Multiferroics Made via Chemical Co-Precipitation That Is Synthesized and Characterized as Bi(1−x)CdxFeO3
Abstract
:1. Introduction
2. Experimental Procedure
- Formation of metal precursors:
- Precipitation of metal oxides:
- Calcination of metal oxides:
3. Results and Discussion
3.1. X-ray Diffraction
3.2. Scanning Electron Microscopy
3.3. Ultraviolet-Visible Spectroscopy
3.4. Fourier Transform Infrared Spectroscopy
3.5. Raman Spectroscopy
3.6. Vibrating Sample Magnetometry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.B.N.J.; Neaton, J.B.; Zheng, H.; Nagarajan, V.; Ogale, S.B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D.G.; Waghmare, U.V.; et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299, 1719–1722. [Google Scholar] [CrossRef] [PubMed]
- Catalan, G.; Scott, J.F. Physics and applications of bismuth ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Arshad, M.; Hassan, A.; Haider, Q.; Alharbi, F.M.; Alsubaie, N.; Alhushaybari, A.; Burduhos-Nergis, D.-P.; Galal, A.M. Rotating Hybrid Nanofluid Flow with Chemical Reaction and Thermal Radiation between Parallel Plates. Nanomaterials 2022, 12, 4177. [Google Scholar] [CrossRef]
- Eerenstein, W.; Mathur, N.D.; Scott, J.F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Dhanalakshmi, B.; Pratap, K.; Rao, B.P.; Rao, P.S. Effects of Mn doping on structural, dielectric, and multiferroic properties of BiFeO3 nanoceramics. J. Alloys Compd. 2016, 676, 193–201. [Google Scholar] [CrossRef]
- Dong, S.; Cheng, J.; Li, J.F.; Viehland, D. Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb (Zr, Ti) O3 under resonant drive. Appl. Phys. Lett. 2003, 83, 4812–4814. [Google Scholar] [CrossRef]
- Fischer, P.; Polomska, M.; Sosnowska, I.; Szymanski, M. Temperature dependence of the crystal and magnetic structures of BiFeO3. J. Phys. C Solid State Phys. 1980, 13, 1931. [Google Scholar] [CrossRef]
- Dzik, J.; Feliksik, K.; Pikula, T.; Panek, R.; Rerak, M. Influence of Dy doping on the properties of BiFeO3. Arch. Metall. Mater. 2018, 63, 1351–1355. [Google Scholar]
- Ishaq, B.; Murtaza, G.; Sharif, S.; Khan, M.A.; Akhtar, N.; Will, I.; Saleem, M.; Ramay, S.M. Investigating the effect of Cd-Mn co-doped nano-sized BiFeO3 on its physical properties. Results Phys. 2016, 6, 675–682. [Google Scholar] [CrossRef] [Green Version]
- Karpinsky, D.; Silibin, M.; Trukhanov, A.; Zhaludkevich, A.; Maniecki, T.; Maniukiewicz, W.; Sikolenko, V.; Paixão, J.; Khomchenko, V. A correlation between crystal structure and magnetic properties in co-doped BiFeO3 ceramics. J. Phys. Chem. Solids 2019, 126, 164–169. [Google Scholar] [CrossRef]
- Arafat, S.S. Structural transition and magnetic properties of high Cr-doped BiFeO3 ceramic. Cerâmica 2020, 66, 114–118. [Google Scholar] [CrossRef]
- Zhuang, J.; Zhao, J.; Su, L.W.; Wu, H.; Bokov, A.A.; Ren, W.; Ye, Z.G. Structure and local polar domains of Dy-modified BiFeO3–PbTiO3 multiferroic solid solutions. J. Mater. Chem. C 2015, 3, 12450–12456. [Google Scholar] [CrossRef]
- Arshad, M.; Hussain, A.; Hassan, A.; Karamti, H.; Wroblewski, P.; Khan, I.; Andualem, M.; Galal, A.M. Scrutinization of Slip Due to Lateral Velocity on the Dynamics of Engine Oil Conveying Cupric and Alumina Nanoparticles Subject to Coriolis Force. Math. Probl. Eng. 2022, 2022, 2526951. [Google Scholar] [CrossRef]
- Teague, J.R.; Gerson, R.; James, W.J. Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 1970, 8, 1073–1074. [Google Scholar] [CrossRef]
- Carvalho, T.T.; Tavares, P.B. Synthesis and thermodynamic stability of multiferroic BiFeO3. Mater. Lett. 2008, 62, 3984–3986. [Google Scholar] [CrossRef]
