Reverse Screening of Boronic Acid Derivatives: Analysis of Potential Antiproliferative Effects on a Triple-Negative Breast Cancer Model In Vitro
Abstract
:1. Introduction
2. Results and Discussion
2.1. Prediction of Probable Biological Activity
2.2. Therapeutic Target Prediction
2.3. T1-Cell Viability Dose–Response Curves
2.4. Effects of BCC Regarding Antiproliferative Effects on Noncancer Cells
3. Discussion
4. Materials and Methods
4.1. Compound Selection
4.2. Prediction of Probable Biological Activity and Therapeutic Target Screening
4.3. Pharmacological Assessment
4.4. Cell Culture
4.5. Estimation of the Number of Cells by Crystal Violet Assay
4.6. Statistics
5. Conclusions
6. Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, M.; Saraiva, L.; Pinto, M.; Sousa, M.E. Boronic Acids and Their Derivatives in Medicinal Chemistry: Synthesis and Biological Applications. Molecules 2020, 25, 4323. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Ursúa, M.A.; Farfán-García, E.D.; Geninatti-Crich, S. Turning Fear of Boron Toxicity into Boron-containing Drug Design. Curr. Med. Chem. 2019, 26, 5005–5018. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.; Igarashi, K.; Tanabe, A.; Miyazawa, T.; Fukushima, S.; Miura, Y.; Matsumoto, Y.; Yamasoba, T.; Matsumoto, A.; Cabral, H.; et al. Structural Control of Boronic Acid Ligands Enhances Intratumoral Targeting of Sialic Acid To Eradicate Cancer Stem-like Cells. ACS Appl. Bio Mater. 2020, 3, 5030–5039. [Google Scholar] [CrossRef]
- Petasis, N.A. Expanding Roles for Organoboron Compounds–Versatile and Valuable Molecules for Synthetic, Biological and Medicinal Chemistry. Aust. J. Chem. 2007, 60, 795–798. [Google Scholar] [CrossRef]
- Baker, S.J.; Ding, C.Z.; Akama, T.; Zhang, Y.-K.; Hernandez, V.; Xia, Y. Therapeutic potential of boron-containing compounds. Futur. Med. Chem. 2009, 1, 1275–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Song, S.; Gao, P.; Sun, L.; Kang, D.; Kongsted, J.; Poongavanam, V.; Zhan, P.; Liu, X. Recent developments in the medicinal chemistry of single boron atom-containing compounds. Acta Pharm. Sin. B 2021, 11, 3035–3059. [Google Scholar] [CrossRef] [PubMed]
- Farfán-García, E.D.; Kilic, A.; García-Machorro, J.; Cuevas-Galindo, M.E.; Rubio-Velazquez, B.A.; García-Coronel, I.H.; Estevez-Fregoso, E.; Trujillo-Ferrara, J.G.; Soriano-Ursúa, M.A. Antimicrobial (viral, bacterial, fungal, and parasitic) mechanisms of action of boron-containing compounds. In Viral, Parasitic, Bacterial, and Fungal Infections; Bagchi, D., Das, A., Downs, B.W., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 733–754. [Google Scholar]
- Brooks, W.L.A.; Sumerlin, B.S. Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine. Chem. Rev. 2015, 116, 1375–1397. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, G.; Zhou, Y.; Lin, C.; Chen, S.; Lin, Y.; Mai, S.; Huang, Z. Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds. Front. Chem. 2018, 6, 138. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Jorge, E.; Garcia-Avila, A.K.; Ocampo-Nestor, A.L.; Trujillo-Ferrara, J.G.; Soriano-Ursúa, M.A. Advances of Bioinformatics Applied to Development and Evaluation of Boron-Containing Compounds. Curr. Org. Chem. 2018, 22, 298–306. [Google Scholar] [CrossRef]
