Novel Copper(II) Complexes with N4,S-Diallylisothiosemicarbazones as Potential Antibacterial/Anticancer Drugs
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Materials and Instrumentation
3.2. Synthesis
3.2.1. Synthesis of N4,S-Diallylisothiosemicarbazones
2-Formylpyridine N4,S-Diallylisothiosemicarbazone (HL1)
2-Acetylpyridine N4,S-Diallylisothiosemicarbazone (HL2)
3.2.2. Synthesis of Copper(II) Complexes
[Cu(HL1)Cl2] (1)
[Cu(HL1)Br2] (2)
[Cu(H2O)(L1)(CH3COO)]·1.75H2O (3)
[Cu(HL2)Cl2] (4)
[Cu(HL2)Br2] (5)
[Cu(H2O)(L2)(CH3COO)] (6)
3.3. X-ray Crystallography
3.4. Antibacterial and Antifungal Activity
3.5. Antiproliferative Activity
3.5.1. Cell Cultures
3.5.2. Resazurin Test
3.6. Antiradical Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zatta, P.; Frank, A. Copper deficiency and neurological disorders in man and animals. Brain Res. 2007, 54, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Khalid, H.; Hanif, M.; Ali Hashmi, M.; Mahmood, T.; Ayub, K.; Monim-ul-Mehboob, M. Copper complexes of bioactive ligands with superoxide dismutase activity. Mini-Rev. Med. Chem. 2013, 13, 1944–1956. [Google Scholar] [CrossRef] [PubMed]
- Paterson, B.M.; Donnelly, P.S. Copper complexes of bis(thiosemicarbazones): From chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals. Chem. Soc. Rev. 2011, 40, 3005–3018. [Google Scholar] [CrossRef] [PubMed]
- Barone, G.; Terenzi, A.; Lauria, A.; Almerico, A.M.; Leal, J.M.; Busto, N.; García, B. DNA-binding of nickel(II), copper(II) and zinc(II) complexes: Structure–affinity relationships. Coord. Chem. Rev. 2013, 257, 2848–2862. [Google Scholar] [CrossRef]
- Chudal, L.; Pandey, N.K.; Phan, J.; Johnson, O.; Lin, L.; Yu, H.; Shu, Y.; Huang, Z.; Xing, M.; Liu, J.P.; et al. Copper-Cysteamine Nanoparticles as a Heterogeneous Fenton-Like Catalyst for Highly Selective Cancer Treatment. ACS Appl. Bio Mater. 2020, 3, 1804–1814. [Google Scholar] [CrossRef] [PubMed]
- Weder, J.E.; Hambley, T.W.; Kennedy, B.J.; Lay, P.A.; MacLachlan, D.; Bramley, R.; Delfs, C.D.; Murray, K.S.; Moubaraki, B.; Warwick, B.; et al. Anti-Inflammatory Dinuclear Copper(II) Complexes with Indomethacin. Synthesis, Magnetism and EPR Spectroscopy. Crystal Structure of the N,N-Dimethylformamide Adduct. Inorg. Chem. 1999, 38, 1736–1744. [Google Scholar] [CrossRef] [PubMed]
- Palanimuthu, D.; Shinde, S.V.; Somasundaram, K.; Samuelson, A.G. In vitro and in vivo anticancer activity of copper bis (thiosemicarbazone) complexes. J. Med. Chem. 2013, 56, 722–734. [Google Scholar] [CrossRef]
- Fiadjoe, H.K.; Lambring, C.; Sankpal, U.T.; Alajroush, D.; Holder, A.A.; Basha, R. Anti-proliferative effect of two copper complexes against medulloblastoma cells. Cancer Res. 2023, 83, 6255. [Google Scholar] [CrossRef]
