Vanadium Oxide-Based Cathode Materials for Aqueous Zinc-Ion Batteries: Energy Storage Mechanism and Design Strategy
Abstract
:1. Introduction
2. Energy Storage Mechanisms of Vanadium Oxide-Based Cathodes
2.1. Zn2+ Insertion/Extraction Mechanism
2.2. H+/Zn2+ Co-Insertion/Extraction Mechanism
2.3. H2O/Zn2+ Co-Insertion/Extraction Mechanism
3. Design Strategies for Vanadium Oxide-Based Cathode
3.1. Substitutional Doping
3.2. Vacancy Engineering
3.2.1. Anion Vacancies
3.2.2. Cation Vacancies
3.3. Interlayer Engineering
3.3.1. Molecules Pre-Intercalation
3.3.2. Cation Pre-Intercalation
3.4. Structural Composite
3.4.1. Coating
3.4.2. Heterostructure
4. Summary and Perspectives
- Find the right object species. The dissolution and collapse of vanadium oxide-based materials during electrochemical reactions always destroy their cyclic stability, making it difficult for vanadium oxide-based materials to achieve large-scale commercial applications. Finding suitable guest species as interlayer pillars is the key to effectively improve the structural stability. In addition, the pre-embedded amount of guest species also has a considerable impact on the structural stability.
- Explore new methods to inhibit the formation of zinc dendrites. The anode material is one of the crucial parts of the battery system, which has a significant impact on the performance of AZIBs [82,83]. The zinc dendrite problem is a major challenge for AZIB anode materials. The presence of zinc dendrites can lead to a decrease in the battery life. Surface modification and regulation of zinc deposition and dissolution behavior are common strategies for the study of zinc anodes [84,85]. For example, Chen inhibited dendrite formation by covering the polyacrylonitrile coating on the zinc anode [85]. In addition, we urgently need to find new strategies to solve the problem of zinc dendrite growth.
- Explore new electrolyte additives and their mechanisms. The use of aqueous electrolyte makes AZIBs much safer than LIBs. However, the presence of solvent water in aqueous electrolytes also leads to many side reactions, which have a negative impact on the reversibility of electrochemical reactions [86]. The electrolyte additives can stabilize the positive and negative structures at the same time and eliminate the adverse side reactions during the reaction [1,87]. Cao et al. introduced sulfolane (SL) into the ZnSO4 electrolyte, which inhibited zinc dendrite growth and side reactions [87]. In addition, the compatibility of electrolytes with cathode and anode materials should also be considered in the modification of electrolytes.
- Development of more advanced non-electrode components. The significant progress in the field of AZIBs not only benefits from the rapid development of electrode materials, but also requires efforts in non-electrode components (current collectors, binders, separators, etc.) [88]. For example, Li et al. developed a waste palm lignocellulose nanofiber (LCNF) separator, which improved the kinetics of zinc deposition and effectively inhibited the growth of zinc dendrites [89]. Each battery is a system formed by the synergy of electrode materials and non-electrode components. The compatibility between electrode materials and non-electrode components determines the efficiency of the battery. Advanced non-electrode components enable AZIBs to achieve a higher energy and power density, which is expected to promote the further development of AZIBs.