- Lee, A.; Lee, K.; Kim, D. Using reverse docking for target identification and its applications for drug discovery. Expert Opin. Drug Discov. 2016, 11, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Chaput, L.; Villoutreix, B.O. Virtual screening web servers: Designing chemical probes and drug candidates in the cyberspace. Brief. Bioinform. 2020, 22, 1790–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagunin, A.; Stepanchikova, A.; Filimonov, D.; Poroikov, V. PASS: Prediction of activity spectra for biologically active substances. Bioinformatics 2000, 16, 747–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khurana, N.; Ishar, M.P.S.; Gajbhiye, A.; Goel, R.K. PASS assisted prediction and pharmacological evaluation of novel nicotinic analogs for nootropic activity in mice. Eur. J. Pharmacol. 2011, 662, 22–30. [Google Scholar] [CrossRef]
- Goel, R.K.; Singh, D.; Lagunin, A.; Poroikov, V. PASS-assisted exploration of new therapeutic potential of natural products. Med. Chem. Res. 2010, 20, 1509–1514. [Google Scholar] [CrossRef]
- Yin, L.; Duan, J.-J.; Bian, X.-W.; Yu, S.-C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020, 22, 1–61. [Google Scholar] [CrossRef]
- Saha, T.; Makar, S.; Swetha, R.; Gutti, G.; Singh, S.K. Estrogen signaling: An emanating therapeutic target for breast cancer treatment. Eur. J. Med. Chem. 2019, 177, 116–143. [Google Scholar] [CrossRef]
- Ji, X.; Lu, Y.; Tian, H.; Meng, X.; Wei, M.; Cho, W.C. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed. Pharmacother. 2019, 114, 108800. [Google Scholar] [CrossRef]
- Nickel, J.; Gohlke, B.; Erehman, J.; Banerjee, P.; Rong, W.W.; Goede, A.; Dunkel, M.; Preissner, R. SuperPred: Update on drug classification and target prediction. Nucleic Acids Res. 2014, 42, W26–W31. [Google Scholar] [CrossRef]
- Awale, M.; Reymond, J.-L. Polypharmacology Browser PPB2: Target Prediction Combining Nearest Neighbors with Machine Learning. J. Chem. Inf. Model. 2018, 59, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Pogodin, P.; Lagunin, A.; Filimonov, D.; Poroikov, V. PASS Targets: Ligand-based multi-target computational system based on a public data and naïve Bayes approach. SAR QSAR Environ. Res. 2015, 26, 783–793. [Google Scholar] [CrossRef]
- Rappaport, N.; Nativ, N.; Stelzer, G.; Twik, M.; Guan-Golan, Y.; Stein, T.I.; Bahir, I.; Belinky, F.; Morrey, C.P.; Safran, M.; et al. MalaCards: An integrated compendium for diseases and their annotation. Database 2013, 2013, bat018. [Google Scholar] [CrossRef] [Green Version]
- Meacham, S.L.; Elwell, K.E.; Ziegler, S.; Carper, S.W. Boric acid inhibits cell growth in breast and prostate cancer cell lines. In Advances in Plant and Animal Boron Nutrition; Springer: Dordrecht, The Netherlands, 2007; pp. 299–306. [Google Scholar]
- Scorei, R.; Ciubar, R.; Ciofrangeanu, C.M.; Mitran, V.; Cimpean, A.; Iordachescu, D. Comparative Effects of Boric Acid and Calcium Fructoborate on Breast Cancer Cells. Biol. Trace Element Res. 2008, 122, 197–205. [Google Scholar] [CrossRef]
- Shaker, B.; Ahmad, S.; Lee, J.; Jung, C.; Na, D. In silico methods and tools for drug discovery. Comput. Biol. Med. 2021, 137, 104851. [Google Scholar] [CrossRef]
