Comparative Study of Lithium Halide-Based Electrolytes for Application in Lithium-Sulfur Batteries
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electrode Active Material Characterization
2.2. Electrolyte Characterization
3. Materials and Methods
3.1. Electrode Preparation and Characterization
3.2. Electrode Preparation and Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pozio, A.; Di Carli, M.; Aurora, A.; Falconieri, M.; Della Seta, L.; Prosini, P.P. Hard carbons for use as electrodes in Li-S and Li-ion batteries. Nanomaterials 2022, 12, 1349. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Dai, F.; Gordin, M.L.; Wang, D. Exceptional electrochemical performance of rechargeable Li-S batteries with a polysulfide-containing electrolyte. RSC Adv. 2013, 3, 3540–3543. [Google Scholar] [CrossRef]
- Carbone, L.; Greenbaum, S.; Devany, M.; Hassoun, J.; Coneglian, T.; Munoz, S.; Gobet, M. A simple approach for making a viable, safe, and high-performances lithium-sulfur battery. J. Power Sources 2017, 377, 26–35. [Google Scholar] [CrossRef]
- Kang, H.J.; Bari, G.A.K.M.R.; Lee, T.G.; Khan, T.T.; Park, J.W.; Hwang, H.J.; Cho, S.Y.; Jun, Y.S. Microporous carbon nanoparticles for lithium-sulfur batteries. Nanomaterials 2020, 10, 2012. [Google Scholar] [CrossRef] [PubMed]
- Salama, M.; Rosy; Attias, R.; Yemini, R.; Gofer, Y.; Aurbach, D.; Noked, M. Metal-sulfur batteries: Overview and research methods. ACS Energy Lett. 2019, 4, 436–446. [Google Scholar] [CrossRef]
- Vizintin, A.; Patel, M.U.M.; Genorio, B.; Dominko, R. Effective separation of lithium anode and sulfur cathode in lithium-sulfur batteries. ChemElectroChem 2014, 1, 1040–1045. [Google Scholar] [CrossRef]
- Li, T.; Bai, X.; Gulzar, U.; Bai, Y.J.; Capiglia, C.; Deng, W.; Zhou, X.; Liu, Z.; Feng, Z.; Proietti Zaccaria, R. A comprehensive understanding of lithium–sulfur battery technology. Adv. Funct. Mater. 2019, 29, 1901730. [Google Scholar] [CrossRef]
- Rauchfuss, T. Under sulfur’s spell. Nat. Chem. 2011, 3, 648. [Google Scholar] [CrossRef]
- Fan, X.; Sun, W.; Meng, F.; Xing, A.; Liu, J. Advanced chemical strategies for lithium–sulfur batteries: A review. Green Energy Environ. 2018, 3, 2–19. [Google Scholar] [CrossRef]
- Danner, T.; Latz, A. On the influence of nucleation and growth of S8 and Li2S in lithium-sulfur batteries. Electrochim. Acta 2019, 322, 134719. [Google Scholar] [CrossRef]
- Yang, B.; Jiang, H.; Zhou, Y.; Liang, Z.; Zhao, T.; Lu, Y.C. Critical role of anion donicity in Li2S deposition and sulfur utilization in Li-S batteries. ACS Appl. Mater. Interfaces 2019, 11, 25940–25948. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Lee, J.T.; Nitta, N.; Kim, H.; Borodin, O.; Yushin, G. Lithium iodide as a promising electrolyte additive for lithium-sulfur batteries: Mechanisms of performance enhancement. Adv. Mater. 2015, 27, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Hwa, Y.; Cairns, E.J. Nanostructured sulfur and sulfides for advanced lithium/sulfur cells. ChemElectroChem 2020, 7, 3927–3942. [Google Scholar] [CrossRef]
- Gulzar, U.; Li, T.; Bai, X.; Goriparti, S.; Brescia, R.; Capiglia, C.; Zaccaria, R.P. Nitrogen-doped single walled carbon nanohorns enabling effective utilization of Ge nanocrystals for next generation lithium ion batteries. Electrochim. Acta 2019, 298, 89–96. [Google Scholar] [CrossRef]