- Mathews, N.A.; Kurup, M.P. Copper (II) complexes as novel anticancer drug: Synthesis, spectral studies, crystal structures, in silico molecular docking and cytotoxicity. J. Mol. Struct. 2022, 1258, 132672. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, B.; Ai, Y.; Chen, M.; Zheng, X.; Qi, J. Synthesis, crystal structures and anti-cancer mechanism of Cu (II) complex derived from 2-acetylpyrazine thiosemicarbazone. J. Coord. Chem. 2022, 75, 1325–1340. [Google Scholar] [CrossRef]
- Paprocka, R.; Wiese-Szadkowska, M.; Janciauskiene, S.; Kosmalski, T.; Kulik, M.; Helmin-Basa, A. Latest developments in metal complexes as anticancer agents. Coord. Chem. Rev. 2022, 452, 214307. [Google Scholar] [CrossRef]
- Adhikari, H.S.; Garai, A.; Yadav, P.N. Synthesis, characterization, and anticancer activity of chitosan functionalized isatin based thiosemicarbazones, and their copper (II) complexes. Carbohydr. Res. 2023, 526, 108796. [Google Scholar] [CrossRef]
- Bajaj, K.; Buchanan, R.M.; Grapperhaus, C.A. Antifungal activity of thiosemicarbazones, bis (thiosemicarbazones), and their metal complexes. J. Inorg. Biochem. 2021, 225, 111620. [Google Scholar] [CrossRef] [PubMed]
- Benns, B.G.; Gingras, B.A.; Bayley, C.H. Antifungal activity of some thiosemicarbazones and their copper complexes. Appl. Microbiol. 1960, 8, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Verma, K.K.; Nirwan, N.; Singh, R.; Bhojak, N. Microwave Assisted Synthesis, Characterisation and Biological Activities of Cu (II) Complexes of Few Thiosemicarbazones Ligands. J. Sci. Res. 2023, 15, 275–283. [Google Scholar] [CrossRef]
- Dong, X.; Wang, H.; Zhang, H.; Li, M.; Huang, Z.; Wang, Q.; Li, X. Copper-thiosemicarbazone complexes conjugated-cellulose fibers: Biodegradable materials with antibacterial capacity. Carbohydr. Polym. 2022, 294, 119839. [Google Scholar] [CrossRef]
- Petrasheuskaya, T.V.; Kovács, F.; Igaz, N.; Rónavári, A.; Hajdu, B.; Bereczki, L.; May, N.V.; Spengler, G.; Gyurcsik, B.; Kiricsi, M.; et al. Estradiol-Based Salicylaldehyde (Thio) Semicarbazones and Their Copper Complexes with Anticancer, Antibacterial and Antioxidant Activities. Molecules 2023, 28, 54. [Google Scholar] [CrossRef]
- Nandaniya, B.; Das, S.; Jani, D. New thiosemicarbazone derivatives and their Mn (II), Ni (II), Cu (II) and Zn (II) complexes: Synthesis, characterization and in-vitro biological screening. Curr. Chem. Lett. 2023, 12, 289–296. [Google Scholar] [CrossRef]
- Prathima, B.; Rao, Y.S.; Reddy, S.A.; Reddy, Y.P.; Reddy, A.V. Copper (II) and nickel (II) complexes of benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone: Synthesis, characterization and biological activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 77, 248–252. [Google Scholar] [CrossRef]
- Shah, S.S.; Shah, D.; Khan, I.; Ahmad, S.; Ali, U.; Rahman, A. Synthesis and antioxidant activities of Schiff bases and their complexes: An updated review. Biointerface Res. Appl. Chem 2020, 10, 6936–6963. [Google Scholar] [CrossRef]