- Develop advanced AZIB recycling technology. Although most vanadium oxide-based AZIBs have the characteristic of low toxicity, they still have potential hazards to the environment when they are widely used as AZIB cathode materials in various energy storage systems [90]. Hence, it is meaningful to develop a new recovery technology with a simple process and a low cost. In addition, the recovery of Ti and other metals in zinc-ion batteries can further reduce the production costs and improve economic efficiency. Therefore, it is urgent to develop an effective AZIB recycling technology to form a green, safe, and sustainable production cycle chain to further promote the progress and development of AZIBs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, H.L.; Shao, Y.Y.; Yan, P.F.; Cheng, Y.W.; Han, K.S.; Nie, Z.M.; Wang, C.M.; Yang, J.H.; Li, X.L.; Bhattacharya, P.; et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef] [Green Version]
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Larcher, D.; Tarascon, J.M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29. [Google Scholar] [CrossRef]
- Tarascon, J.M. Is lithium the new gold? Nat. Chem. 2010, 2, 510. [Google Scholar] [CrossRef]
- Ponrouch, A.; Bitenc, J.; Dominko, R.; Lindahl, N.; Johansson, P.; Palacin, M.R. Multivalent rechargeable batteries. Energy Storage Mater. 2019, 20, 253–262. [Google Scholar] [CrossRef]
- Song, M.; Tan, H.; Chao, D.L.; Fan, H.J. Recent Advances in Zn-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1802564. [Google Scholar] [CrossRef]
- Liu, W.B.; Hao, J.W.; Xu, C.J.; Mou, J.; Dong, L.B.; Jiang, F.Y.; Kang, Z.; Wu, J.L.; Jiang, B.Z.; Kang, F.Y. Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion battery systems. Chem. Commun. 2017, 53, 6872–6874. [Google Scholar] [CrossRef] [PubMed]
- Vernardou, D.; Drosos, H.; Spanakis, E.; Koudoumas, E.; Katsarakis, N.; Pemble, M.E. Electrochemical properties of amorphous WO3 coatings grown on polycarbonate by aerosol-assisted CVD. Electrochim. Acta 2012, 65, 185–189. [Google Scholar] [CrossRef]
- Wan, F.; Zhang, Y.; Zhang, L.; Liu, D.; Wang, C.; Song, L.; Niu, Z.; Chen, J. Reversible Oxygen Redox Chemistry in Aqueous Zinc-Ion Batteries. Angew. Chem.-Int. Ed. 2019, 58, 7062–7067. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Li, B.; Du, H.; Kang, F. Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angew. Chem.-Int. Ed. 2012, 51, 933–935. [Google Scholar] [CrossRef]
- Blanc, L.E.; Kundu, D.; Nazar, L.F. Scientific Challenges for the Implementation of Zn-Ion Batteries. Joule 2020, 4, 771–799. [Google Scholar] [CrossRef]
- Kang, S.; Reeves, K.G.; Koketsu, T.; Ma, J.; Borkiewicz, O.J.; Strasser, P.; Ponrouch, A.; Dambournet, D. Multivalent Mg2+-, Zn2+-, and Ca2+-Ion Intercalation Chemistry in a Disordered Layered Structure. Acs Appl. Energy Mater. 2020, 3, 9143–9150. [Google Scholar] [CrossRef]
- Daskalakis, S.; Wang, M.; Carmalt, C.J.; Vernardou, D. Electrochemical Investigation of Phenethylammonium Bismuth Iodide as Anode in Aqueous Zn2+ Electrolytes. Nanomaterials 2021, 11, 656. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; He, G.; Jiang, H.; Parkin, I.P.; Shearing, P.R.; Brett, D.J.L. Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities. Adv. Funct. Mater. 2021, 31, 2010445. [Google Scholar] [CrossRef]
