Preparation and Application of Fe-Al-SiO2 Poly-Coagulants for Removing Microcystis aeruginosa from Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation of Fitted Model
2.2. Effects of Input Variables
2.3. Characterization of Fe-Al-SiO2 Poly-Coagulants
2.3.1. SEM Analysis
2.3.2. FTIR Analysis
2.3.3. XRD Analysis
2.3.4. TG/DTG-DSC Analysis
2.3.5. Speculative Mechanisms of Fe-Al-SiO2 Poly-Coagulants
2.4. Applications in Real Algae-Laden Water
3. Materials and Methods
3.1. Reagents and Algae-Laden Water
3.2. Preparation of Fe-Al-SiO2 Poly-Coagulants
3.3. Coagulation Test
3.4. Analytical Methods
3.5. Experimental Design
3.6. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Sun, L.; Zhu, Y.; Wang, S.; Duan, C.; Yang, C.; Zhang, Y.; Liu, D.; Zhao, L.; Tang, J. Hysteresis effects of meteorological variation-induced algal blooms: A case study based on satellite-observed data from Dianchi Lake, China (1988–2020). Sci. Total Environ. 2022, 812, 152558. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhang, Y.; Arhonditsis, G.B.; Gao, J.; Chen, Q.; Peng, J. The magnitude and drivers of harmful algal blooms in China’s lakes and reservoirs: A national-scale characterization. Water Res. 2020, 181, 115902. [Google Scholar] [CrossRef]
- Tian, J.; Guo, S.; Wang, J.; Wang, H.; Pan, Z. Preemptive warning and control strategies for algal blooms in the downstream of Han River, China. Ecol. Indic. 2022, 142, 109190. [Google Scholar] [CrossRef]
- Harke, M.J.; Steffen, M.M.; Gobler, C.J.; Otten, T.G.; Wilhelm, S.W.; Wood, S.A.; Paerl, H.W. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 2016, 54, 4–20. [Google Scholar] [CrossRef]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Mikula, P.; Mlnarikova, M.; Nadres, E.T.; Takahashi, H.; Babica, P.; Kuroda, K.; Blaha, L.; Sovadinova, I. Synthetic Biomimetic Polymethacrylates: Promising Platform for the Design of Anti-Cyanobacterial and Anti-Algal Agents. Polymers 2021, 13, 1025. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.; Parsons, S.A.; Jefferson, B. The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Res. 2008, 42, 1827–1845. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Weitzel, K.A.; Duan, X.; Nadagouda, M.N.; Dionysiou, D.D. A comprehensive review on algae removal and control by coagulation-based processes: Mechanism, material, and application. Sep. Purif. Technol. 2022, 293, 116402. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, H.; Qian, A.; Yu, H.; Xu, C.; Pan, R.; Shi, Y. The influence of extracellular polymeric substances on the coagulation process of cyanobacteria. Sci. Total Environ. 2020, 720, 137573. [Google Scholar] [CrossRef]
- Duan, J.; Gregory, J. Coagulation by hydrolysing metal salts. Adv. Colloid Interface Sci. 2003, 100–102, 475–502. [Google Scholar] [CrossRef]
- Li, H.; Pei, H.; Xu, H.; Jin, Y.; Sun, J. Behavior of Cylindrospermopsis raciborskii during coagulation and sludge storage—Higher potential risk of toxin release than Microcystis aeruginosa? J. Hazard. Mater. 2018, 347, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Graham, N.; Liu, T.; Cheng, S.; Yu, W. A comparison of the coagulation performance of PAFC and FeSO4 for the treatment of leach liquor from Stevia processing. Sep. Purif. Technol. 2021, 255, 117680. [Google Scholar] [CrossRef]
- Hao, W.; Hao, C.; Wu, C.; Xu, Y.; Jin, C. Aluminum induced intestinal dysfunction via mechanical, immune, chemical and biological barriers. Chemosphere 2022, 288, 132556. [Google Scholar] [CrossRef] [PubMed]
