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Abstract: In this paper, we report an ab initio study of a composite material based on Ti2C and
borophene B12 as an anode material for magnesium-ion batteries. The adsorption energy of Mg,
specific capacitance, electrical conductivity, diffusion barriers, and open-circuit voltage for composite
materials are calculated as functions of Mg concentration. It is found that the use of Ti2C as a
substrate for borophene B12 is energetically favorable; the binding energy of Ti2C with borophene is
−1.87 eV/atom. The translation vectors of Ti2C and borophene B12 differ by no more than 4% for in
the X direction, and no more than 0.5% in the Y direction. The adsorption energy of Mg significantly
exceeds the cohesive energy for bulk Mg. The energy barrier for the diffusion of Mg on the surface of
borophene B12 is ~262 meV. When the composite surface is completely covered with Mg ions, the
specific capacity is 662.6 mAh g−1 at an average open-circuit voltage of 0.55 V (relative to Mg/Mg+).
The effect of reducing the resistance of borophene B12 upon its binding to Ti2C is established. The
resulting electrical conductivity of the composite Ti16C8B40 is 3.7 × 105 S/m, which is three times
higher than the electrical conductivity of graphite. Thus, a composite material based on Ti2C and
borophene B12 is a promising anode material for magnesium-ion batteries.
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1. Introduction

The rapid development of technology has greatly increased the human need for reliable
rechargeable batteries with high energy density and long service life. Lithium-ion batteries
(LIBs) are currently the most common energy-storage systems and are already widely used
in portable electronic devices. However, LIBs have many disadvantages related to the cost
and safety of their operation [1]. Magnesium can serve as a promising replacement for
lithium [2,3]. Divalent magnesium has a higher energy density than monovalent lithium,
which implies a higher theoretical capacity at a lower mass, as well as low cost, availability,
and safety.

Magnesium-ion batteries (MIBs) were first reported as early as 2000, when Aurbach et al.
developed systems of rechargeable Mg batteries based on Mgx-Mo3S4 [4]. In recent years,
this direction has experienced a new round of development. Johnson et al. reported promis-
ing cathode materials based on α-V2O5 and spinel MgM2O4 (M = Cr, Co, Fe, Mn, V) [5]. A
cathode based on c-Mg2MnO4 with a capacity of 160 mA h g−1 at an average potential of
2.1 V and an energy density of 335 W h kg−1 was fabricated and tested [6]. Other promising
candidates for the role of the cathode material in MIBs are various sulfur compounds.
In particular, WS2 nanostructures were synthesized by the hydrothermal method and
used as magnesium battery cathodes [7]. A feature of these cathodes is a high capacity of
142.7 mA h g−1 at 100 charge/discharge cycles with a high current density of 500 mA/g.
Xue et al. reported the application of a CuS nanoflower cathode material based on a
conversion reaction mechanism for highly reversible magnesium batteries with improved
electrochemical performance [8]. Magnesium batteries with a CuS nanoflower cathode
have a high discharge capacity, of ~207 mA h g−1 at 100 mA g−1, and a long service life,
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of 1000 cycles at 500 mA g−1. The authors of these papers reported the fast kinetics of
Mg2+, which makes it possible to charge and discharge the cathode with a high current.
An analysis of recent publications on the topic of MIB cathodes shows the relevance and
prospects of this topic.

