Release of Pure H2 from Na[BH3(CH3NH)BH2(CH3NH)BH3] by Introduction of Methyl Substituents
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Syntheses
3.2. Instrumental
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.; Ma, Z.; Zheng, J.; Li, X.; Akiba, E.; Li, H.-W. Perspectives and Challenges of Hydrogen Storage in Solid-State Hydrides. Chin. J. Chem. Eng. 2021, 29, 1–12. [Google Scholar] [CrossRef]
- Milanese, C.; Jensen, T.; Hauback, B.; Pistidda, C.; Dornheim, M.; Yang, H.; Lombardo, L.; Zuettel, A.; Filinchuk, Y.; Ngene, P.; et al. Complex Hydrides for Energy Storage. Int. J. Hydrogen Energy 2019, 44, 7860–7874. [Google Scholar] [CrossRef]
- Dematteis, E.M.; Amdisen, M.B.; Autrey, T.; Barale, J.; E Bowden, M.; E Buckley, C.; Cho, Y.W.; Deledda, S.; Dornheim, M.; de Jongh, P.; et al. Hydrogen Storage in Complex Hydrides: Past Activities and New Trends. Prog. Energy 2022, 4, 032009. [Google Scholar] [CrossRef]
- Huang, Z.; Autrey, T. Boron–Nitrogen–Hydrogen (BNH) Compounds: Recent Developments in Hydrogen Storage, Applications in Hydrogenation and Catalysis, and New Syntheses. Energy Environ. Sci. 2012, 5, 9257–9268. [Google Scholar] [CrossRef]
- Hamilton, C.W.; Baker, R.T.; Staubitz, A.; Manners, I. B–N Compounds for Chemical Hydrogen Storage. Chem. Soc. Rev. 2009, 38, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Pan, Z.; Yu, X. Metal B-N-H Hydrogen-Storage Compound: Development and Perspectives. J. Alloys Compd. 2019, 794, 303–324. [Google Scholar] [CrossRef]
- Castilla-Martinez, C.A.; Moury, R.; Demirci, U.B. Amidoboranes and Hydrazinidoboranes: State of the Art, Potential for Hydrogen Storage, and Other Prospects. Int. J. Hydrogen Energy 2020, 45, 30731–30755. [Google Scholar] [CrossRef]
- Kumar, R.; Karkamkar, A.; Bowden, M.; Autrey, T. Solid-State Hydrogen Rich Boron–Nitrogen Compounds for Energy Storage. Chem. Soc. Rev. 2019, 48, 5350–5380. [Google Scholar] [CrossRef]
- Dovgaliuk, I.; Filinchuk, Y. Aluminium Complexes of B- and N-Based Hydrides: Synthesis, Structures and Hydrogen Storage Properties. Int. J. Hydrogen Energy 2016, 41, 15489–15504. [Google Scholar] [CrossRef]
- Paskevicius, M.; Jepsen, L.H.; Schouwink, P.; Černý, R.; Ravnsbæk, D.B.; Filinchuk, Y.; Dornheim, M.; Besenbacher, F.; Jensen, T.R. Metal Borohydrides and Derivatives—Synthesis, Structure and Properties. Chem. Soc. Rev. 2017, 46, 1565–1634. [Google Scholar] [CrossRef] [PubMed]
- Stephens, F.H.; Pons, V.; Tom Baker, R. Ammonia–Borane: The Hydrogen Source Par Excellence? Dalton Trans. 2007, 2613–2626. [Google Scholar] [CrossRef]
- Demirci, U.B. Ammonia Borane, a Material with Exceptional Properties for Chemical Hydrogen Storage. Int. J. Hydrogen Energy 2017, 42, 9978–10013. [Google Scholar] [CrossRef]
- Akbayrak, S.; Özkar, S. Ammonia Borane as Hydrogen Storage Materials. Int. J. Hydrogen Energy 2018, 43, 18592–18606. [Google Scholar] [CrossRef]