- Vougas, K.; Sakellaropoulos, T.; Kotsinas, A.; Foukas, G.-R.P.; Ntargaras, A.; Koinis, F.; Polyzos, A.; Myrianthopoulos, V.; Zhou, H.; Narang, S.; et al. Machine learning and data mining frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule mining. Pharmacol. Ther. 2019, 203, 107395. [Google Scholar] [CrossRef]
- Tan, Y.; Li, Y.; Qu, Y.-X.; Su, Y.; Peng, Y.; Zhao, Z.; Fu, T.; Wang, X.-Q.; Tan, W. Aptamer-Peptide Conjugates as Targeted Chemosensitizers for Breast Cancer Treatment. ACS Appl. Mater. Interfaces 2020, 13, 9436–9444. [Google Scholar] [CrossRef] [PubMed]
- Hamed, A.R.; Abdel-Azim, N.S.; Shams, K.A.; Hammouda, F.M. Targeting multidrug resistance in cancer by natural chemosensitizers. Bull. Natl. Res. Cent. 2019, 43, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017, 45, D945. [Google Scholar] [CrossRef]
- Perez, R.E.; Calhoun, S.; Shim, D.; Levenson, V.V.; Duan, L.; Maki, C.G. Prolyl endopeptidase inhibitor Y-29794 blocks the IRS1-AKT-mTORC1 pathway and inhibits survival and in vivo tumor growth of triple-negative breast cancer. Cancer Biol. Ther. 2020, 21, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Modi, S.J.; Kulkarni, V.M. Vascular Endothelial Growth Factor Receptor (VEGFR-2)/KDR Inhibitors: Medicinal Chemistry Perspective. Med. Drug Discov. 2019, 2, 100009. [Google Scholar] [CrossRef]
- Tao, K.; Fang, M.; Alroy, J.; Sahagian, G.G. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer 2008, 8, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Pulaski, B.A.; Ostrand-Rosenberg, S. Mouse 4T1 Breast Tumor Model. Curr. Protoc. Immunol. 2000, 39, 20.2.1–20.2.16. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, J.; Peng, L.; Sahin, A.A.; Huo, L.; Ward, K.C.; O’Regan, R.; Torres, M.A.; Meisel, J.L. Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res. Treat. 2017, 161, 279–287. [Google Scholar] [CrossRef]
- Bradke, T.M.; Hall, C.; Carper, S.W.; Plopper, G.E. Phenylboronic acid selectively inhibits human prostate and breast cancer cell migration and decreases viability. Cell Adhes. Migr. 2008, 2, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Feng, R.; Dai, O.; Yang, L.; Liu, Y.; Tian, Y.-C.; Peng, C.; Xiong, L. Antiproliferative and Proapoptotic Effects of Phenanthrene Derivatives Isolated from Bletilla striata on A549 Lung Cancer Cells. Molecules 2022, 27, 3519. [Google Scholar] [CrossRef]
- Spaczyńska, E.; Mrozek-Wilczkiewicz, A.; Malarz, K.; Kos, J.; Gonec, T.; Oravec, M.; Gawecki, R.; Bak, A.; Dohanosova, J.; Kapustikova, I.; et al. Design and synthesis of anticancer 1-hydroxynaphthalene-2-carboxanilides with a p53 independent mechanism of action. Sci. Rep. 2019, 9, 6387. [Google Scholar] [CrossRef] [Green Version]
- Lei, M.; Feng, H.; Bai, E.; Zhou, H.; Wang, J.; Qin, Y.; Zhang, H.; Wang, X.; Liu, Z.; Hai, O.; et al. Discovery of a novel dipeptidyl boronic acid proteasome inhibitor for the treatment of multiple myeloma and triple-negative breast cancer. Org. Biomol. Chem. 2018, 17, 683–691. [Google Scholar] [CrossRef]
- Mohammed, E.E.; Türkel, N.; Yigit, U.M.; Dalan, A.B.; Sahin, F. Boron Derivatives Inhibit the Proliferation of Breast Cancer Cells and Affect Tumor-Specific T Cell Activity In Vitro by Distinct Mechanisms. Biol. Trace Element Res. 2023. [CrossRef]