- Yan, M.; He, P.; Chen, Y.; Wang, S.; Wei, Q.; Zhao, K.; Xu, X.; An, Q.; Shuang, Y.; Shao, Y. Water-Lubricated Intercalation in V2O5·nH2O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries. Adv. Mater. 2017, 30, 1703725. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liang, X.; Li, Y.; Chen, Q.; Chen, M. Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Mater. 2021, 42, 533–569. [Google Scholar] [CrossRef]
- Ding, J.; Gao, H.; Ji, D.; Zhao, K.; Wang, S.; Cheng, F. Vanadium-based cathodes for aqueous zinc-ion batteries: From crystal structures, diffusion channels to storage mechanisms. J. Mater. Chem. A 2021, 9, 5258–5275. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; Li, H.; Cheng, F.; Chen, J. Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. J. Energy Chem. 2019, 38, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Javed, M.S.; Lei, H.; Wang, Z.; Liu, B.-T.; Cai, X.; Mai, W. 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy 2020, 70, 104573. [Google Scholar] [CrossRef]
- Chen, L.; Ruan, Y.; Zhang, G.; Wei, Q.; Jiang, Y.; Xiong, T.; He, P.; Yang, W.; Yan, M.; An, Q.; et al. Ultrastable and High-Performance Zn/VO2 Battery Based on a Reversible Single-Phase Reaction. Chem. Mater. 2019, 31, 699–706. [Google Scholar] [CrossRef]
- Li, Z.; Ganapathy, S.; Xu, Y.; Zhou, Z.; Sarilar, M.; Wagemaker, M. Mechanistic Insight into the Electrochemical Performance of Zn/VO2 Batteries with an Aqueous ZnSO4 Electrolyte. Adv. Energy Mater. 2019, 9, 1900237. [Google Scholar] [CrossRef]
- Wei, T.; Li, Q.; Yang, G.; Wang, C. An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide. J. Mater. Chem. A 2018, 6, 8006–8012. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Z.; Huang, Y. Monoclinic VO2(D) hollow nanospheres with super-long cycle life for aqueous zinc ion batteries. Nanoscale 2019, 11, 13032–13039. [Google Scholar] [CrossRef]
- Ding, J.; Zheng, H.; Gao, H.; Liu, Q.; Hu, Z.; Han, L.; Wang, S.; Wu, S.; Fang, S.; Chou, S. In Situ Lattice Tunnel Distortion of Vanadium Trioxide for Enhancing Zinc Ion Storage. Adv. Energy Mater. 2021, 11, 2100973. [Google Scholar] [CrossRef]
- Luo, H.; Wang, B.; Wang, F.; Yang, J.; Wu, F.; Ning, Y.; Zhou, Y.; Wang, D.; Liu, H.; Dou, S. Anodic Oxidation Strategy toward Structure-Optimized V2O3 Cathode via Electrolyte Regulation for Zn-Ion Storage. Acs Nano 2020, 14, 7328–7337. [Google Scholar] [CrossRef]
- Shin, J.; Choi, D.S.; Lee, H.J.; Jung, Y.; Choi, J.W. Hydrated Intercalation for High-Performance Aqueous Zinc Ion Batteries. Adv. Energy Mater. 2019, 9, 1900083. [Google Scholar] [CrossRef]
- Zhang, S.; Tan, H.; Rui, X.; Yu, Y. Vanadium-Based Materials: Next Generation Electrodes Powering the Battery Revolution? Acc. Chem. Res. 2020, 53, 1660–1671. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Shan, L.; Wu, Z.; Guo, X.; Fang, G.; Liang, S. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun. 2018, 54, 4457–4460. [Google Scholar] [CrossRef] [PubMed]
- Kundu, D.; Adams, B.D.; Duffort, V.; Vajargah, S.H.; Nazar, L.F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119. [Google Scholar] [CrossRef]
- Zhu, K.; Wu, T.; Sun, S.; van den Bergh, W.; Stefik, M.; Huang, K. Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous Zn-ion batteries. Energy Storage Mater. 2020, 29, 60–70. [Google Scholar] [CrossRef]