For the successful application of magnesium in MIB, it is necessary to find a suitable an-
ode material for this metal ion. Currently, promising anode materials are two-dimensional
(2D) materials due to their unique physical properties and low diffusion barriers [9]. The
most interesting materials for use as the anodes of metal-ion batteries (MIBs) are 2D
transition metal carbides (Mxenes), which have high electrical conductivity and good stabil-
ity [10–15]. However, the direct use of MXenes in MIBs is difficult due to the active surfaces
of MXenes [16]. The covalent and van der Waals binding of MXenes to various materials
and functional groups leads to an increase in the resistance of the material [17–21]. On the
other hand, MXenes can be used as a highly conductive substrates for borophene, which is
an energy-intensive material. Recent studies have shown that three morphological forms of
two-dimensional boron have a metallic type of conductivity during the entire lithiation pro-
cess, and also have an extremely low diffusion barrier and high energy consumption [22,23].
However, according to experimental data, borophene requires Ag(110), Au(100), Au(111),
and other substrates [24]. A graphene monolayer can be used as a substrate for a borophene
monolayer. Using ab initio methods, Yu et al. calculated an α-sheet borophene/graphene
heterostructure with a theoretical specific capacity of up to 1763.22 mA h g−1 and a dif-
fusion barrier of 353 meV, as well as with a high Li adsorption energy of −2.959 eV [25].
An α-sheet borophene/graphene heterostructure was synthesized by the resonance ball
milling method for use as a LIB anode [26]. In this heterostructure, graphene serves as a
carrier substrate for borophene, and the borophene/graphene heterostructure was able
to inherit the excellent properties of borophene. For the first time, the effect of reducing
the diffusion of lithium was revealed during the functionalization of borophene with H
and OH groups. The maximum anode capacity was 52.3 mA h g−1 at a current of 2 A g−1.
Due to the low diffusion of lithium in borophene, the charge/discharge current (2 A g−1)
is ~37.6 times the battery capacity (~37.6 C). Furthermore, in [27], using ab initio studies,
the stability of a monolayer based on B2C3P boron with an ultrahigh theoretical capac-
ity of 3024 mAh/g for lithium, a low diffusion barrier of 0.33 eV, and a metallic type of
conductivity was confirmed.

Surface functionalization with -O, -F atoms, and -OH groups can significantly change
the properties of MXene [28]. In our work, the functional group of MXene was a 2D
monolayer of borophene B12, as an anode active material for magnesium-ion batteries.
The substrate used was Ti2C, which is the lightest and most electrically conductive in the
MXenes family [29]. The choice of these materials as the anode is explained by the close
coincidence of the translation vectors of the borophene B12 and Ti2C supercells. Thus,
our study will be useful for the development of anode materials based on MXenes and
borophene for magnesium-ion batteries.

2. Results and Discussion
2.1. Atomistic Models

The atomistic model of the composite supercell consists of two borophene monolayers
and one Ti2C layer (Figure 1). At the initial stage, unit cells of Ti2C and borophene B12 were
used. The atomic structure of these unit cells is shown in the red frame in Figure 1. The
translation vectors are Lx = 3.107 Å, Ly = 5.149 Å for the Ti2C unit cell, and Lx = 2.977 Å,
Ly = 5.174 Å for the borophene B12.
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Figure 1. The supercell of a composite structure, Ti16C8B40, in the form of covalently bonded Ti2C 
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2.3 Å. After the geometric relaxation, the unit cell of Ti2C + B12 had the following transla-
tion vectors: Lx = 3.018 Å; Ly = 5.218 Å. Subsequently, the unit cell of Ti2C + B12 was trans-
lated along both directions (X and Y axes) and took the final form of the supercell of 
Ti16C8B40 (see Figure 1) with the translation vectors Lx = 6.04 Å, Ly = 10.43 Å. To assess the 
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ments of borophene during laying should change the properties of the composite. It is also 
worth considering the appearance of defects on borophene and in maxene (the absence of 
atoms or oxygen deposition on the surfaces of the films). In our work, we examined in 
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conductivity; the metallic properties of the borophene monolayers were enhanced due to 
the additional electronic states introduced by the Ti2C.  

Figure 1. The supercell of a composite structure, Ti16C8B40, in the form of covalently bonded Ti2C
and borophene B12. The left side of the figure shows the view of the structure in the XY plane; the
right side is in the YZ plane.