- Borek, B.; Gajda, T.; Golebiowski, A.; Blaszczyk, R. Boronic acid-based arginase inhibitors in cancer immunotherapy. Bioorganic Med. Chem. 2020, 28, 115658. [Google Scholar] [CrossRef]
- Husain, A.; Alam Khan, S.; Iram, F.; Iqbal, A.; Asif, M. Insights into the chemistry and therapeutic potential of furanones: A versatile pharmacophore. Eur. J. Med. Chem. 2019, 171, 66–92. [Google Scholar] [CrossRef] [PubMed]
- Sahayarayan, J.J.; Rajan, K.S.; Vidhyavathi, R.; Nachiappan, M.; Prabhu, D.; Alfarraj, S.; Arokiyaraj, S.; Daniel, A.N. In-silico protein-ligand docking studies against the estrogen protein of breast cancer using pharmacophore based virtual screening approaches. Saudi J. Biol. Sci. 2020, 28, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Solomon, V.R.; Hu, C.; Lee, H. Hybrid pharmacophore design and synthesis of isatin–benzothiazole analogs for their anti-breast cancer activity. Bioorg. Med. Chem. 2009, 17, 7585–7592. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
Compound | ||||
---|---|---|---|---|
1 | 2 | 3 | 4 | 5 |
Q92731 | O00763 | P05177 | P22303 | P35462 |
P11474 | Q13085 | Q07820 | P09917 | P14416 |
P00918 | P09917 | P31645 | P06276 | P11229 |
Q8TDS4 | P08588 | Q92731 | P11474 | P21917 |
P00915 | P45452 | P04818 | Q9BQF6 | Q92731 |
O43570 | P13945 | P11474 | Q92731 | P06401 |
Q16790 | P14780 | P08908 | P05177 | P11474 |
P14061 | P29274 | Q13547 | P08908 | P28335 |
P37059 | P08253 | P40238 | P27338 | P28223 |
Q13627 | P37231 | P50406 | P40238 | P35968 |
P05067 | Q07869 | P22303 | P00918 | P41595 |
P00533 | Q9Y5N1 | P09874 | Q07820 | P08908 |
P36888 | P03956 | Q01959 | P09874 | P20309 |
P11511 | P50281 | P28223 | P31645 | P27338 |
P08684 | P21453 | Q9UBN7 | P21397 | P35367 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz-Flores, M.; González-Pérez, M.; Portilla, A.; Soriano-Ursúa, M.A.; Pérez-Durán, J.; Montoya-Estrada, A.; Ceballos, G.; Nájera, N. Reverse Screening of Boronic Acid Derivatives: Analysis of Potential Antiproliferative Effects on a Triple-Negative Breast Cancer Model In Vitro. Inorganics 2023, 11, 165. https://doi.org/10.3390/inorganics11040165
Ortiz-Flores M, González-Pérez M, Portilla A, Soriano-Ursúa MA, Pérez-Durán J, Montoya-Estrada A, Ceballos G, Nájera N. Reverse Screening of Boronic Acid Derivatives: Analysis of Potential Antiproliferative Effects on a Triple-Negative Breast Cancer Model In Vitro. Inorganics. 2023; 11(4):165. https://doi.org/10.3390/inorganics11040165
Chicago/Turabian StyleOrtiz-Flores, Miguel, Marcos González-Pérez, Andrés Portilla, Marvin A. Soriano-Ursúa, Javier Pérez-Durán, Araceli Montoya-Estrada, Guillermo Ceballos, and Nayelli Nájera. 2023. "Reverse Screening of Boronic Acid Derivatives: Analysis of Potential Antiproliferative Effects on a Triple-Negative Breast Cancer Model In Vitro" Inorganics 11, no. 4: 165. https://doi.org/10.3390/inorganics11040165
APA StyleOrtiz-Flores, M., González-Pérez, M., Portilla, A., Soriano-Ursúa, M. A., Pérez-Durán, J., Montoya-Estrada, A., Ceballos, G., & Nájera, N. (2023). Reverse Screening of Boronic Acid Derivatives: Analysis of Potential Antiproliferative Effects on a Triple-Negative Breast Cancer Model In Vitro. Inorganics, 11(4), 165. https://doi.org/10.3390/inorganics11040165