- Lai, J.; Zhu, H.; Zhu, X.; Koritala, H.; Wang, Y. Interlayer-Expanded V6O13·nH2O Architecture Constructed for an Advanced Rechargeable Aqueous Zinc-Ion Battery. Acs Appl. Energy Mater. 2019, 2, 1988–1996. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, D.; Huang, S.; Yang, H.Y. Guest-species-incorporation in manganese/vanadium-based oxides: Towards high performance aqueous zinc-ion batteries. Nano Energy 2021, 85, 105969. [Google Scholar] [CrossRef]
- Dai, Y.; Gan, Z.; Ruan, Y.; An, Q.; Mai, L. Research Progress of Aqueous Zinc Ion Batteries and Their Key Materials. J. Chin. Ceram. Soc. 2021, 49, 1323–1336. [Google Scholar]
- Li, Y.; Chen, M.; Liu, B.; Zhang, Y.; Liang, X.; Xia, X. Heteroatom Doping: An Effective Way to Boost Sodium Ion Storage. Adv. Energy Mater. 2020, 10, 2000927. [Google Scholar] [CrossRef]
- He, P.; Yan, M.; Zhang, G.; Sun, R.; Chen, L.; An, Q.; Mai, L. Layered VS2 Nanosheet-Based Aqueous Zn Ion Battery Cathode. Adv. Energy Mater. 2017, 7, 1601920. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Yuan, G.-Q.; Wang, X.-Y.; Liu, J.-P.; Zeng, Q.-Y.; Guo, X.-T.; Wang, H.; Liu, C.-S.; Pang, H. Tuning electronic structure of ultrathin V6O13 nanobelts via nickel doping for aqueous zinc-ion battery cathodes. Chem. Eng. J. 2022, 428, 132538. [Google Scholar] [CrossRef]
- Li, Q.; Wei, T.; Ma, K.; Yang, G.; Wang, C. Boosting the Cyclic Stability of Aqueous Zinc-Ion Battery Based on Al-Doped V10O24·12H2O Cathode Materials. Acs Appl. Mater. Interfaces 2019, 11, 20888–20894. [Google Scholar] [CrossRef]
- Lan, B.; Peng, Z.; Chen, L.; Tang, C.; Dong, S.; Chen, C.; Zhou, M.; Chen, C.; An, Q.; Luo, P. Metallic silver doped vanadium pentoxide cathode for aqueous rechargeable zinc ion batteries. J. Alloy. Compd. 2019, 787, 9–16. [Google Scholar] [CrossRef]
- Wu, F.; Wang, Y.; Ruan, P.; Niu, X.; Zheng, D.; Xu, X.; Gao, X.; Cai, Y.; Liu, W.; Shi, W.; et al. Fe-doping enabled a stable vanadium oxide cathode with rapid Zn diffusion channel for aqueous zinc-ion batteries. Mater. Today Energy 2021, 21, 100842. [Google Scholar] [CrossRef]
- Geng, H.; Cheng, M.; Wang, B.; Yang, Y.; Zhang, Y.; Li, C.C. Electronic Structure Regulation of Layered Vanadium Oxide via Interlayer Doping Strategy toward Superior High-Rate and Low-Temperature Zinc-Ion Batteries. Adv. Funct. Mater. 2020, 30, 1907684. [Google Scholar] [CrossRef]
- Zhang, D.; Cao, J.; Yue, Y.; Pakornchote, T.; Bovornratanaraks, T.; Han, J.; Zhang, X.; Qin, J.; Huang, Y. Two Birds with One Stone: Boosting Zinc-Ion Insertion/Extraction Kinetics and Suppressing Vanadium Dissolution of V2O5 via La3+ Incorporation Enable Advanced Zinc-Ion Batteries. Acs Appl. Mater. Interfaces 2021, 13, 38416–38424. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Peng, Y.; Ding, Y.; Xu, X.; Huang, Y.; Li, Z.; Zhang, X.; Hu, L. Suppressing the skeleton decomposition in Ti-doped NH4V4O10 for durable aqueous zinc ion battery. J. Power Sources 2021, 484, 229284. [Google Scholar] [CrossRef]
- Guo, K.; Cheng, W.; Liu, H.; She, W.; Wan, Y.; Wang, H.; Li, H.; Li, Z.; Zhong, X.; Ouyang, J.; et al. Sn-Doped Hydrated V2O5 Cathode Material with Enhanced Rate and Cycling Properties for Zinc-Ion Batteries. Crystals 2022, 12, 1617. [Google Scholar] [CrossRef]
- Li, M.; Mou, J.; Zhong, L.; Liu, T.; Xu, Y.; Pan, W.; Huang, J.; Wang, G.; Liu, M. Porous Ultrathin W-Doped VO2 Nanosheets Enable Boosted Zn2+ (De)Intercalation Kinetics in VO2 for High-Performance Aqueous Zn-Ion Batteries. Acs Sustain. Chem. Eng. 2021, 9, 14193–14201. [Google Scholar] [CrossRef]