- D’haese, P.C.; Douglas, G.; Verhulst, A.; Neven, E.; Behets, G.J.; Vervaet, B.A.; Finsterle, K.; Lurling, M.; Spears, B. Human health risk associated with the management of phosphorus in freshwaters using lanthanum and aluminium. Chemosphere 2019, 220, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Xia, W.; Fu, X.; Ding, L.; Kong, Y.; Zhang, H.; Fu, K. Magnetic flocculation of algae-laden raw water and removal of extracellular organic matter by using composite flocculant of Fe3O4/cationic polyacrylamide. J. Clean. Prod. 2020, 248, 119276. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, S.; Tan, S.; Wang, X.; Wang, H. Preparation and coagulation performance of hybrid coagulant polyacrylamide-polymeric aluminum ferric chloride. J. Appl. Polym. Sci. 2018, 135, 46355. [Google Scholar] [CrossRef]
- Zhang, Z.; Jing, R.; He, S.; Qian, J.; Zhang, K.; Ma, G.; Chang, X.; Zhang, M.; Li, Y. Coagulation of low temperature and low turbidity water: Adjusting basicity of polyaluminum chloride (PAC) and using chitosan as coagulant aid. Sep. Purif. Technol. 2018, 206, 131–139. [Google Scholar] [CrossRef]
- Xu, M.; Luo, Y.; Wang, X.; Zhou, L. Coagulation-ultrafiltration efficiency of polymeric Al-, Fe-, and Ti- coagulant with or without polyacrylamide composition. Sep. Purif. Technol. 2022, 280, 119957. [Google Scholar] [CrossRef]
- Zhao, H.; Peng, J.; Xue, A.; Ni, J. Distribution and transformation of Al species in organic silicate aluminum hybrid coagulants. Compos. Sci. Technol. 2009, 69, 1629–1634. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, R.; Xia, W.; Kong, Y.; Nie, Y.; Zhou, Y.; Zhang, C. Coagulation performance of Al/Fe based covalently bonded composite coagulants for algae removal. Sep. Purif. Technol. 2022, 285, 120401. [Google Scholar] [CrossRef]
- Bakshi, A.; Verma, A.K.; Dash, A.K. Electrocoagulation for removal of phosphate from aqueous solution: Statistical modeling and techno-economic study. J. Clean. Prod. 2020, 246, 118988. [Google Scholar] [CrossRef]
- Lanan, F.A.B.M.; Selvarajoo, A.; Sethu, V.; Arumugasamy, S.K. Utilisation of natural plant-based fenugreek (Trigonella foenum-graecum) coagulant and okra (Abelmoschus escluentus) flocculant for palm oil mill effluent (POME) treatment. J. Environ. Chem. Eng. 2021, 9, 104667. [Google Scholar] [CrossRef]
- Dolatabadi, M.; Swiergosz, T.; Ahmadzadeh, S. Electro-Fenton approach in oxidative degradation of dimethyl phthalate—The treatment of aqueous leachate from landfills. Sci. Total Environ. 2021, 772, 145323. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Gupta, S.; Mondal, P. Electrocoagulation process for greywater treatment: Statistical modeling, optimization, cost analysis and sludge management. Sep. Purif. Technol. 2022, 296, 121327. [Google Scholar] [CrossRef]
- Bello, M.M.; Nourouzi, M.M.; Abdullah, L.C.; Choong, T.S.; Koay, Y.S.; Keshani, S. POME is treated for removal of color from biologically treated POME in fixed bed column: Applying wavelet neural network (WNN). J. Hazard. Mater. 2013, 262, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Lartiges, B.S.; Bottero, J.Y.; Derrendinger, L.S.; Humbert, B.; Tekely, P.; Suty, H. Flocculation of Colloidal Silica with Hydrolyzed Aluminum: An 27Al Solid State NMR Investigation. Langmuir 1997, 13, 147–152. [Google Scholar] [CrossRef]
- Parneix, C.; Persello, J.; Schweins, R.; Cabane, B. How Do Colloidal Aggregates Yield to Compressive Stress? Langmuir 2009, 25, 4692–4707. [Google Scholar] [CrossRef]