- Staubitz, A.; Robertson, A.P.M.; Manners, I. Ammonia-Borane and Related Compounds as Dihydrogen Sources. Chem. Rev. 2010, 110, 4079–4124. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, J.-G.; Man, T.-T.; Wu, M.; Chen, C.-C. Recent Process and Development of Metal Aminoborane. Chem. Asian J. 2013, 8, 1076–1089. [Google Scholar] [CrossRef]
- Demirci, U.B. Mechanistic Insights into the Thermal Decomposition of Ammonia Borane, a Material Studied for Chemical Hydrogen Storage. Inorg. Chem. Front. 2021, 8, 1900–1930. [Google Scholar] [CrossRef]
- Baitalow, F.; Baumann, J.; Wolf, G.; Jaenicke-Rößler, K.; Leitner, G. Thermal Decomposition of B–N–H Compounds Investigated by Using Combined Thermoanalytical Methods. Thermochim. Acta 2002, 391, 159–168. [Google Scholar] [CrossRef]
- Chua, Y.S.; Chen, P.; Wu, G.; Xiong, Z. Development of Amidoboranes for Hydrogen Storage. Chem. Commun. 2011, 47, 5116–5129. [Google Scholar] [CrossRef] [PubMed]
- Owarzany, R.; Leszczyński, J.P.; Fijalkowski, J.K.; Grochala, W. Mono- and Bimetalic Amidoboranes. Crystals 2016, 6, 88. [Google Scholar] [CrossRef]
- Hügle, T.; Hartl, M.; Lentz, D. The Route to a Feasible Hydrogen-Storage Material: Mofs Versus Ammonia Borane. Eur. J. Chem. 2011, 17, 10184–10207. [Google Scholar] [CrossRef]
- Li, L.; Yao, X.; Sun, C.; Du, A.; Cheng, L.; Zhu, Z.; Yu, C.; Zou, J.; Smith, S.C.; Wang, P.; et al. Lithium-Catalyzed Dehydrogenation of Ammonia Borane within Mesoporous Carbon Framework for Chemical Hydrogen Storage. Adv. Funct. Mater. 2009, 19, 265–271. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Wen, H.; Shen, R.; Mehdi, S.; Wu, X.; Liang, E.; Guo, X.; Li, B. Ensemble-boosting effect of Ru-Cu alloy on catalytic activity towards hydrogen evolution in ammonia borane hydrolysis. Appl. Catal. B 2021, 287, 119960. [Google Scholar] [CrossRef]
- Kang, N.; Wei, X.; Shen, R.; Li, B.; Cal, E.G.; Moya, S.; Salmon, L.; Wang, C.; Coy, E.; Berlande, M.; et al. Fast Au-Ni@ZIF-8-catalyzed ammonia borane hydrolysis boosted by dramatic volcano-type synergy and plasmonic acceleration. Appl. Catal. B 2023, 320, 121957. [Google Scholar] [CrossRef]
- Mehdi, S.; Liu, Y.; Wei, H.; Zhang, H.; Shen, R.; Guan, S.; Wu, X.; Liu, T.; Wen, H.; Peng, Z.; et al. P-induced Co-based interfacial catalysis on Ni foam for hydrogen generation from ammonia borane. Appl. Catal. B 2023, 325, 122317. [Google Scholar] [CrossRef]
- Himmelberger, D.W.; Yoon, C.W.; Bluhm, M.E.; Carroll, P.J.; Sneddon, L.G. Base-Promoted Ammonia Borane Hydrogen-Release. J. Am. Chem. Soc. 2009, 131, 14101–14110. [Google Scholar] [CrossRef]
- Xiong, Z.; Yong, C.K.; Wu, G.; Chen, P.; Shaw, W.; Karkamkar, A.; Autrey, T.; Jones, M.O.; Johnson, S.R.; Edwards, P.P.; et al. High-Capacity Hydrogen Storage in Lithium and Sodium Amidoboranes. Nat. Mater. 2007, 7, 138–141. [Google Scholar] [CrossRef]