- Ohui, K.; Afanasenko, E.; Bacher, F.; Ting, R.L.X.; Zafar, A.; Blanco-Cabra, N.; Torrents, E.; Dömötör, O.; May, N.V.; Darvasiova, D.; et al. New water-soluble copper (II) complexes with morpholine–thiosemicarbazone hybrids: Insights into the anticancer and antibacterial mode of action. J. Med. Chem. 2018, 62, 512–530. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, S.; Mague, J.T.; Takjoo, R. Structural, theoretical investigations and HSA-interaction studies of three new copper (II) isothiosemicarbazone complexes. Polyhedron 2022, 224, 115986. [Google Scholar] [CrossRef]
- Takjoo, R.; Ramasami, P.; Rhyman, L.; Ahmadi, M.; Rudbari, H.A.; Bruno, G. Structural and theoretical studies of iron (III) and copper (II) complexes of dianion N1, N4-bis (salicylidene)-S-alkyl-thiosemicarbazide. J. Mol. Struct. 2022, 1255, 132388. [Google Scholar] [CrossRef]
- Fasihizad, A.; Akbari, A.; Ahmadi, M.; Dusek, M.; Henriques, M.S.; Pojarova, M. Copper (II) and molybdenum (VI) complexes of a tridentate ONN donor isothiosemicarbazone: Synthesis, characterization, X-ray, TGA and DFT. Polyhedron 2016, 115, 297–305. [Google Scholar] [CrossRef]
- Zalevskaya, O.A.; Gur’eva, Y.A. Recent Studies on the Antimicrobial Activity of Copper Complexes. Russ. J. Coord. Chem. 2021, 47, 861–880. [Google Scholar] [CrossRef]
- Heinisch, L.; Fleck, W.F.; Jacob, H.E. Copper II complexes of N-heterocyclic formylisothiosemicarbazones with antimicrobial and beta-lactamase inhibitory activity. Z. Allg. Mikrobiol. 1980, 20, 619–626. [Google Scholar] [CrossRef]
- Gulea, А.P.; Usataia, I.S.; Graur, V.O.; Chumakov, Y.M.; Petrenko, P.A.; Balan, G.G.; Burduniuc, O.S.; Tsapkov, V.I.; Rudic, V.F. Synthesis, Structure and Biological Activity of Coordination Compounds of Copper, Nickel, Cobalt, and Iron with Ethyl N’-(2-Hydroxybenzylidene)-N-prop-2-en-1-ylcarbamohydrazonothioate. Russ. J. Gen. Chem. 2020, 90, 630–639. [Google Scholar] [CrossRef]
- Zaltariov, M.; Hammerstad, M.; Arabshahi, H.; Jovanović, K.; Richter, K.; Cazacu, M.; Shova, S.; Balan, M.; Andersen, N.; Radulović, S.; et al. New iminodiacetate–thiosemicarbazone hybrids and their copper (II) complexes are potential ribonucleotide reductase R2 inhibitors with high antiproliferative activity. Inorg. Chem. 2017, 56, 3532–3549. [Google Scholar] [CrossRef]
- Balan, G.; Burduniuc, O.; Usataia, I.; Graur, V.; Chumakov, Y.; Petrenko, P.; Gudumac, V.; Gulea, A.; Pahontu, E. Novel 2-formylpyridine 4-allyl-S-methylisothiosemicarbazone and Zn (II), Cu (II), Ni (II) and Co (III) complexes: Synthesis, characterization, crystal structure, antioxidant, antimicrobial and antiproliferative activity. Appl. Organomet. Chem. 2020, 34, e5423. [Google Scholar] [CrossRef]
- Graur, V.; Usataia, I.; Bourosh, P.; Kravtsov, V.; Garbuz, O.; Hureau, C.; Gulea, A. Synthesis, characterization, and biological activity of novel 3d metal coordination compounds with 2-acetylpyridine N4-allyl-S-methylisothiosemicarbazone. Appl. Organomet. Chem. 2021, 35, e6172. [Google Scholar] [CrossRef]