- Song, Q.; Niu, X.; Zhang, D.; Song, X.; Li, Y.; Ma, J.; Lai, S.; Yang, Z.; Zhou, S. The behaviors of Microcystis aeruginosa and microcystins during the Fe2+/persulfate (PS) preoxidation-coagulation and flocs storage period. Environ. Res. 2020, 186, 109549. [Google Scholar] [CrossRef]
- Gonzalez-Torres, A.; Putnam, J.; Jefferson, B.; Stuetz, R.M.; Henderson, R.K. Examination of the physical properties of Microcystis aeruginosa flocs produced on coagulation with metal salts. Water Res. 2014, 60, 197–209. [Google Scholar] [CrossRef]
- El Samrani, A.G.; Lartiges, B.S.; Montargès-Pelletier, E.; Kazpard, V.; Barrès, O.; Ghanbaja, J. Clarification of municipal sewage with ferric chloride: The nature of coagulant species. Water Res. 2004, 38, 756–768. [Google Scholar] [CrossRef]
- Wang, X.; Xu, H.; Jiao, R.; Ma, G.; Wang, D. Coagulation removal of phosphorus from a southern China reservoir in different stages of algal blooms: Performance evaluation and Al-P matching principle analysis. Sci. Total Environ. 2021, 782, 146849. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Yang, J.; Xu, K.; Hao, J.; Li, Y.-Y. Phosphorus release from coprecipitants formed during orthophosphate removal with Fe(III) salt coagulation: Effects of pH, Eh, temperature and aging time. J. Environ. Chem. Eng. 2016, 4, 3322–3329. [Google Scholar] [CrossRef]
- Tan, X.; Duan, Z.; Duan, P.; Parajuli, K.; Newman, J.; Shu, X.; Zhang, D.; Gao, L.; Li, M. Flocculation of Microcystis unicells induced by pH regulation: Mechanism and potential application. Chemosphere 2021, 263, 127708. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Qi, Y.; Yang, H.; Li, H.; Shi, T. Preparation of polyaluminum zirconium silicate coagulant and its performance in water treatment. J. Water Process. Eng. 2021, 41. [Google Scholar] [CrossRef]
- Godugu, K.; Yadala, V.D.S.; Pinjari, M.K.M.; Gundala, T.R.; Sanapareddy, L.R.; Nallagondu, C.G.R. Natural dolomitic limestone-catalyzed synthesis of benzimidazoles, dihydropyrimidinones, and highly substituted pyridines under ultrasound irradiation. Beilstein J. Org. Chem. 2020, 16, 1881–1900. [Google Scholar] [CrossRef]
- Xu, M.; Zhou, W.; Zhu, Z.; Peng, C.; Peng, Y. Study on the preparation of polysilicate ferric flocculant and its treatment of high turbidity tailings water. J. Water Process. Eng. 2021, 44, 102457. [Google Scholar] [CrossRef]
- Zviagina, B.B.; Drits, V.A.; Dorzhieva, O.V. Distinguishing Features and Identification Criteria for K-Dioctahedral 1M Micas (Illite-Aluminoceladonite and Illite-Glauconite-Celadonite Series) from Middle-Infrared Spectroscopy Data. Minerals 2020, 10, 153. [Google Scholar] [CrossRef]
- Sun, T.; Liu, L.-L.; Wan, L.-L.; Zhang, Y.-P. Effect of silicon dose on preparation and coagulation performance of poly-ferric-aluminum-silicate-sulfate from oil shale ash. Chem. Eng. J. 2010, 163, 48–54. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Liu, X.; Du, Z.; Cheng, F. Effect of silicon content on preparation and coagulation performance of poly-silicic-metal coagulants derived from coal gangue for coking wastewater treatment. Sep. Purif. Technol. 2018, 202, 149–156. [Google Scholar] [CrossRef]
- Wan, J.; Ding, J.; Tan, W.; Gao, Y.; Sun, S.; He, C. Magnetic-activated carbon composites derived from iron sludge and biological sludge for sulfonamide antibiotic removal. Environ. Sci. Pollut. Res. Int. 2020, 27, 13436–13446. [Google Scholar] [CrossRef]