- Zhou, W.; Deng, H.; Yu, L.; Yang, P.; Chu, J. Band-gap narrowing and magnetic behavior of Ni-doped Ba (Ti0.875Ce0.125) O3 thin films. J. Phys. D Appl. Phys. 2015, 48, 455308. [Google Scholar] [CrossRef]
- Arshad, M.; Karamti, H.; Awrejcewicz, J.; Grzelczyk, D.; Galal, A.M. Thermal Transmission Comparison of Nanofluids over Stretching Surface under the Influence of Magnetic Field. Micromachines 2022, 13, 1296. [Google Scholar] [CrossRef]
- Yuan, G.L.; Or, S.W.; Liu, J.M.; Liu, Z.G. Structural transformation and ferroelectromagnetic behavior in single-phase Bi1−xNdxFeO3 multiferroic ceramics. Appl. Phys. Lett. 2006, 89, 052905. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.L.; Or, S.W.; Chan, H.L.W. Structural transformation and ferroelectric–paraelectric phase transition in Bi1−xLaxFeO3 (x = 0–0.25) multiferroic ceramics. J. Phys. D Appl. Phys. 2007, 40, 1196. [Google Scholar] [CrossRef]
- Khomchenko, V.A.; Kiselev, D.A.; Selezneva, E.K.; Vieira, J.M.; Lopes, A.M.L.; Pogorelov, Y.G.; Araujo, J.P.; Kholkin, A.L. Weak ferromagnetism in diamagnetically-doped Bi1−xAxFeO3 (A = Ca, Sr, Pb, Ba) multiferroics. Mater. Lett. 2008, 62, 1927–1929. [Google Scholar] [CrossRef]
- Reddy, V.A.; Pathak, N.P.; Nath, R. Domain switching in spray pyrolysis-deposited nano-crystalline BiFeO3 films. Phys. Scr. 2012, 86, 065701. [Google Scholar] [CrossRef]
- Park, T.J.; Papaefthymiou, G.C.; Viescas, A.J.; Lee, Y.; Zhou, H.; Wong, S.S. Composition-dependent magnetic properties of BiFeO3-BaTiO3 solid solution nanostructures. Phys. Rev. B 2010, 82, 024431. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Mandal, K. Enhancement of Ferromagnetic and Dielectric properties of nanostructured Barium doped Bismuth Ferrite fabricated by facile hydrothermal route. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2015; Volume 1665, p. 050022. [Google Scholar]
- Tagantsev, A.K.; Stolichnov, I.; Colla, E.L.; Setter, N. Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features. J. Appl. Phys. 2001, 90, 1387–1402. [Google Scholar] [CrossRef]
- Kumar, M.; Yadav, K.L. Study of room temperature magnetoelectric coupling in Ti substituted bismuth ferrite system. J. Appl. Phys. 2006, 100, 074111. [Google Scholar] [CrossRef]
- Qi, X.; Dho, J.; Tomov, R.; Blamire, M.G.; MacManus-Driscoll, J.L. Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 2005, 86, 062903. [Google Scholar] [CrossRef]
- Tabares-Munoz, C.; Rivera, J.P.; Bezinges, A.; Monnier, A.; Schmid, H. Measurement of the quadratic magnetoelectric effect on single crystalline BiFeO3. Jpn. J. Appl. Phys. 1985, 24, 1051. [Google Scholar] [CrossRef] [Green Version]
- Przenioslo, R.; Regulski, M.; Sosnowska, I. Modulation in multiferroic BiFeO3: Cycloidal, elliptical, or SDW? J. Phys. Soc. Jpn. 2006, 75, 084718. [Google Scholar] [CrossRef]
- Sosnowska, I.; Neumaier, T.P.; Steichele, E. Spiral magnetic ordering in bismuth ferrite. J. Phys. C Solid State Phys. 1982, 15, 4835. [Google Scholar] [CrossRef]
- Maurya, D.; Thota, H.; Nalwa, K.S.; Garg, A. BiFeO3 ceramics synthesized by mechanical activation assisted versus conventional solid-state-reaction process: A comparative study. J. Alloys Compd. 2009, 477, 780–784. [Google Scholar] [CrossRef]
- Ghosh, S.; Dasgupta, S.; Sen, A.; Maiti, H.S. Low temperature synthesis of bismuth ferrite nanoparticles by a ferrioxalate precursor method. Mater. Res. Bull. 2005, 40, 2073–2079. [Google Scholar] [CrossRef]