- Yamazaki, C. The structure of isothiosemicarbazones. Can. J. Chem. 1975, 53, 610–615. [Google Scholar] [CrossRef]
- Allen, F.H. The Cambridge Structural Database: A quarter of a million crystal structures and rising. Acta. Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2002, 58, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Arion, V.B.; Rapta, P.; Telser, J.; Shova, S.S.; Breza, M.; Lušpai, K.; Kozisek, J. Syntheses, electronic structures, and EPR/UV-Vis-NIR spectroelectrochemistry of nickel(II), copper(II), and zinc(II) complexes with a Tetradentate ligand based on S-methylisothiosemicarbazide. Inorg. Chem. 2011, 50, 2918–2931. [Google Scholar] [CrossRef] [PubMed]
- Arion, V.B.; Platzer, S.; Rapta, P.; Machata, P.; Breza, M.; Vegh, D.; Dunsch, L.; Telser, J.; Shova, S.; Leod, T.C.O.; et al. Marked stabilization of redox states and enhanced catalytic activity in galactose oxidase models based on transition metal S-methylisothiosemicarbazonates with -SR group in ortho position to the phenolic oxygen. Inorg. Chem. 2013, 52, 7524–7540. [Google Scholar] [CrossRef] [PubMed]
- Revenco, M.; Bulmaga, P.; Jora, E.; Palamarciuc, O.; Kravtsov, V.; Bourosh, P. Specificity of salicylaldehyde S-alkylisothiosemicarbazones coordination in palladium(II) complexes. Polyhedron 2014, 80, 250–255. [Google Scholar] [CrossRef]
- Güveli, Ş.; Kılıç-Cıkla, I.; Ülküseven, B.; Yavuz, M.; Bal-Demirci, T. 5-Methyl-2-hydroxy-acetophenone-S-methyl-thiosemicarbazone and its nickel-PPh3 complex. Synthesis, characterization, and DFT calculations. J. Mol. Struct. 2018, 1173, 366–374. [Google Scholar] [CrossRef]
- Pahontu, E.; Usataia, I.; Graur, V.; Chumakov, Y.; Petrenko, P.; Gudumac, V.; Gulea, A. Synthesis, characterization, crystal structure of novel Cu(II), Co(III), Fe(III) and Cr(III) complexes with 2-hydroxybenzaldehyde-4-allyl-S-methylisothiosemicarbazone: Antimicrobial, antioxidant and in vitro antiproliferative activity. Appl. Organomet. Chem. 2018, 32, e4544. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 288–290. [Google Scholar]
- Güveli, Ş.; Agopcan Çınar, S.; Karahan, Ö.; Aviyente, V.; Ülküseven, B. Nickel (II)–PPh3 Complexes of S, N-Substituted Thiosemicarbazones–Structure, DFT Study, and Catalytic Efficiency. Eur. J. Inorg. Chem. 2016, 2016, 538–544. [Google Scholar] [CrossRef]
- Revenco, M.D.; Simonov, Y.A.; Duca, G.G.; Bourosh, P.N.; Bulmaga, P.I.; Kukushkin, V.Y.; Zhora, E.I.; Gdaniec, M. Versatility and reactivity of salicylaldehyde S-methylisothiosemicarbazone in palladium (II) complexes. Russ. J. Inorg. Chem. 2009, 54, 698–707. [Google Scholar] [CrossRef]
- Pahonțu, E.; Proks, M.; Shova, S.; Lupașcu, G.; Ilieș, D.C.; Bărbuceanu, Ș.F.; Socea, L.; Badea, M.; Păunescu, V.; Istrati, D.; et al. Synthesis, characterization, molecular docking studies and in vitro screening of new metal complexes with Schiff base as antimicrobial and antiproliferative agents. Appl. Organomet. Chem. 2019, 33, e5185. [Google Scholar] [CrossRef]