- Diyabalanage, H.V.K.; Nakagawa, T.; Shrestha, R.P.; Semelsberger, T.A.; Davis, B.L.; Scott, B.L.; Burrell, A.K.; David, W.I.F.; Ryan, K.R.; Jones, M.O.; et al. Potassium(I) Amidotrihydroborate: Structure and Hydrogen Release. J. Am. Chem. Soc. 2010, 132, 11836–11837. [Google Scholar] [CrossRef]
- Luo, J.; Kang, X.; Wang, P. Synthesis, Formation Mechanism, and Dehydrogenation Properties of the Long-Sought Mg(NH2BH3)2 Compound. Energy Environ. Sci. 2013, 6, 1018–1025. [Google Scholar] [CrossRef]
- Diyabalanage, H.V.K.; Shrestha, R.P.; Semelsberger, T.A.; Scott, B.L.; Bowden, M.E.; Davis, B.L.; Burrell, A.K. Calcium Amidotrihydroborate: A Hydrogen Storage Material. Angew. Chem. Int. Ed. 2007, 46, 8995–8997. [Google Scholar] [CrossRef]
- Wolf, G.; Baumann, J.; Baitalow, F.; Hoffmann, F.P. Calorimetric Process Monitoring of Thermal Decomposition of B–N–H Compounds. Thermochim. Acta 2000, 343, 19–25. [Google Scholar] [CrossRef]
- Ewing, W.C.; Marchione, A.; Himmelberger, D.W.; Carroll, P.J.; Sneddon, L.G. Syntheses and Structural Characterizations of Anionic Borane-Capped Ammonia Borane Oligomers: Evidence for Ammonia Borane H2 Release Via a Base-Promoted Anionic Dehydropolymerization Mechanism. J. Am. Chem. Soc. 2011, 133, 17093–17099. [Google Scholar] [CrossRef]
- Ewing, W.C.; Carroll, P.J.; Sneddon, L.G. Syntheses and Characterizations of Linear Triborazanes. Inorg. Chem. 2013, 52, 10690–10697. [Google Scholar] [CrossRef] [PubMed]
- Fijalkowski, K.J.; Jaroń, T.; Leszczyński, P.J.; Magos-Palasyuk, E.; Palasyuk, T.; Cyrański, M.K.; Grochala, W. M(BH3NH2BH2NH2BH3)—The Missing Link in the Mechanism of the Thermal Decomposition of Light Alkali Metal Amidoboranes. Phys. Chem. Chem. Phys. 2014, 16, 23340–23346. [Google Scholar] [CrossRef] [PubMed]
- Owarzany, R.; Fijalkowski, K.J.; Jaroń, T.; Leszczyński, P.J.; Dobrzycki, Ł.; Cyrański, M.K.; Grochala, W. Complete Series of Alkali-Metal M(BH3NH2BH2NH2BH3) Hydrogen-Storage Salts Accessed via Metathesis in Organic Solvents. Inorg. Chem. 2016, 55, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-M.; Jiang, X.; Jing, Y.; Chen, X. Synthesis and Dehydrogenation of Organic Salts of a Five-Membered B/N Anionic Chain, a Novel Ionic Liquid. Chem. Asian J. 2021, 16, 2475–2480. [Google Scholar] [CrossRef] [PubMed]
- Ju, M.-Y.; Guo, Y.; Chen, X.-M.; Chen, X. Facile Synthetic Method of Na[BH3(NH2BH2)2H] Based on the Reactions of Sodium Amidoborane (NaNH2BH3) with NiBr2 or CoCl2. Inorg. Chem. 2021, 60, 7101–7107. [Google Scholar] [CrossRef]
- Nawrocka, E.K.; Prus, A.; Owarzany, R.; Koźmiński, W.; Kazimierczuk, K.; Fijalkowski, K.J. The Assignment of 11B and 1H Resonances in the Post-Reaction Mixture from the Dry Synthesis of Li(BH3NH2BH2NH2BH3). Magn. Reson. Chem. 2023, 61, 49–54. [Google Scholar] [CrossRef]
- Owarzany, R.; Jaroń, T.; Kazimierczuk, K.; Malinowski, P.J.; Grochala, W.; Fijałkowski, K.J. In Towards Hydrogen-Rich Ionic (NH4)(BH3NH2BH2NH2BH3) and Related Molecular NH3BH2NH2BH2NH2BH3. Dalton Trans. 2023, 52, 3586–3595. [Google Scholar] [CrossRef]