- Li, Q.; Ye, X.; Jiang, Y.; Ang, E.H.; Liu, W.; Feng, Y.; Rui, X.; Yu, Y. Superior potassium and zinc storage in K-doped VO2(B) spheres. Mater. Chem. Front. 2021, 5, 3132–3138. [Google Scholar] [CrossRef]
- Lv, T.-T.; Luo, X.; Yuan, G.-Q.; Yang, S.-Y.; Pang, H. Layered VO2@N-doped carbon composites for high-performance rechargeable aqueous zinc-ion batteries. Chem. Eng. J. 2022, 428, 131211. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, M.; Ma, W.; Zhu, J.; Song, W. Application of Carbon Materials in Aqueous Zinc Ion Energy Storage Devices. Small 2021, 17, 2100219. [Google Scholar] [CrossRef]
- Yu, P.F.; Zhou, J.X.; Zheng, M.T.; Li, M.R.; Hu, H.; Xiao, Y.; Liu, Y.L.; Liang, Y.R. Boosting zinc ion energy storage capability of inert MnO cathode by defect engineering. J. Colloid Interface Sci. 2021, 594, 540–549. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Fang, G.Z.; Liang, S.Q.; Chen, Z.X.; Wang, Z.Q.; Ma, J.Y.; Wang, H.; Tang, B.Y.; Zheng, X.S.; Zhou, J. Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery. Energy Storage Mater. 2020, 24, 394–401. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, Y.; Zuo, C.; Tang, W.; Liu, G.; Wang, S.; Cai, W.; Dong, S.; Luo, P. Adjusting the Valence State of Vanadium in VO2(B) by Extracting Oxygen Anions for High-Performance Aqueous Zinc-Ion Batteries. Chemsuschem 2021, 14, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Wang, J.; Ye, L.; Sun, H.; Wen, Y.; Wang, C.; Sun, X.; Wang, B.; Peng, H. A Deep-Cycle Aqueous Zinc-Ion Battery Containing an Oxygen-Deficient Vanadium Oxide Cathode. Angew. Chem.-Int. Ed. 2020, 59, 2273–2278. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Weng, S.; Ye, Y.; Cheng, J.; Wang, X.; Wang, X.; Wang, B. Cation- deficient Zn0.3(NH4)0.3V4O10·0.91H2O for rechargeable aqueous zinc battery with superior low- temperature performance. Energy Storage Mater. 2021, 38, 389–396. [Google Scholar] [CrossRef]
- Zhao, X.; Mao, L.; Cheng, Q.; Liao, F.; Yang, G.; Lu, X.; Chen, L. Interlayer Engineering of Preintercalated Layered Oxides as Cathode for Emerging Multivalent Metal-ion Batteries: Zinc and Beyond. Energy Storage Mater. 2021, 38, 397–437. [Google Scholar] [CrossRef]
- Xu, Y.; Deng, X.; Li, Q.; Zhang, G.; Xiong, F.; Tan, S.; Wei, Q.; Lu, J.; Li, J.; An, Q.; et al. Vanadium Oxide Pillared by Interlayer Mg2+ Ions and Water as Ultralong-Life Cathodes for Magnesium-Ion Batteries. Chem 2019, 5, 1194–1209. [Google Scholar] [CrossRef]
- Shi, W.; Yin, B.; Yang, Y.; Sullivan, M.B.; Wang, J.; Zhang, Y.-W.; Yu, Z.G.; Lee, W.S.V.; Xue, J. Unravelling V6O13 Diffusion Pathways via CO2 Modification for High-Performance Zinc Ion Battery Cathode. Acs Nano 2021, 15, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Han, C.; Gu, Q.; Chou, S.-L.; Wang, J.-Z.; Liu, H.-K.; Dou, S.-X. Electron Delocalization and Dissolution-Restraint in Vanadium Oxide Superlattices to Boost Electrochemical Performance of Aqueous Zinc-Ion Batteries. Adv. Energy Mater. 2020, 10, 2001852. [Google Scholar] [CrossRef]
- Chen, S.; Li, K.; Hui, K.S.; Zhang, J. Regulation of Lamellar Structure of Vanadium Oxide via Polyaniline Intercalation for High-Performance Aqueous Zinc-Ion Battery. Adv. Funct. Mater. 2020, 30, 2003890. [Google Scholar] [CrossRef]