- Masadeh, M.M.; Hussein, E.I.; Alzoubi, K.H.; Khabour, O.; Shakhatreh, M.A.K.; Gharaibeh, M. (2015). Identification, characterization and antibiotic resistance of bacterial isolates obtained from waterpipe device hoses. Int. J. Environ. Res. Public Health 2015, 12, 5108–5115. [Google Scholar] [CrossRef] [PubMed]
- Khaledi, A.; Esmaeili, D.; Jamehdar, S.A.; Esmaeili, S.A.; Neshani, A.; Bahador, A. Expression of MFS efflux pumps among multidrug resistant Acinetobacter baumannii clinical isolates. Pharm. Lett. 2016, 8, 262–267. [Google Scholar]
- Nikolić, M.; Vasić, S.; Đurđević, J.; Stefanović, O.; Čomić, L. Antibacterial and anti-biofilm activity of ginger (Zingiber officinale (Roscoe)) ethanolic extract. Kragujev. J. Sci. 2014, 36, 129–136. [Google Scholar] [CrossRef]
- Sabo, V.A.; Gavric, D.; Pejic, J.; Knezevic, P. Acinetobacter calcoaceticus-A. baumannii complex: Isolation, identification and characterisation of environmental and clinical strains. Biol. Serb. 2022, 44, 3–17. [Google Scholar] [CrossRef]
- Borcea, A.M.; Marc, G.; Ionuț, I.; Vodnar, D.C.; Vlase, L.; Gligor, F.; Pricopie, A.; Pîrnău, A.; Tiperciuc, B.; Oniga, O. A novel series of acylhydrazones as potential anti-Candida agents: Design, synthesis, biological evaluation and in silico studies. Molecules 2019, 24, 184. [Google Scholar] [CrossRef]
- Tan, M.H.; Nowak, N.J.; Loor, R.; Ochi, H.; Sandberg, A.A.; Lopez, C.; Pickren, J.W.; Berjian, R.; Douglass, H.O.; Chu, T.M. Characterization of a new primary human pancreatic tumor line. Cancer Investig. 1986, 4, 15–23. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, M. Synthesis and characterization of some multi-substituted thiosemicarbazones as the multi-dental ligands of metal ions. Chin. J. Org. Chem. 2001, 21, 681–684. [Google Scholar]
- Perrin, D.D.; Armarego, W.L.; Perrin, D.R. Purification of Laboratory Chemicals, 4th ed.; Butterworth-Heinemann, Pergamon Press: Oxford, UK, 1966. [Google Scholar]
- Fries, J.; Getrost, H.; Merck, D.E. Organic Reagents Trace Analysis; E. Merck: Darmstadt, Germany, 1977. [Google Scholar]
- Graur, V.; Mardari, A.; Bourosh, P.; Kravtsov, V.; Usataia, I.; Ulchina, I.; Garbuz, O.; Gulea, A. Novel Antioxidants Based on Selected 3d Metal Coordination Compounds with 2-Hydroxybenzaldehyde 4,S-Diallylisothiosemicarbazone. Acta Chim. Slov. 2023, 70, 122–130. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
Compound | [H2L2]I | 3 |
---|---|---|
Empirical formula | C14H19I1N4S1 | C15H23.5Cu1N4O4.75S1 |
Formula weight | 402.29 | 431.48 |
Crystal system | Triclinic | Triclinic |
Space group | P | P |
Unit cell dimensions | ||
a (Å) | 7.3553(8) | 8.6225(5) |
b (Å) | 9.0535(9) | 10.9536(5) |
c (Å) | 13.3945(18) | 11.3493(8) |
α (°) | 103.136(10) | 89.140(4) |
β (°) | 91.306(11) | 69.700(6) |
γ (°) | 100.693(9) | 81.612(4) |