- Gorlin, Y.; Patel, M.U.M.; Freiberg, A.; He, Q.; Piana, M.; Tromp, M.; Gasteiger, H.A. Understanding the charging mechanism of lithium-sulfur batteries using spatially resolved operando X-ray absorption spectroscopy. J. Electrochem. Soc. 2016, 163, A930–A939. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Qiao, Y.; Chang, Z.; Cao, X.; Jia, M.; He, P.; Zhou, H. Developing a “polysulfide-phobic” strategy to restrain shuttle effect in lithium–sulfur batteries. Angew. Chemie—Int. Ed. 2019, 58, 11774–11778. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Bhargav, A.; Manthiram, A. Highly solvating electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 2019, 9, 1803096. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Jung, J.; Noh, H.; Yuk, S.; Lee, J.; Lee, J.H.; Baek, J.; Roh, Y.; Kwon, H.; Choi, D.W.; et al. Unraveling the dual functionality of high-donor-number anion in lean-electrolyte lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2000493. [Google Scholar] [CrossRef]
- Lacey, M.J. Influence of the electrolyte on the internal resistance of lithium−sulfur batteries studied with an intermittent current interruption method. ChemElectroChem 2017, 4, 1997–2004. [Google Scholar] [CrossRef]
- Chu, H.; Noh, H.; Kim, Y.J.; Yuk, S.; Lee, J.H.; Lee, J.; Kwack, H.; Kim, Y.K.; Yang, D.K.; Kim, H.T. Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions. Nat. Commun. 2019, 10, 188. [Google Scholar] [CrossRef] [Green Version]
- Gerber, L.C.H.; Frischmann, P.D.; Fan, F.Y.; Doris, S.E.; Qu, X.; Scheuermann, A.M.; Persson, K.; Chiang, Y.M.; Helms, B.A. Three-dimensional growth of Li2S in lithium-sulfur batteries promoted by a redox mediator. Nano Lett. 2016, 16, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Burke, C.M.; Pande, V.; Khetan, A.; Viswanathan, V.; McCloskey, B.D. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity. Proc. Natl. Acad. Sci. USA 2015, 112, 9293–9298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kottam, P.K.R.; Dongmo, S.; Wohlfahrt-Mehrens, M.; Marinaro, M. Effect of salt concentration, solvent donor number and Coordination structure on the variation of the Li/Li+ potential in aprotic electrolytes. Energies 2020, 13, 1470. [Google Scholar] [CrossRef] [Green Version]
- Cao, R.; Chen, J.; Han, K.S.; Xu, W.; Mei, D.; Bhattacharya, P.; Engelhard, M.H.; Mueller, K.T.; Liu, J.; Zhang, J.G. Effect of the anion activity on the stability of Li metal anodes in lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 3059–3066. [Google Scholar] [CrossRef]
- Xiao, Y.; Han, B.; Zeng, Y.; Chi, S.S.; Zeng, X.; Zheng, Z.; Xu, K.; Deng, Y. New lithium salt forms interphases suppressing both Li dendrite and polysulfide shuttling. Adv. Energy Mater. 2020, 10, 1903937. [Google Scholar] [CrossRef]
- Shin, H.; Baek, M.; Gupta, A.; Char, K.; Manthiram, A.; Choi, J.W. Recent progress in high donor electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 2020, 10, 2001456. [Google Scholar] [CrossRef]
- Zou, Q.; Lu, Y.C. Solvent-dictated lithium sulfur redox reactions: An operando UV-vis spectroscopic study. J. Phys. Chem. Lett. 2016, 7, 1518–1525. [Google Scholar] [CrossRef]
- Linert, W.; Jameson, R.F.; Taha, A. Donor numbers of anions in solution: The use of solvatochromic Lewis acid-base indicators. J. Chem. Soc. Dalt. Trans. 1993, 3181–3186. [Google Scholar] [CrossRef]