- Li, R.; Xing, F.; Li, T.; Zhang, H.; Yan, J.; Zheng, Q.; Li, X. Intercalated polyaniline in V2O5 as a unique vanadium oxide bronze cathode for highly stable aqueous zinc ion battery. Energy Storage Mater. 2021, 38, 590–598. [Google Scholar] [CrossRef]
- Bin, D.; Huo, W.; Yuan, Y.; Huang, J.; Liu, Y.; Zhang, Y.; Dong, F.; Wang, Y.; Xia, Y. Organic-Inorganic-Induced Polymer Intercalation into Layered Composites for Aqueous Zinc-Ion Battery. Chem 2020, 6, 968–984. [Google Scholar] [CrossRef]
- Feng, Z.; Sun, J.; Liu, Y.; Jiang, H.; Cui, M.; Hu, T.; Meng, C.; Zhang, Y. Engineering Interlayer Space of Vanadium Oxide by Pyridinesulfonic Acid-Assisted Intercalation of Polypyrrole Enables Enhanced Aqueous Zinc-Ion Storage. Acs Appl. Mater. Interfaces 2021, 13, 61154–61165. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Sun, H.; Qin, L.; Cao, X.; Zhou, J.; Pan, A.; Fang, G.; Liang, S. Interlayer Doping in Layered Vanadium Oxides for Low-cost Energy Storage: Sodium-ion Batteries and Aqueous Zinc-ion Batteries. Chemnanomat 2020, 6, 1553–1566. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, Y.; Liang, S.; Wu, Z.; Fang, G.; Cao, X.; Wang, C.; Lin, T.; Pan, A.; Zhou, J. Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy 2019, 61, 617–625. [Google Scholar] [CrossRef]
- Wan, F.; Niu, Z.Q. Design Strategies for Vanadium-based Aqueous Zinc-Ion Batteries. Angew. Chem.-Int. Ed. 2019, 58, 16358–16367. [Google Scholar] [CrossRef] [PubMed]
- Tamilselvan, M.; Sreekanth, T.V.M.; Yoo, K.; Kim, J. Wide interlayer spacing ammonium vanadate (NH4)0.37V2O5·0.15H2O cathode for rechargeable aqueous zinc-ion batteries. J. Ind. Eng. Chem. 2021, 93, 176–185. [Google Scholar] [CrossRef]
- Wei, T.; Li, Q.; Yang, G.; Wang, C. Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH4)2V10O25·8H2O nanobelts. J. Mater. Chem. A 2018, 6, 20402–20410. [Google Scholar] [CrossRef]
- Huang, M.; Wang, X.; Liu, X.; Mai, L. Fast Ionic Storage in Aqueous Rechargeable Batteries: From Fundamentals to Applications. Adv. Mater. 2022, 34, 2105611. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, A.; Sun, J. Promise and challenge of vanadium-based cathodes for aqueous zinc-ion batteries. J. Energy Chem. 2021, 54, 655–667. [Google Scholar] [CrossRef]
- Yin, Z.G.; Zheng, Q.D. Controlled Synthesis and Energy Applications of One-Dimensional Conducting Polymer Nanostructures: An Overview. Adv. Energy Mater. 2012, 2, 179–218. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, G.H.; Cha, J.J.; Wu, H.; Vosgueritchian, M.; Yao, Y.; Bao, Z.A.; Cui, Y. Improving the Performance of Lithium-Sulfur Batteries by Conductive Polymer Coating. Acs Nano 2011, 5, 9187–9193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yao, Z.; Lan, D.; Liu, Y.; Ma, L.; Cui, J. N-doped carbon/V2O3 microfibers as high-rate and ultralong-life cathode for rechargeable aqueous zinc-ion batteries. J. Alloy. Compd. 2021, 861, 158560. [Google Scholar] [CrossRef]
- Pang, Q.; Sun, C.; Yu, Y.; Zhao, K.; Zhang, Z.; Voyles, P.M.; Chen, G.; Wei, Y.; Wang, X. H2V3O8 Nanowire/Graphene Electrodes for Aqueous Rechargeable Zinc Ion Batteries with High Rate Capability and Large Capacity. Adv. Energy Mater. 2018, 8, 1800144. [Google Scholar] [CrossRef]
- Zhang, Z.; Xi, B.; Wang, X.; Ma, X.; Chen, W.; Feng, J.; Xiong, S. Oxygen Defects Engineering of VO2·xH2O Nanosheets via In Situ Polypyrrole Polymerization for Efficient Aqueous Zinc Ion Storage. Adv. Funct. Mater. 2021, 31, 2103070. [Google Scholar] [CrossRef]