- Cho, C.M.; Noh, J.H.; Cho, I.S.; An, J.S.; Hong, K.S.; Kim, J.Y. Low-temperature hydrothermal synthesis of pure BiFeO3 nanopowders using triethanolamine and their applications as visible-light photocatalysts. J. Am. Ceram. Soc. 2008, 91, 3753–3755. [Google Scholar] [CrossRef]
- Park, T.J.; Papaefthymiou, G.C.; Viescas, A.J.; Moodenbaugh, A.R.; Wong, S.S. Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 2007, 7, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Li, M.; Liu, J.; Guo, D.; Pei, L.; Zhao, X. Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics. J. Phys. D Appl. Phys. 2008, 41, 065003. [Google Scholar] [CrossRef]
- Hassan, A.; Hussain, A.; Fernandez-Gamiz, U.; Arshad, M.; Karamti, H.; Awrejcewicz, J.; Alharbi, F.M.; Elfasakhany, A.; Galal, A.M. Computational investigation of magneto-hydrodynamic flow of newtonian fluid behavior over obstacles placed in rectangular cavity. Alex. Eng. J. 2023, 65, 163–188. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, S.S.; Kim, W.J. Sol–gel synthesis and properties of multiferroic BiFeO3. Mater. Lett. 2005, 59, 4006–4009. [Google Scholar] [CrossRef]
- Han, J.; Huang, Y.-H.; Wu, X.-J.; Wu, C.-L.; Wei, W.; Peng, B.; Huang, W.; Goodenough, J.B. Tunable synthesis of bismuth ferrites with various morphologies. Adv. Mater. 2006, 18, 2145–2148. [Google Scholar] [CrossRef]
- Arshad, M.; Hussain, A.; Elfasakhany, A.; Gouadria, S.; Awrejcewicz, J.; Pawłowski, W.; Elkotb, M.A.; Alharbi, F.M. Magneto-hydrodynamic flow above exponentially stretchable surface with chemical reaction. Symmetry 2022, 14, 1688. [Google Scholar] [CrossRef]
- Chen, C.; Cheng, J.; Yu, S.; Che, L.; Meng, Z. Hydrothermal synthesis of perovskite bismuth ferrite crystallites. J. Cryst. Growth 2006, 291, 135–139. [Google Scholar] [CrossRef]
- Özdemir, D.K. Temperature Susceptibility and Rheological Aging Characteristics of the Bitumen Having Different Penetration Grades. Black Sea J. Eng. Sci. 2021, 4, 209–213. [Google Scholar]
- Cheng, Z.; Li, A.H.; Wang, X.L.; Dou, S.X.; Ozawa, K.; Kimura, H.; Zhang, S.; Shrout, T.R. Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite. J. Appl. Phys. 2008, 103, 07E507. [Google Scholar] [CrossRef]
- Pradeep, A.; Chandrasekaran, G. FTIR study of Ni, Cu and Zn substituted nano-particles of MgFe2O4. Mater. Lett. 2006, 60, 371–374. [Google Scholar] [CrossRef]
- Muneeswaran, M.; Jegatheesan, P.; Giridharan, N.V. Synthesis of nanosized BiFeO3 powders by co-precipitation method. J. Exp. Nanosci. 2013, 8, 341–346. [Google Scholar] [CrossRef]
- Parikh, A.; Madamwar, D. Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresour. Technol. 2006, 97, 1822–1827. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Dasgupta, S.; Sen, A.; Sekhar Maiti, H. Low-temperature synthesis of nanosized bismuth ferrite by soft chemical route. J. Am. Ceram. Soc. 2005, 88, 1349–1352. [Google Scholar] [CrossRef]
- Nakanishi, K.; Solomon, P.H. Infrared Absorption Spectroscopy; Holden-day: Eads, TN, USA, 1977. [Google Scholar]
- Anthony Raj, C.; Muneeswaran, M.; Jegatheesan, P.; Giridharan, N.V.; Sivakumar, V.; Senguttuvan, G. Effect of annealing time in the low-temperature growth of BFO thin films spin coated on glass substrates. J. Mater. Sci. Mater. Electron. 2013, 24, 4148–4154. [Google Scholar] [CrossRef]
- Biasotto, G.; Simões, A.Z.; Foschini, C.R.; Zaghete, M.A.; Varela, J.A.; Longo, E. Microwave-hydrothermal synthesis of perovskite bismuth ferrite nanoparticles. Mater. Res. Bull. 2011, 46, 2543–2547. [Google Scholar] [CrossRef]