- Adams, B.D.; Carino, E.V.; Connell, J.G.; Han, K.S.; Cao, R.; Chen, J.; Zheng, J.; Li, Q.; Mueller, K.T.; Henderson, W.A.; et al. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes. Nano Energy 2017, 40, 607–617. [Google Scholar] [CrossRef]
- Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y.M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436. [Google Scholar] [CrossRef] [Green Version]
- Barghamadi, M.; Best, A.S.; Bhatt, A.I.; Hollenkamp, A.F.; Musameh, M.; Rees, R.J.; Rüther, T. Lithium-sulfur batteries—The solution is in the electrolyte, but is the electrolyte a solution? Energy Environ. Sci. 2014, 7, 3902–3920. [Google Scholar] [CrossRef]
- Rodriguez, R.; Edison, R.A.; Stephens, R.M.; Sun, H.H.; Heller, A.; Mullins, C.B. Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition. J. Mater. Chem. A 2020, 8, 3999–4006. [Google Scholar] [CrossRef]
- Carbone, L.; Gobet, M.; Peng, J.; Devany, M.; Scrosati, B.; Greenbaum, S.; Hassoun, J. Comparative study of ether-based electrolytes for application in lithium-sulfur battery. ACS Appl. Mater. Interfaces 2015, 7, 13859–13865. [Google Scholar] [CrossRef] [PubMed]
- Johansson, P. Electronic structure calculations on lithium battery electrolyte salts. Phys. Chem. Chem. Phys. 2007, 9, 1493–1498. [Google Scholar] [CrossRef]
- Diederichsen, K.M.; McShane, E.J.; McCloskey, B.D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2017, 2, 2563–2575. [Google Scholar] [CrossRef]
- Fong, K.D.; Self, J.; Diederichsen, K.M.; Wood, B.M.; McCloskey, B.D.; Persson, K.A. Ion transport and the true transference number in nonaqueous polyelectrolyte solutions for lithium ion batteries. ACS Cent. Sci. 2019, 5, 1250–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- France-Lanord, A.; Grossman, J.C. Correlations from ion pairing and the Nernst-Einstein equation. Phys. Rev. Lett. 2019, 122, 136001. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.S. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 2012, 70, 344–348. [Google Scholar] [CrossRef]
- Devany, M.; Peng, J.; Gobet, M.; Greenbaum, S.; Hassoun, J.; Carbone, L.; Scrosati, B. Polyethylene glycol dimethyl ether (PEGDME)-based electrolyte for lithium metal battery. J. Power Sources 2015, 299, 460–464. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Zhang, Y.; Yu, P.; Ding, F.; Li, X.; Wang, Z.; Lv, Z.; Wang, X.; Liu, Z.; Huang, X. Ion association tailoring SEI composition for Li metal anode protection. J. Energy Chem. 2020, 45, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Bai, X.; Gulzar, U.; Capiglia, C.; Bai, Y.J.; Proietti Zaccaria, R. Facile synthesis of highly graphitized carbon via reaction of CaC2 with sulfur and its application for lithium/sodium-ion batteries. ACS Omega 2019, 4, 8312–8317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Thieme, S.; Ramanujapuram, A.; Zhao, E.; Weller, C.; Althues, H.; Kaskel, S.; Borodin, O.; Yushin, G. Toward in-situ protected sulfur cathodes by using lithium bromide and pre-charge. Nano Energy 2017, 40, 170–179. [Google Scholar] [CrossRef]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar] [CrossRef]
- Lang, S.; Feng, X.; Seok, J.; Yang, Y.; Krumov, M.R.; Molina Villarino, A.; Lowe, M.A.; Yu, S.H.; Abruña, H.D. Lithium–sulfur redox: Challenges and opportunities. Curr. Opin. Electrochem. 2021, 25, 100652. [Google Scholar] [CrossRef]