V (Å3) | 851.56(18) | 993.85(11) |
Z | 2 | 2 |
ρcalc (g cm−3) | 1.569 | 1.442 |
μMo (mm−1) | 1.999 | 1.234 |
F(000) | 400 | 449 |
Crystal size (mm) | 0.60 × 0.12 × 0.08 | 0.48 × 0.40 × 0.21 |
θ Range (°) | 3.12–25.05 | 3.39–25.25 |
Index range | −8 ≤ h ≤ 8, −10 ≤ k ≤ 10, −15 ≤ l ≤ 15 | −10 ≤ h ≤ 10, −12 ≤ k ≤ 13, −13 ≤ l ≤ 11 |
Reflections collected/unique | 6159/6159 (twin) | 6114/3587 (Rint = 0.0238) |
Completeness (%) | 99.8 (θ = 25.05°) | 99.6 (θ =25.25°) |
Reflections with I > 2σ(I) | 4518 | 3037 |
Number of refined parameters | 184 | 240 |
Goodness-of-fit (GOF) | 1.002 | 1.001 |
R (for I > 2σ(I)) | R1 = 0.0437, wR2 = 0.0954 | R1 = 0.0403, wR2 = 0.1226 |
R (for all reflections) | R1 = 0.0608, wR2 = 0.0992 | R1 = 0.0496, wR2 = 0.1296 |
Δρmax/Δρmin (e·Å−3) | 0.988/−0.521 | 0.687/−0.279 |
Bonds | [H2L2]I | 3 |
---|---|---|
(Å) | ||
N(3)–C(2) | 1.292(7) | 1.286(4) |
N(3)–N(2) | 1.374(6) | 1.362(3) |
C(1)–N(1) | 1.330(7) | 1.305(4) |
C(1)–N(2) | 1.312(7) | 1.361(4) |
C(1)–S(1) | 1.760(6) | 1.768(3) |
S(1)–C(11) | 1.821(6) | 1.796(4) |
N(1)–C(8) | 1.463(7) | 1.474(4) |
Angles | (°) | |
C(2)–N(3)–N(2) | 112.8(5) | 123.1(2) |
N(3)–N(2)–C(1) | 111.5(5) | 107.0(2) |
N(2)–C(1)–N(1) | 127.1(6) | 122.9(3) |
N(2)–C(1)–S(1) | 115.8(5) | 117.0(2) |
N(1)–C(1)–S(1) | 117.1(5) | 120.1(2) |
C(1)–S(1)–C(11) | 102.5(3) | 104.4(2) |
C(1)–N(1)–C(8) | 126.6(5) | 122.1(3) |
D–H⋅⋅⋅A | d(H⋅⋅⋅A) | d(D⋅⋅⋅A) | ∠(DHA) | Symmetry Transformation for Acceptor |
---|---|---|---|---|
[H2L2]I | ||||
N(1)–H(1)⋅⋅⋅I(1) | 2.84 | 3.622(5) | 152 | x, y, z |
N(4)–H(2)⋅⋅⋅I(1) | 2.75 | 3.490(5) | 146 | x, y, z |
C(14)–H(2)⋅⋅⋅I(1) | 3.31 | 4.241(6) | 165 | −x + 2, −y + 1, −z + 1 |
C(14)–H(3)⋅⋅⋅I(1) | 3.16 | 4.121(7) | 175 | −x + 1, −y + 1, −z + 1 |
3 | ||||
O(1W)–H(1)⋅⋅⋅O(3W) | 1.88 | 2.761(4) | 166 | −x, −y + 1, −z + 2 |
O(1W)–H(2)⋅⋅⋅N(2) | 1.94 | 2.835(3) | 176 | −x, −y, −z + 2 |
O(2W)–H(1)⋅⋅⋅O(1W) | 2.05 | 2.814(4) | 151 | x, y, z |
O(2W)–H(2)⋅⋅⋅O(2) | 1.95 | 2.759(4) | 158 | x − 1, y, z |
O(3W)–H(1)⋅⋅⋅O(2W) | 1.92 | 2.735(5) | 159 | x, y, z |
O(3W)–H(2)⋅⋅⋅O(1) | 1.99 | 2.838(3) | 174 | x, y, z |
Bonds | Å |
---|---|
Cu(1)–N(1) | 1.962(3) |
Cu(1)–N(3) | 1.948(2) |
Cu(1)–N(4) | 2.037(3) |
Cu(1)–O(1) | 1.942(2) |
Cu(1)–O(1W) | 2.353(2) |
Angles | ° |
N(1)–Cu(1)–N(3) | 78.61(10) |
N(1)–Cu(1)–N(4) | 158.36(11) |
N(1)–Cu(1)–O(1) | 99.28(10) |
N(1)–Cu(1)–O(1W) | 98.61(10) |
N(3)–Cu(1)–N(4) | 80.30(10) |
N(3)–M(1)–O(1) | 172.76(10) |
N(3)–M(1)–O(1W) | 99.94(9) |
N(4)–M(1)–O(1) | 101.04(10) |
N(4)–M(1)–O(1W) | 89.75(10) |
O(1)–M(1)–O(1W) | 87.21(9) |
Compound | Staphylococcus aureus ATCC 25923 | Bacillus cereus ATCC 11778 | Escherichia coli ATCC 25922 | Acinetobacter baumannii BAA-747 | Candidaalbicans ATCC 10231 | |||||
---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MFC | |
HL1 | 125 | 250 | 31.3 | 62.5 | >1000 | >1000 | - | - | 15.6 | 31.3 |
1 | 0.977 | 1.95 | 0.977 | 1.95 | 15.6 | 31.3 | 15.6 | 31.3 | 7.81 | 15.6 |