The difference in the translation vector lengths between the Ti2C and borophene B12
unit cells was ~4% along the X axis and ~0.5% along the Y axis, which did not exceed
2.5% on average. The bond length between the Ti and B atoms lay within the range of
2.2 Å~2.3 Å. After the geometric relaxation, the unit cell of Ti2C + B12 had the following
translation vectors: Lx = 3.018 Å; Ly = 5.218 Å. Subsequently, the unit cell of Ti2C + B12 was
translated along both directions (X and Y axes) and took the final form of the supercell of
Ti16C8B40 (see Figure 1) with the translation vectors Lx = 6.04 Å, Ly = 10.43 Å. To assess
the energy stability of the composite material Ti16C8B40, the formation energy EHoF was
calculated using Equation (1):

EHoF = ETi16C8B40 −
(
ETi16C8 + EB40

)
/natoms, (1)

where ETi16C8B40 is the total energy of the composite material, ETi16C8 + EB40 is the total
energy of MXene and two borophene B12 monolayers, natoms is the total number of atoms in
the structure (64 atoms). The formation energy for this atomistic model is −1.87 eV/atom.
As can be seen from the negative value of EHoF, the Mxene+borophene system is energeti-
cally favorable and has the right to exist as a result of synthesis. Different placements of
borophene during laying should change the properties of the composite. It is also worth
considering the appearance of defects on borophene and in maxene (the absence of atoms
or oxygen deposition on the surfaces of the films). In our work, we examined in detail one
stacking of borophene without defects (Figure 1).

2.2. Electronic and Transport Properties

After checking the energy stability of the composite material, Ti16C8B40, we carried
out studies of its electronic and transport properties. Figure 2a shows the DOS for both
the composite material and the individual layers of Ti2C and borophene B12. As can be
seen, the composite material Ti16C8B40, as with the composite layers, has a metallic type of
conductivity; the metallic properties of the borophene monolayers were enhanced due to
the additional electronic states introduced by the Ti2C.
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Figure 2. The electronic and energy characteristics of the composite material, Ti16C8B40, and individ-
ual layers, Ti2C and B12: (a) DOS; (b) electron-transmission function.

Figure 2b shows the curves of the electron-transmission functions T(E) of the com-
posite material and its individual layers. The averaged values of the T(E) function along
the zigzag and armchair directions are presented. The behavior of the T(E) curves was
qualitatively similar to the behavior of DOS functions. It can be seen that the electrical
conductivity of the Ti16C8B40 increased compared to the electrical conductivity of the
borophene monolayers. Further, the electrical conductivity of the material Ti16C8B40 was
calculated using Equation (2):

G =
2e
h

∫ ∞

−∞
T(E)FT(E − EF)dE (2)

where e is the electron charge, h is the Planck constant, EF is the Fermi energy of the contacts,
T(E) is the electron-transmission function, and FT is the thermal broadening function. The
calculated electrical conductivity of Ti16C8B40 is 0.37 S/µm, which is three times higher
than that of graphite [30].

2.3. Adsorption, OCV and Diffusion Barrier

To determine the energy-optimal arrangement of the Mg atoms on the surface of the
composite material, the adsorption energy was calculated. We considered five variants for
the landing of the Mg atoms (Figure 3): two variants with the landing of the Mg atoms
inside the hexagon (the landing sites are marked “A” and “E”) and three variants with
the landing of Mg atoms at the edges of the hexagon (the landing sites are marked “A,”
“B,” and “E”). The most energy-efficient landing sites were “A,” “B,” and “E”. The least
favorable in terms of energy were landing sites “C” and “D”. In these cases, a titanium
atom was located at a close distance under the boron atom. This prevented the curvature of
the borophene monolayer. By contrast, in the cases of landing “A” and “E,” a carbon atom
was located under the boron atom, which was sufficiently distant from both the magnesium
atom (point “A”) and the boron (point “E”). In the case of landing “B,” the boron atom was
located under the titanium atom; however, the titanium was much lower than in cases “C”
and “D.” It should be noted that in all the considered cases of the landing of Mg atoms, a
negative value of adsorption energy was observed.
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material (the Mg atom is not shown in the figure).