- James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; et al. Mechanochemistry: Opportunities for New and Cleaner Synthesis. Chem. Soc. Rev. 2012, 41, 413–447. [Google Scholar] [CrossRef]
- Do, J.-L.; Friščić, T. Mechanochemistry: A Force of Synthesis. ACS Cent. Sci. 2017, 3, 13–19. [Google Scholar] [CrossRef]
- Zhang, T.; Steenhaut, T.; Li, X.; Devred, F.; Devillers, M.; Filinchuk, Y. Aluminum Methylamidoborane Complexes: Mechanochemical Synthesis, Structure, Stability, and Reactive Hydride Composites. Sustain. Energy Fuels 2023, 7, 1119–1126. [Google Scholar] [CrossRef]
- Chen, X.-M.; Wang, J.; Liu, S.-C.; Zhang, J.; Wei, D.; Chen, X. Controllable Syntheses of B/N Anionic Aminoborane Chain Complexes by the Reaction of NH3BH3 with NaH and the Mechanistic Study. Dalton Trans. 2019, 48, 14984–14988. [Google Scholar] [CrossRef] [PubMed]
- Bowden, M.E.; Brown, I.W.M.; Gainsford, G.J.; Wong, H. Structure and Thermal Decomposition of Methylamine Borane. Inorganica Chim. Acta. 2008, 361, 2147–2153. [Google Scholar] [CrossRef]
- Dovgaliuk, I.; Jepsen, L.H.; Safin, D.A.; Łodziana, Z.; Dyadkin, V.; Jensen, T.R.; Devillers, M.; Filinchuk, Y. A Composite of Complex and Chemical Hydrides Yields the First Al-Based Amidoborane with Improved Hydrogen Storage Properties. Eur. J. Chem. 2015, 21, 14562–14570. [Google Scholar] [CrossRef]
- Dovgaliuk, I.; Møller, K.T.; Robeyns, K.; Louppe, V.; Jensen, T.R.; Filinchuk, Y. Complexation of Ammonia Boranes with Al3+. Inorg. Chem. 2019, 58, 4753–4760. [Google Scholar] [CrossRef]
- Favre-Nicolin, V.; Cerny, R. Fox, ‘Free Objects for Crystallography’: A Modular Approach to Ab Initio Structure Determination from Powder Diffraction. J. Appl. Crystallogr. 2002, 35, 734–743. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B Condens. Matter. 1993, 192, 55–69. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Steenhaut, T.; Devillers, M.; Filinchuk, Y. Release of Pure H2 from Na[BH3(CH3NH)BH2(CH3NH)BH3] by Introduction of Methyl Substituents. Inorganics 2023, 11, 202. https://doi.org/10.3390/inorganics11050202
Zhang T, Steenhaut T, Devillers M, Filinchuk Y. Release of Pure H2 from Na[BH3(CH3NH)BH2(CH3NH)BH3] by Introduction of Methyl Substituents. Inorganics. 2023; 11(5):202. https://doi.org/10.3390/inorganics11050202
Chicago/Turabian StyleZhang, Ting, Timothy Steenhaut, Michel Devillers, and Yaroslav Filinchuk. 2023. "Release of Pure H2 from Na[BH3(CH3NH)BH2(CH3NH)BH3] by Introduction of Methyl Substituents" Inorganics 11, no. 5: 202. https://doi.org/10.3390/inorganics11050202
APA StyleZhang, T., Steenhaut, T., Devillers, M., & Filinchuk, Y. (2023). Release of Pure H2 from Na[BH3(CH3NH)BH2(CH3NH)BH3] by Introduction of Methyl Substituents. Inorganics, 11(5), 202. https://doi.org/10.3390/inorganics11050202