Evaluation of Membrane Permeability of Copper-Based Drugs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Partition Coefficient
2.2. Data Analysis
3. Materials and Methods
Analysis of Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef] [Green Version]
- Strecker, D.; Mierzecki, A.; Radomska, K. Copper levels in patients with rheumatoid arthritis. Ann. Agric. Environ. Med. 2013, 20, 312–316. [Google Scholar]
- Wang, H.; Zhang, R.; Shen, J.; Jin, Y.; Chang, C.; Hong, M.; Guo, S.; He, D. Circulating Level of Blood Iron and Copper Associated with Inflammation and Disease Activity of Rheumatoid Arthritis. Biol. Trace Elem. Res. 2023, 201, 90–97. [Google Scholar] [CrossRef]
- Chakraborty, M.; Chutia, H.; Changkakati, R. Serum Copper as a Marker of Disease Activity in Rheumatoid Arthritis. J. Clin. Diag. Res. 2015, 9, BC09-11. [Google Scholar] [CrossRef]
- Sorenson, J.R. Copper chelates as possible active forms of the anti-arthritic agents. J. Med. Chem. 1976, 19, 135–148. [Google Scholar] [CrossRef]
- Jackson, G.E.; May, P.M.; Williams, D.R. Metal-ligand complexes involved in rheumatoid arthritis. I. Justification for Copper Administration. J. Inorg. Nucl. Chem. 1978, 40, 1227–1234. [Google Scholar] [CrossRef]
- Zvimba, J.N.; Jackson, G.E. Copper chelating anti-inflammatory agents: N1-(2-aminoethyl)-N2-(pyridin-2-ylmethyl)ethane-1,2-diamine and N-(2-(2-aminoethylamino)ethyl)picolinamide: An in vitro and in vivo study. J. Inorg. Biochem. 2007, 101, 148–158. [Google Scholar] [CrossRef]
- Walker, W.R.; Beveridge, S.J.; Whitehouse, M.W. Anti-inflammatory activity of a dermally applied copper salicylate preparation (Alcusal). Agents Actions 1980, 10, 38–47. [Google Scholar] [CrossRef]
- Puranik, R.; Bao, S.; Bonin, A.M.; Kaur, R.; Weder, J.E.; Casbolt, L.; Hambley, T.W.; Lay, P.A.; Barter, P.J.; Rye, K.A. A novel class of copper(II)- and zinc(II)-bound non-steroidal anti-inflammatory drugs that inhibits acute inflammation in vivo. Cell Biosci. 2016, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Hostynek, J.J.; Maibach, H.I. Copper and the Skin; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Zvimba, J.N.; Jackson, G.E. Solution equilibria of copper(II) complexation with N,N′-(2,2′-azanediylbis(ethane-2,1-diyl))dipicolinamide: A bio-distribution and dermal absorption study. J. Inorg. Biochem. 2007, 101, 1120–1128. [Google Scholar] [CrossRef]
- Odisitse, S.; Jackson, G.E. In vitro and in vivo studies of the dermally absorbed Cu(II) complexes of N5O2 donor ligands—Potential anti-inflammatory drugs. Inorg. Chim. Acta 2009, 362, 125–135. [Google Scholar] [CrossRef]
- Odisitse, S.; Jackson, G.E. In vitro and in vivo studies of N,N′-bis[2(2-pyridyl)-methyl]pyridine-2,6-dicarboxamide-copper(II) and rheumatoid arthritis. Polyhedron 2008, 27, 453–464. [Google Scholar] [CrossRef]
- Dermal Exposure Assessment: Principles and Applications. January 1992 United States Environmental Protection Agency, EPA/600/8-91/011B. Interim Report. Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=12188 (accessed on 17 February 2021).