Next, we carried out the placement of Mg atoms on the surface of the composite
material at the landing sites “A” and “E” with a further relaxation of the structure geometry
(Figure 4a). The Mg atoms were placed both on the top and under the bottom layer of
borophene. At the “A” landing sites, the Mg ion was somewhat closer to the borophene
monolayer than at the “E” sites due to the location of the boron atom under the Mg ion. It
is known that intercalated atoms must donate electrons in the anodes of metal-ion batteries,
i.e., acquire a positive charge. In order to reveal this effect, the electronic-charge distribution
over the atoms of a supercell was calculated (Figure 4b). As shown in Figure 4b, the
magnesium and titanium atoms gave part of the charge to the borophene monolayers, and
the carbon atoms acquired a negative charge. This effect was consistent with the value of
the electronegativity of atoms according to the dimensionless Oganov scale: carbon atoms
are the most electronegative (3.15), followed by boron atoms (3.04) and titanium (2.23) [31].
Magnesium atoms have an electronegativity value of 2.39, which is higher than that of
titanium, but due to the presence of a monolayer of borophene, which “shields” titanium,
the magnesium acquires a positive charge. In the composite material, Ti16C8B40, borophene
acted as a negative charge accumulator. Thus, the composite material Ti16C8B40 is able to
oxidize magnesium atoms, which is a key factor in the anode material of metal-ion batteries.
In addition, we also calculated the adsorption energy for 16 Mg atoms (complete filling of
borophene monolayers) using Equation (3) [32]:

Eads = ((ETi2CB5 + (nEMg))− ETOTAL)/n (3)

where ETOTAL is the total energy of Mg adsorbed, ETi2CB5 is the total energy of pure
Ti16C8B40, EMg is the energy of an isolated Mg atom (an atom in a vacuum), and n is the
number of Mg atoms. The calculated adsorption energy for 16 Mg atoms was 2.44 eV/atom
(the binding energy has the same value, but with a negative sign), which is higher than
the cohesive energy of bulk Mg, which is 1.51 eV/atom [33]. The excess of EADs in the
magnesium cohesion energy suggests that at a given concentration, magnesium atoms
are not able to form crystalline clusters, which contributes to the safe operation of the
anode as part of a magnesium-ion battery. The value of the EADs exceeds the value of the
magnesium cohesion energy. Consequently, at this concentration, magnesium atoms are
not able to form crystalline clusters, which contributes to the safe operation of the anode as
part of a magnesium-ion battery.
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of electronic charge over atoms.

The next stage of the study was to plot the open-circuit voltage curve. The open-
circuit voltage (OCV) profile is one of the most important characteristics for evaluating the
performance of the anode material of a metal-ion battery. The open-circuit voltage curve is
calculated as the average voltage over parts of the Mg composition domain according to
Equation (5). Figure 5 shows the open-circuit voltage profile of an anode material based
on Ti16C8B40.
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Figure 5. Open-circuit voltage curve of composite material MgXTi16C8B40.