- Yotburut, B.; Yamwong, T.; Thongbai, P.; Maensiri, S. Synthesis and characterization of coprecipitation-prepared La-doped BiFeO3 nanopowders and their bulk dielectric properties. Jpn. J. Appl. Phys. 2014, 53, 06JG13. [Google Scholar] [CrossRef]
- Arshad, M.; Hassan, A. A numerical study on the hybrid nanofluid flow between a permeable rotating system. Eur. Phys. J. Plus 2022, 137, 1126. [Google Scholar] [CrossRef]
- Haumont, R.; Kreisel, J.; Bouvier, P. Raman scattering of the model multiferroic oxide BiFeO3: Effect of temperature, pressure and stress. Phase Transit. 2006, 79, 1043–1064. [Google Scholar] [CrossRef]
- White, W.B. Structure of particles and the structure of crystals: Information from vibrational spectroscopy. J. Ceram. Process. Res. 2005, 6, 1–9. [Google Scholar]
- Hassan, A.; Hussain, A.; Arshad, M.; Awrejcewicz, J.; Pawlowski, W.; Alharbi, F.M.; Karamti, H. Heat and mass transport analysis of MHD rotating hybrid nanofluids conveying silver and molybdenum di-sulfide nano-particles under effect of linear and non-linear radiation. Energies 2022, 15, 6269. [Google Scholar] [CrossRef]
- Bozgeyik, M.S.; Katiyar, R.K.; Katiyar, R.S. Improved magnetic properties of bismuth ferrite ceramics by La and Gd co-substitution. J. Electroceramics 2018, 40, 247–256. [Google Scholar] [CrossRef]
- Zhang, S.T.; Lu, M.H.; Wu, D.; Chen, Y.F.; Ming, N.B. Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhombohedral crystal structure. Appl. Phys. Lett. 2005, 87, 262907. [Google Scholar] [CrossRef]
- Sinha, A.; Bhushan, B.; Jagannath; Sharma, R.; Sen, S.; Mandal, B.; Meena, S.; Bhatt, P.; Prajapat, C.; Priyam, A.; et al. Enhanced dielectric, magnetic and optical properties of Cr-doped BiFeO3 multiferroic nanoparticles synthesized by sol-gel route. Results Phys. 2019, 13, 102299. [Google Scholar] [CrossRef]
- Dutta, D.P.; Mandal, B.P.; Naik, R.; Lawes, G.; Tyagi, A.K. Magnetic, ferroelectric, and magnetocapacitive properties of sonochemically synthesized Sc-doped BiFeO3 nanoparticles. J. Phys. Chem. C 2013, 117, 2382–2389. [Google Scholar] [CrossRef]
- Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 1960, 120, 91. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, S.K.; Roul, B.K.; Sahu, D.R. Enhancement of ferromagnetism and multiferroicity in Ho doped Fe rich BiFeO3. Solid State Commun. 2012, 152, 1176–1180. [Google Scholar] [CrossRef]
Material | hkl | Crystallite Size | |
---|---|---|---|
BiFeO3 | 32.17 | 110 | 40.62 nm |
Bi0.9Cd0.1FeO3 | 32.06 | 110 | 34.97 nm |
Bi0.7Cd0.3FeO3 | 32.01 | 110 | 29.14 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehmood, S.Z.; Arshad, M.; Alharbi, F.M.; Eldin, S.M.; Galal, A.M. Multiferroics Made via Chemical Co-Precipitation That Is Synthesized and Characterized as Bi(1−x)CdxFeO3. Inorganics 2023, 11, 134. https://doi.org/10.3390/inorganics11030134
Mehmood SZ, Arshad M, Alharbi FM, Eldin SM, Galal AM. Multiferroics Made via Chemical Co-Precipitation That Is Synthesized and Characterized as Bi(1−x)CdxFeO3. Inorganics. 2023; 11(3):134. https://doi.org/10.3390/inorganics11030134
Chicago/Turabian StyleMehmood, Syed Zain, Mubashar Arshad, Fahad M. Alharbi, Sayed M. Eldin, and Ahmed M. Galal. 2023. "Multiferroics Made via Chemical Co-Precipitation That Is Synthesized and Characterized as Bi(1−x)CdxFeO3" Inorganics 11, no. 3: 134. https://doi.org/10.3390/inorganics11030134
APA StyleMehmood, S. Z., Arshad, M., Alharbi, F. M., Eldin, S. M., & Galal, A. M. (2023). Multiferroics Made via Chemical Co-Precipitation That Is Synthesized and Characterized as Bi(1−x)CdxFeO3. Inorganics, 11(3), 134. https://doi.org/10.3390/inorganics11030134