- Zhang, S.S. Improved cyclability of liquid electrolyte lithium/sulfur batteries by optimizing electrolyte/sulfur ratio. Energies 2012, 5, 5190–5197. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chen, H.; Chen, W.; Zhang, Y.; Zheng, Y. New insight into the “shuttle mechanism” of rechargeable lithium-sulfur batteries. ChemElectroChem 2019, 6, 2782–2787. [Google Scholar] [CrossRef]
- Ying, K.; Tian, R.; Zhou, J.; Li, H.; Dugnani, R.; Lu, Y.; Duan, H.; Guo, Y.; Liu, H. A three dimensional sulfur/reduced graphene oxide with embedded carbon nanotubes composite as a binder-free, free-standing cathode for lithium-sulfur batteries. RSC Adv. 2017, 7, 43483–43490. [Google Scholar] [CrossRef] [Green Version]
- Waluś, S.; Barchasz, C.; Bouchet, R.; Leprêtre, J.C.; Colin, J.F.; Martin, J.F.; Elkaïm, E.; Baehtz, C.; Alloin, F. Lithium/sulfur batteries upon cycling: Structural modifications and species quantification by in situ and operando X-ray diffraction spectroscopy. Adv. Energy Mater. 2015, 5, 1500165. [Google Scholar] [CrossRef]
- Yoon, G.; Moon, S.; Ceder, G.; Kang, K. Deposition and stripping behavior of lithium metal in electrochemical system: Continuum mechanics study. Chem. Mater. 2018, 30, 6769–6776. [Google Scholar] [CrossRef]
- Zhang, S.S. A new finding on the role of LiNO3 in lithium-sulfur battery. J. Power Sources 2016, 322, 99–105. [Google Scholar] [CrossRef]
- Carbone, L.; Peng, J.; Agostini, M.; Gobet, M.; Devany, M.; Scrosati, B.; Greenbaum, S.; Hassoun, J. Carbon composites for a high-energy lithium–sulfur battey with a glyme-based electrolyte. ChemElectroChem 2017, 4, 209–215. [Google Scholar] [CrossRef]
- Xiao, L.; Cao, Y.; Xiao, J.; Schwenzer, B.; Engelhard, M.H.; Saraf, L.V.; Nie, Z.; Exarhos, G.J.; Liu, J. A soft approach to encapsulate sulfur: Polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv. Mater. 2012, 24, 1176–1181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, N.; Lu, H.; Zheng, J.; Zang, R.; Cao, J. Improving lithium-sulfur battery performance via a carbon-coating layer derived from the hydrothermal carbonization of glucose. RSC Adv. 2015, 5, 50983–50988. [Google Scholar] [CrossRef]
- Wang, C.C.; Lin, Y.C.; Chiu, K.F.; Leu, H.J.; Ko, T.H. Advanced carbon cloth as current collector for enhanced electrochemical performance of lithium-rich layered oxide cathodes. ChemistrySelect 2017, 2, 4419–4427. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venezia, E.; Salimi, P.; Liang, S.; Fugattini, S.; Carbone, L.; Zaccaria, R.P. Comparative Study of Lithium Halide-Based Electrolytes for Application in Lithium-Sulfur Batteries. Inorganics 2023, 11, 86. https://doi.org/10.3390/inorganics11020086
Venezia E, Salimi P, Liang S, Fugattini S, Carbone L, Zaccaria RP. Comparative Study of Lithium Halide-Based Electrolytes for Application in Lithium-Sulfur Batteries. Inorganics. 2023; 11(2):86. https://doi.org/10.3390/inorganics11020086
Chicago/Turabian StyleVenezia, Eleonora, Pejman Salimi, Shanshan Liang, Silvio Fugattini, Lorenzo Carbone, and Remo Proietti Zaccaria. 2023. "Comparative Study of Lithium Halide-Based Electrolytes for Application in Lithium-Sulfur Batteries" Inorganics 11, no. 2: 86. https://doi.org/10.3390/inorganics11020086
APA StyleVenezia, E., Salimi, P., Liang, S., Fugattini, S., Carbone, L., & Zaccaria, R. P. (2023). Comparative Study of Lithium Halide-Based Electrolytes for Application in Lithium-Sulfur Batteries. Inorganics, 11(2), 86. https://doi.org/10.3390/inorganics11020086