid Combining the Two Isomers Cis/Trans of [MnCl4(H2O)2]: Crystal Structure, Physical Properties, Pharmacokinetics and Biological Evaluation. Inorganics. 2023; 11(2):76. https://doi.org/10.3390/inorganics11020076
Chicago/Turabian StyleBourwina, Mansoura, Sandra Walha, Najeh Krayem, Riadh Badraoui, Faten Brahmi, Wejdan M. Alshammari, Mejdi Snoussi, Mark M. Turnbull, Thierry Roisnel, and Houcine Naïli. 2023. "Organic–Inorganic Manganese (II) Halide Hybrid Combining the Two Isomers Cis/Trans of [MnCl4(H2O)2]: Crystal Structure, Physical Properties, Pharmacokinetics and Biological Evaluation" Inorganics 11, no. 2: 76. https://doi.org/10.3390/inorganics11020076
APA StyleBourwina, M., Walha, S., Krayem, N., Badraoui, R., Brahmi, F., Alshammari, W. M., Snoussi, M., Turnbull, M. M., Roisnel, T., & Naïli, H. (2023). Organic–Inorganic Manganese (II) Halide Hybrid Combining the Two Isomers Cis/Trans of [MnCl4(H2O)2]: Crystal Structure, Physical Properties, Pharmacokinetics and Biological Evaluation. Inorganics, 11(2), 76. https://doi.org/10.3390/inorganics11020076