- Zhang, K.; Chen, M.; Scriba, G.K.E.; Abraham, M.H.; Fahr, A.; Liu, X. Human Skin Permeation of Neutral Species and Ionic Species: Extended Linear Free-Energy Relationship Analyses. J. Pharm. Sci. 2012, 101, 2034–2044. [Google Scholar] [CrossRef]
- Geinoz, S.; Guy, R.H.; Testa, B.; Carrupt, P.A. Quantitative structure–permeation relationships (QSPeRs) to predict skin permeation: A critical evaluation. Pharm. Res. 2004, 21, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Potts, R.O.; Guy, R.H. Predicting Skin permeability. Pharm. Res. 1992, 9, 663–669. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Komatsu, T.; Sumi, M.; Numajiri, S.; Miyambo, M.; Kobayashi, D.; Sugibayashi, K.; Morimoto, Y. In vitro permeation of several drugs through the human nail plate: Relationship between physicochemical properties and nail permeability of drugs. Eur. J. Pharm. Sci. 2004, 21, 471–477. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, M.; Scriba, K.E.G.; Abraham, M.H.; Fahr, A.; Liu, X. Linear Free Energy Relationship Analysis of Retention Factors in Cerasome Electrokinetic Chromatography Intended for Predicting Drug Skin Permeation. J. Pharm. Sci. 2011, 100, 3105–3113. [Google Scholar] [CrossRef]
- Krulikowska, M.; Arct, J.; Lucova, M.; Cetner, B.; Majewski, S. Artificial membranes as models in penetration Investigations. Skin Res. Technol. 2013, 19, 139–145. [Google Scholar] [CrossRef]
- Jackson, G.E.; Linder, P.W.; Voye, A. A potentiometric and spectroscopic study of copper(ii) diamidodiamino complexes. J. Chem. Soc. Dalton Trans. 1996, 24, 4605–4612. [Google Scholar] [CrossRef]
- Bartzatt, R. Determination of dermal permeability coefficient (Kp) by utilizing multiple descriptors in artificial neural network analysis and multiple regression analysis. J. Sci. Res. Rep. 2014, 3, 2884–2899. [Google Scholar] [CrossRef]
- Korinth, G.; Schaller, K.H.; Drexler, H. Is the permeability coefficient Kp a reliable tool in percutaneous absorption studies? Arch. Toxicol. 2005, 79, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Mazurowska, L.; Nowak-Buciak, K.; Mojski, M. ESI-MS method for in vitro investigation of skin penetration by copper-amino acid complexes: From an emulsion through a model membrane. Anal. Bioanal. Chem. 2007, 388, 1157–1163. [Google Scholar] [CrossRef]
- Mazurowska, L.; Mojski, M. Biological activities of selected peptides: Skin penetration ability of copper complexes with peptide. J. Cosmet. Sci. 2008, 59, 59–69. [Google Scholar] [PubMed]
- Mazurowska, L.; Mojski, M. ESI-MS study of the mechanism of glycyl-l-histidyl-l-lysine-Cu(II) complex transport through model membrane of stratum corneum. Talanta 2007, 72, 650–654. [Google Scholar] [CrossRef]
- Zvimba, J.N.; Jackson, G.E. Thermodynamic and spectroscopic study of the interaction of Cu(II), Ni(II), Zn(II) and Ca(II) ions with 2-amino-N-(2-oxo-2-(2-(pyridin-2-yl)ethyl amino)ethyl)acetamide, a pseudo-mimic of human serum albumin. Polyhedron 2007, 26, 2395–2404. [Google Scholar] [CrossRef]
- Wajda, R. Cerasomes—Liposomes with membranes formed from stratum corneum lipids. Euro Cosmet. 2001, 4, 1–2. [Google Scholar]
- Leo, A.; Hansch, A.C.; Elkins, D. Partition Coefficient and their uses. Chem. Rev. 1971, 71, 525–616. [Google Scholar] [CrossRef]
Formula | Cu:L Ratio | −log(Kp) | −log(Ko/w) | MW | EF |
---|---|---|---|---|---|
[Cu(gly)2(H2O)2] | 1:2 | 5.79 | 2.66 | 249.5 | 5.2 |
[Cu(Homop)(H2O)4] | 1:2 | 5.63 | 3.48 | 300.2 | 5.1 |
[Cu(6UH)(H2O)2] | 1:2 | 6.05 | 3.02 | 287.5 | 5.4 |
[Cu(H(555N)) (H2O)2] | 1:1 | 7.60 | 3.00 | 308.5 | 6.8 |
[Cu(PrDH)(H2O)2] | 1:1 | 2.28 | 3.45 | 350.5 | 2.0 |
[Cu(edta)] | 1:1 | 6.49 | 3.07 | 351.7 | 5.8 |
[Cu(dtpa)] | 1:1 | 2.17 | 3.62 | 451.9 | 2.0 |
[Cu(H2O)6] | - | 1.11 | - | 171.5 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umba-Tsumbu, E.; Hammouda, A.N.; Jackson, G.E. Evaluation of Membrane Permeability of Copper-Based Drugs. Inorganics 2023, 11, 179. https://doi.org/10.3390/inorganics11050179
Umba-Tsumbu E, Hammouda AN, Jackson GE. Evaluation of Membrane Permeability of Copper-Based Drugs. Inorganics. 2023; 11(5):179. https://doi.org/10.3390/inorganics11050179
Chicago/Turabian StyleUmba-Tsumbu, Evariste, Ahmed N. Hammouda, and Graham Ellis Jackson. 2023. "Evaluation of Membrane Permeability of Copper-Based Drugs" Inorganics 11, no. 5: 179. https://doi.org/10.3390/inorganics11050179
APA StyleUmba-Tsumbu, E., Hammouda, A. N., & Jackson, G. E. (2023). Evaluation of Membrane Permeability of Copper-Based Drugs. Inorganics, 11(5), 179. https://doi.org/10.3390/inorganics11050179