- Volkov, F.S.; Tolstopjatova, E.G.; Eliseeva, S.N.; Kamenskii, M.A.; Vypritskaia, A.I.; Volkov, A.I.; Kondratiev, V.V. Vanadium(V) oxide coated by poly(3,4-ethylenedioxythiophene) as cathode for aqueous zinc-ion batteries with improved electrochemical performance. Mater. Lett. 2022, 308, 131210. [Google Scholar] [CrossRef]
- Bard, A.J. Photoelectrochemistry And Heterogeneous Photocatalysis at Semiconductors. J. Photochem. 1979, 10, 59–75. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, B.; Hu, C.; Chen, H.; Huang, J.; Yan, D.; Peng, S. Construction Strategy of VO2@V2C 1D/2D Heterostructure and Improvement of Zinc-Ion Diffusion Ability in VO2(B). Acs Appl. Mater. Interfaces 2022, 14, 28760–28768. [Google Scholar] [CrossRef]
- Zhao, F.; Gong, S.; Xu, H.; Li, M.; Li, L.; Qi, J.; Wang, H.; Wang, Z.; Hu, Y.; Fan, X.; et al. In situ constructing amorphous V2O5@Ti3C2Tx heterostructure for high-performance aqueous zinc-ion batteries. J. Power Sources 2022, 544, 231883. [Google Scholar] [CrossRef]
- Zhu, K.; Wu, T.; Huang, K. A high-voltage activated high-erformance cathode for aqueous Zn-ion batteries. Energy Storage Mater. 2021, 38, 473–481. [Google Scholar] [CrossRef]
- Wu, T.-H.; Su, J.-H. Controlling crystal structures of vanadium oxides via pH regulation and decoupling crystallographic perspective on zinc storage behaviors. Acta Mater. 2023, 245, 118663. [Google Scholar] [CrossRef]
- Lu, H.; Li, X. Inhibition of Zinc Dendrite Growth in Zinc-Based Batteries. ChemSusChem 2018, 11, 3996–4006. [Google Scholar] [CrossRef] [PubMed]
- Turney, D.E.; Gallaway, J.W.; Yadav, G.G.; Ramirez, R.; Nyce, M.; Banerjee, S.; Chen-Wiegart, Y.-C.K.; D’Ambrose, M.J.; Huang, J.; Wei, X. Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage. Chem. Mater. 2017, 29, 4819–4832. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, C.; Yu, Y.; Yan, M.; Wei, Q.; He, P.; Dong, Y.; Zhang, Z.; Wang, X.; Mai, L. Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode. Adv. Mater. Interfaces 2018, 5, 1800848. [Google Scholar] [CrossRef]
- Chen, P.; Yuan, X.; Xia, Y.; Zhang, Y.; Fu, L.; Liu, L.; Yu, N.; Huang, Q.; Wang, B.; Hu, X.; et al. An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc-Based Batteries. Adv. Sci. 2021, 8, 2100309. [Google Scholar] [CrossRef]
- Verma, V.; Kumar, S.; Manalastas, W., Jr.; Srinivasan, M. Undesired Reactions in Aqueous Rechargeable Zinc Ion Batteries. Acs Energy Lett. 2021, 6, 1773–1785. [Google Scholar] [CrossRef]
- Cao, H.; Huang, X.; Li, Y.; Liu, Y.; Zheng, Q.; Huo, Y.; Zhao, R.; Zhao, J.; Lin, D. Regulating the solventized structure to achieve highly reversible zinc plating/stripping for dendrite-free Zn anode by sulfolane additive. Chem. Eng. J. 2023, 455, 140538. [Google Scholar] [CrossRef]
- Ni, Q.; Kim, B.; Wu, C.; Kang, K. Non-Electrode Components for Rechargeable Aqueous Zinc Batteries: Electrolytes, Solid-Electrolyte-Interphase, Current Collectors, Binders, and Separators. Adv. Mater. 2022, 34, 2108206. [Google Scholar] [CrossRef]
- Li, Z.; Ye, L.; Zhou, G.; Xu, W.; Zhao, K.; Zhang, X.; Hong, S.; Ma, T.; Li, M.-C.; Liu, C.; et al. A water-gating and zinc-sieving lignocellulose nanofiber separator for dendrite-free rechargeable aqueous zinc ion battery. Chem. Eng. J. 2023, 457, 141160. [Google Scholar] [CrossRef]