As magnesium was placed on the surface of the composite material, Ti16C8B40, the
OCV curve decreased from 0.724 V to 0.249 V. When half the capacity (Mg8Ti16C8B40) was
reached, the OCV sharply decreased from 0.674 V to 0.493 V. Similar findings were observed
when reaching 100% capacity: the OCV decreased from 0.429 V to 0.249 V. The placement
of the Mg atoms occurred simultaneously on both the upper and lower borophene mono-
layers, one Mg atom each. The maximum capacity of the resulting composite material
was 662.6 mAh·g−1, provided that one layer of Mg ions was located on the borophene
monolayers. However, according to the data in [34], several layers of Mg ions can be
stacked on borophene monolayers, which significantly increases the capacity of the anode
material. From the calculated OCV curve, the average voltage VAVR = 0.552 V was within
the desired potential range for anode materials (0.1 to 1.0 V) [35].
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At the final stage of the study, the energy barriers of Mg diffusion along the borophene
monolayer were calculated using the NEB algorithm. In total, three cases of diffusion were
considered (see Figure 6a–c), in which the Mg ion migrated from one hexagon to the next.
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In the first case of migration (first schematic path), the Mg ion moved from an empty
hexagon to an adjacent empty hexagon. In this case, the maximum diffusion barrier was
262 meV. This was due to the presence of two boron atoms on the migration path. In the
second case (second schematic path), the Mg ion migrated from hexagon to hexagon, in the
center of which there was a boron atom. The presence of this atom significantly increased
the diffusion barrier of the migration to 816 meV, since the Mg ion was located inside
the borophene recess (the central boron atom in the hexagon was located deeper than the
boron atoms at the vertices of the hexagon). In the third case of ion migration (the third
schematic path), the diffusion barrier was slightly lower than in the second case (808 meV),
but significantly higher than in the first case. This was caused, firstly, by the presence of a
boron atom in the center of the hexagon and, secondly, by the curvature of the borophene
monolayer at the point of transition from an empty hexagon to a hexagon with a boron
atom in the center. It is worth noting that the diffusion barrier of 262 meV was lower than
that of graphite (450~1200 meV) [36], Graphdiyne (350~520 meV) [37] and lithium titanate
(300 meV) [38].

The Arrhenius equation was used to estimate the temperature-dependent diffu-
sion transition rate. It follows from this equation that the diffusion constant D was
calculated as [39]:

D ∼ exp
(

EA

KBT

)
(4)
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where EA is the activation energy (diffusion barrier) and KBT is the product of the Boltz-
mann constant and the temperature. According to Equation (4), the diffusion transition
rate for the first case of Mg ion migration was 2.91 × 109 faster than in the second case
of migration (second schematic path), and 2.13 × 109 faster than in the third case (third
schematic path). Thus, the probability of a diffusion transition from an empty hexagon to
another empty hexagon was orders of magnitude higher than in the other cases.

At the next stage of the study, we evaluated the change in the surface area of MgxTi16C8B40
during the landing of magnesium on the structure. The starting point (0%) was the clean
surface of Ti16C8B40 (without Mg atoms on the surface). Magnesium atoms were placed
in pairs: one on the upper side of the structure, the other on the lower side. At each
landing, the optimization of the atomic coordinates and translation vectors was carried
out. Figure 7a shows the process of changing the surface area of Ti16C8B40 relative to the
initial (pure) structure. At the initial stage, the surface area changed by 0.37%. Further,
with the addition of two more magnesium atoms, the area decreased to 0.175%. When
six magnesium atoms are planted, the area of Ti16C8B40 shrank by –0.2% relative to the
area of the initial cell. Further, when planting from 8 to 14 magnesium atoms, the area
experienced slight fluctuations from 0.085% to −0.022%. When all the free landing sites
were saturated, the surface area decreased to −0.35%. Figure 7a shows that the surface area
of Ti16C8B40 changed by no more than 0.37% during the magnesium deposition. Next, to
assess the stability of the Mg16Ti16C8B40 structure under the influence of temperature, we
performed molecular-dynamics simulations using the canonical (NVT) ensemble in SIESTA.
The atomistic structure of the Mg16Ti16C8B40 was exposed to temperatures from 250 K to
450 K for 1.6 ps with a step of 1 fs. The Monkhorst-Pack scheme with 10 × 6 × 1 k-point
mesh was used as in the case of geometric relaxation. To maintain the set temperature,
a Nose–Hoover thermostat was used; the number of particles and the volume of the
atomistic structure did not change during the calculation. The total energy curve is shown
in Figure 7b. At the initial step of the MD simulation (300 K), the total energy of the
atomistic model was −8722.2427 eV.
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function of time during molecular-dynamics simulation.