2 | 0.977 | 1.95 | 1.95 | 3.91 | 15.6 | 31.3 | 15.6 | 31.3 | 3.91 | 7.81 |
3 | 31.3 | 62.5 | 31.3 | 62.5 | 250 | 500 | - | - | 31.3 | 62.5 |
HL2 | 31.3 | 62.5 | 62.5 | 62.5 | >1000 | >1000 | >1000 | >1000 | 7.81 | 62.5 |
4 | 0.488 | 0.488 | 0.488 | 0.488 | 31.3 | 62.5 | 1.95 | 1.95 | 3.91 | 15.6 |
5 | 0.488 | 0.488 | 0.488 | 0.488 | 1.95 | 3.91 | 1.95 | 1.95 | 3.91 | 15.6 |
6 | 3.91 | 3.91 | 1.95 | 3.91 | 62.5 | 62.5 | 31.3 | 31.3 | 3.91 | 31.3 |
Furacillinum [37,41] | 9.3 | 9.3 | 4.7 | 4.7 | 18.5 | 37.5 | 4.7 | 9.4 | - | - |
Tetracycline [42,43,44,45] | 0.25 | 1.96 | 0.06 | - | 0.98 | 3.91 | 0.5 | - | - | - |
Nystatine [37] | - | - | - | - | - | - | - | - | 80 | 80 |
Fluconazole [46] | - | - | - | - | - | - | - | - | 15.6 | 31.3 |
Compound | MDCK | HeLa | BxPC-3 | RD | |||
---|---|---|---|---|---|---|---|
IC50, μM | IC50, μM | SI | IC50, μM | SI | IC50, μM | SI | |
DOXO | 7.1 ± 0.3 | 10.0 ± 0.4 | 0.71 | 3.7 ± 0.3 | 1.9 | 16.2 ± 0.6 | 0.44 |
HL2 | - | >100 | - | >100 | - | - | - |
4 | 1.4 ± 0.1 | 0.5 ± 0.1 | 2.80 | 0.005 ± 0.001 | 280 | 0.2 ± 0.1 | 7.00 |
5 | 1.23 ± 0.01 | 0.39 ± 0.01 | 3.15 | 0.008 ± 0.001 | 154 | 1.3 ± 0.4 | 0.95 |
S-MeT2AP | 13.0 ± 1.3 | 47.6 ± 4.9 | 0.27 | 1.5 ± 0.5 | 8.7 | >100 | - |
[Cu(S-MeT2AP)Cl2] | 1.00 ± 0.02 | 3.0 ± 1.2 | 0.33 | 0.09 ± 0.01 | 11 | 0.16 ± 0.01 | 6.3 |
[Cu(S-MeT2AP)Br2] | 0.35 ± 0.01 | 0.6 ± 0.2 | 0.58 | 0.02 ± 0.01 | 18 | 0.05 ± 0.01 | 7.0 |
Compound | IC50, μM |
---|---|
HL1 | 28.5 ± 4.0 |
1 | 28.9 ± 6.1 |
2 | 32.7 ± 0.9 |
3 | 30.1 ± 1.3 |
HL2 | 80.8 ± 13.4 |
4 | >100 |
5 | >100 |
6 | 95.0 ± 7.3 |
Trolox | 33.3 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graur, V.; Usataia, I.; Graur, I.; Garbuz, O.; Bourosh, P.; Kravtsov, V.; Lozan-Tirsu, C.; Balan, G.; Fala, V.; Gulea, A. Novel Copper(II) Complexes with N4,S-Diallylisothiosemicarbazones as Potential Antibacterial/Anticancer Drugs. Inorganics 2023, 11, 195. https://doi.org/10.3390/inorganics11050195
Graur V, Usataia I, Graur I, Garbuz O, Bourosh P, Kravtsov V, Lozan-Tirsu C, Balan G, Fala V, Gulea A. Novel Copper(II) Complexes with N4,S-Diallylisothiosemicarbazones as Potential Antibacterial/Anticancer Drugs. Inorganics. 2023; 11(5):195. https://doi.org/10.3390/inorganics11050195
Chicago/Turabian StyleGraur, Vasilii, Irina Usataia, Ianina Graur, Olga Garbuz, Paulina Bourosh, Victor Kravtsov, Carolina Lozan-Tirsu, Greta Balan, Valeriu Fala, and Aurelian Gulea. 2023. "Novel Copper(II) Complexes with N4,S-Diallylisothiosemicarbazones as Potential Antibacterial/Anticancer Drugs" Inorganics 11, no. 5: 195. https://doi.org/10.3390/inorganics11050195
APA StyleGraur, V., Usataia, I., Graur, I., Garbuz, O., Bourosh, P., Kravtsov, V., Lozan-Tirsu, C., Balan, G., Fala, V., & Gulea, A. (2023). Novel Copper(II) Complexes with N4,S-Diallylisothiosemicarbazones as Potential Antibacterial/Anticancer Drugs. Inorganics, 11(5), 195. https://doi.org/10.3390/inorganics11050195