- Guo, C.; Yi, S.; Si, R.; Xi, B.; An, X.; Liu, J.; Li, J.; Xiong, S. Advances on Defect Engineering of Vanadium-Based Compounds for High-Energy Aqueous Zinc-Ion Batteries. Adv. Energy Mater. 2022, 12, 2202039. [Google Scholar] [CrossRef]
Cathode | Electrolyte | Specific Capacity (Current Density) | Cyclic Stability (Cycles, Current Density) | Ref. |
---|---|---|---|---|
V2O5 | 3M Zn(CF3SO3)2 | 319 mAh g−1 (0.02 A g−1) | 81% (2000, 2.0 A g−1) | [21] |
V2O5 | 3M Zn(CF3SO3)2 | 503.1 mAh g−1 (0.1 A g−1) | 86% (700, 0.5 A g−1) | [22] |
VO2(B) | 1M ZnSO4 | 325.6 mAh g−1 (0.05 A g−1) | 86% (5000, 3.0 A g−1) | [23] |
VO2(B) | 1M ZnSO4 | 353 mAh g−1 (1.0 A g−1) | 75.5% (945, 3.0 A g−1) | [24] |
VO2(B) | 3M Zn(CF3SO3)2 | 274 mAh g−1 (0.1 A g−1) | 79% (10,000, 10.0 A g−1) | [25] |
VO2(D) | 3M ZnSO4 | 408 mAh g−1 (0.1 A g−1) | 58% (10,000, 10.0 A g−1) | [26] |
V2O3 | 3M Zn(CF3SO3)2 | 382.5 mAh g−1 (0.8 A g−1) | 97.3% (800, 3.2 A g−1) | [27] |
V2O3 | 2M Zn(CF3SO3)2 | 625 mAh g−1 (0.1 A g−1) | 100 % (10,000, 10.0 A g−1) | [28] |
V6O13 | 3M Zn(CF3SO3)2 | 360 mAh g−1 (0.2 A g−1) | 92% (2000, 4.0 A g−1) | [29] |
Cathode | Electrolyte | Specific Capacity (Current Density) | Cyclic Stability (Cycles, Current Density) | Ref. |
---|---|---|---|---|
Ag-doped V2O5 | 2M Zn(CF3SO3)2 | 418 mAh g−1 (0.1 A g−1) | ~100% (700, 3.0 A g−1) | [41] |
Fe-doped V2O5 | 3M Zn(CF3SO3)2 | 214 mAh g−1 (0.5 A g−1) | 94.6% (300, 0.5 A g−1) | [42] |
Mn-doped V2O5 | 1M Zn(ClO4)2 | 367 mAh g−1 (0.1 A g−1) | ~140% (3000, 2.0 A g−1) | [43] |
Al-doped V10O24·12H2O | 3M Zn(CF3SO3)2 | 355 mAh g−1 (1.0 A g−1) | 98% (3000, 5.0 A g−1) | [40] |
La-doped V2O5 | 1M Zn(CF3SO3)2 | 405 mAh g−1 (0.1 A g−1) | 93.8% (5000, 10.0 A g−1) | [44] |
Ti-doped NH4V4O10 | 3M Zn(CF3SO3)2 | 298 mAh g−1 (0.1 A g−1) | 89.02% (2000, 2.0 A g−1) | [45] |
Sn-doped hydrated V2O5 | 3M Zn(CF3SO3)2 | 373 mAh g−1 (0.1 A g−1) | 87.2% (2500, 87.2 A g−1) | [46] |
Ni-doped V6O13 | 3M Zn(CF3SO3)2 | 302.6 mAh g−1 (1.0 A g−1) | 96.5% (10,000, 8.0 A g−1) | [39] |
W-doped VO2 | 3M Zn(CF3SO3)2 | 346 mAh g−1 (0.1 A g−1) | 76.4% (1000, 4.0 A g−1) | [47] |
K-doped VO2(B) | 3M Zn(CF3SO3)2 | 376 mAh g−1 (0.5 A g−1) | 80% (3000, 20.0 A g−1) | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Yan, Z.; Sun, Z.; Guo, Z.; Liu, H.; Du, B.; Tian, S.; Wang, P.; Ding, H.; Qian, L. Vanadium Oxide-Based Cathode Materials for Aqueous Zinc-Ion Batteries: Energy Storage Mechanism and Design Strategy. Inorganics 2023, 11, 118. https://doi.org/10.3390/inorganics11030118
Qiu Y, Yan Z, Sun Z, Guo Z, Liu H, Du B, Tian S, Wang P, Ding H, Qian L. Vanadium Oxide-Based Cathode Materials for Aqueous Zinc-Ion Batteries: Energy Storage Mechanism and Design Strategy. Inorganics. 2023; 11(3):118. https://doi.org/10.3390/inorganics11030118
Chicago/Turabian StyleQiu, Yu, Zhaoqian Yan, Zhihao Sun, Zihao Guo, Hongshou Liu, Benli Du, Shaoyao Tian, Peng Wang, Han Ding, and Lei Qian. 2023. "Vanadium Oxide-Based Cathode Materials for Aqueous Zinc-Ion Batteries: Energy Storage Mechanism and Design Strategy" Inorganics 11, no. 3: 118. https://doi.org/10.3390/inorganics11030118
APA StyleQiu, Y., Yan, Z., Sun, Z., Guo, Z., Liu, H., Du, B., Tian, S., Wang, P., Ding, H., & Qian, L. (2023). Vanadium Oxide-Based Cathode Materials for Aqueous Zinc-Ion Batteries: Energy Storage Mechanism and Design Strategy. Inorganics, 11(3), 118. https://doi.org/10.3390/inorganics11030118