During the MD simulation, the temperature varied from 250 K to 450 K. Figure 7b
illustrates the good stability of the atomistic structure of the Mg16Ti16C8B40 during heating
and cooling. The maximum deviation of the total energy from the initial position was
79 meV, which is ~0.0009% as a percentage. This small deviation in the total energy indicates
the excellent structural stability of Mg16Ti16C8B40 due to the formation of covalent bonds
of magnesium atoms with boron atoms and of boron atoms with titanium atoms.
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3. Materials and Methods

The geometric relaxation of the structures under study was carried out by means of the
density functional theory (DFT) using the SIESTA 4.1.5 code [40,41]. The modified Broyden
method [42] with Pulay corrections was chosen for the optimization procedure. Optimiza-
tion was carried out until the forces acting on each atom became equal to 0.025 eV/Å.
Double zeta valence plus polarization function (DZP) basis sets were used. We used basis
set with generalized gradient approximation (GGA) and Perdew–Burke–Ernzerhof (PBE)
parameterization, since these calculation parameters have been clearly proven in terms
of both computational accuracy and calculation duration. The van der Waals interaction
between the atoms of the structure was taken into account by using the DFT-D2 Grimm
corrections. When calculating the geometric parameters of the structures, the Monkhorst-
Pack grid was used equal to 10 × 6 × 1. When calculating the density of states (DOS), the
Monkhorst-Pack grid was increased to 20 × 12 × 1. The kinetic energy cutoff for wave
functions was 350 Ry.

To calculate the electron-transmission function, we used the method of nonequilibrium
Green–Keldysh functions (NEGF) implemented in the Siesta package within the TranSiesta
module [43]. When performing calculations of quantum transport, the supercell was
enlarged by a factor of 3 to create the system of left electrode–scattering region–right
electrode. The number of k-points in the direction perpendicular to the current transfer
was 100 units. The NEB (nudged elastic band) Siesta algorithm [44] was used to calculate
the energy barrier and diffusion paths for magnesium using the LUA scripting language.
The NEB algorithm is widely used to find metal diffusion paths in ion batteries [45–47]
and is already an integral part of ab initio research on metal-ion batteries. The open-circuit
voltage (OCV) in the range x1 ≤ x ≤ x2 was found according to Equation (5):

V =
−E
(

Mgx2
Ti16C8B5

)
− E

(
Mgx1

Ti2B5

)
− (x2 − x1)E(Mg)

(x2 − x1)q
(5)

where E
(

Mgx2
Ti16C8B40

)
and E

(
Mgx1

Ti16C8B40

)
are the total energy of Mgx2

Ti16C8B40

and Mgx1
Ti16C8B40, respectively, with x1 and x2 intercalated with Mg atoms; E(M) is the

energy of the Mg atom in its body-centered cubic (bcc) structure; q is the charge of the Mg
ion (q = 2 for Mg).

4. Conclusions

In this work, using the DFT method, an ab initio study of a composite material based
on Ti2C and borophene B12 as an anode material for magnesium-ion batteries was carried
out. As a result of the study, it was found that: (a) the adsorption energy of Mg exceeds
the cohesion energy of Mg (2.44 eV/atom vs. 1.51 eV/atom); (b) the binding energy of
Ti2C with borophene B12 is −1.87 eV/atom; (c) the minimum diffusion barrier for Mg
ion migration is 262 meV; (d) the specific capacity of the composite at maximum surface
coverage with magnesium is 662.6 mAh g−1 at an average open-circuit voltage of 0.55 V
(relative to Mg/Mg+); (e) the electrical conductivity of the composite material Ti16C8B40
(3.7 × 105 S/m) is three times higher than that of graphene. An analysis of the change in
the surface area of the Ti16C8B40 during the landing magnesium showed an insignificant
fluctuation in the surface area, of up to 0.37%. The molecular dynamics calculation revealed
the excellent stability of the atomistic structure of Mg16Ti16C8B40 with a maximum deviation
in the total energy of ~0.0009% from the initial value. The constructed atomistic model
of the composite material has all the qualities of a new-generation anode material for
magnesium-ion batteries.
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