- Teixeira, J.A.; Fernandes, R.P.; Isquibola, G.; Gaspari, A.P.S.; Machado, A.E.H.; Caires, F.J.; Ionashiro, M. Synthesis, thermal behavior in oxidative and pyrolysis conditions, spectroscopic and DFT studies of some alkaline earth metals p-aminobenzoate complexes using TG-DTA, DSC, PXRD and EGA (TG-FTIR) techniques. Thermochim. Acta 2022, 711, 179184. [Google Scholar] [CrossRef]
- Azoulay, I.; Rémazeilles, C.; Refait, P. Oxidation of chukanovite (Fe2(OH)2CO3): Influence of the concentration ratios of reactants. Corros. Sci. 2015, 98, 634–642. [Google Scholar] [CrossRef]
- Tao, R.; Qu, M.; Zhang, S.; Quan, F.; Zhang, M.; Shen, W.; Mei, Y. Preparation of FeOOH supported by melamine sponge and its application for efficient phosphate removal. J. Environ. Chem. Eng. 2022, 10, 108064. [Google Scholar] [CrossRef]
- Downing, J.A.; Watson, S.B.; Mccauley, E. Predicting Cyanobacteria dominance in lakes. Can. J. Fish. Aquat. Sci. 2001, 58, 1905–1908. [Google Scholar] [CrossRef]
- Li, S.; Jiang, F.; Lei, T.; Ren, Z.; Wang, S.; Yang, X. Phosphorus removal by in situ sprayed ferric chloride in Dianchi Lake: Efficiency, stability, and mechanism. Process. Saf. Environ. Prot. 2019, 131, 320–328. [Google Scholar] [CrossRef]
- Iber, B.T.; Torsabo, D.; Chik, C.; Wahab, F.; Sheikh Abdullah, S.R.; Abu Hassan, H.; Kasan, N.A. Response Surface Methodology (RSM) Approach to Optimization of Coagulation-Flocculation of Aquaculture Wastewater Treatment Using Chitosan from Carapace of Giant Freshwater Prawn Macrobrachium rosenbergii. Polymers 2023, 15, 1058. [Google Scholar] [CrossRef] [PubMed]
Index | R1 | R2 | R3 | R4 |
---|---|---|---|---|
Std. Dev. | 0.0166 | 0.0396 | 2.81 | 2.77 |
Mean | 0.1828 | 0.4641 | 68.83 | 67.49 |
C.V. % | 9.05 | 8.52 | 4.09 | 4.11 |
R2 | 0.9542 | 0.9967 | 0.9961 | 0.9982 |
Adjusted R2 | 0.8954 | 0.9925 | 0.9910 | 0.9959 |
Predicted R2 | 0.8751 | 0.9588 | 0.9536 | 0.9774 |
Adequate Precision | 12.9763 | 39.8968 | 33.3209 | 51.6408 |
Parameter | Yanghu Wetland Park | Liuyang River | Laodao River |
---|---|---|---|
pH | 7.89 | 7.71 | 7.54 |
T 1 (°C) | 23.5 | 27.3 | 25.9 |
Turbidity (NTU) | 313 | 237 | 428 |
TP (mg/L) | 0.775 | 0.875 | 1.145 |
DP 2 (mg/L) | 0.025 | 0.035 | 0.020 |
Chl-α (mg/L) | 1.254 | 0.953 | 1.260 |
OD680 (Abs) | 0.277 | 0.294 | 0.393 |
Fe (mg/L) | 1.455 | 1.480 | 1.690 |
Al (mg/L) | 0.190 | 0.140 | 0.140 |
Input Variables | Symbol | Low Level (−1) | Medium Level (0) | High Level (+1) |
---|---|---|---|---|
n(Fe):n(Al) | A | 1 | 2 | 3 |
m(Si):m(Fe+Al) | B | 0.25 | 0.5 | 0.75 |
n(CO32−):n(Fe+Al) | C | 1 | 1.75 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Nie, X.; Sun, S.; Zhang, W.; Fang, X.; Wan, J. Preparation and Application of Fe-Al-SiO2 Poly-Coagulants for Removing Microcystis aeruginosa from Water. Inorganics 2023, 11, 210. https://doi.org/10.3390/inorganics11050210
Zhang Y, Nie X, Sun S, Zhang W, Fang X, Wan J. Preparation and Application of Fe-Al-SiO2 Poly-Coagulants for Removing Microcystis aeruginosa from Water. Inorganics. 2023; 11(5):210. https://doi.org/10.3390/inorganics11050210
Chicago/Turabian StyleZhang, Yuhan, Xiaobao Nie, Shiquan Sun, Wei Zhang, Xin Fang, and Junli Wan. 2023. "Preparation and Application of Fe-Al-SiO2 Poly-Coagulants for Removing Microcystis aeruginosa from Water" Inorganics 11, no. 5: 210. https://doi.org/10.3390/inorganics11050210
APA StyleZhang, Y., Nie, X., Sun, S., Zhang, W., Fang, X., & Wan, J. (2023). Preparation and Application of Fe-Al-SiO2 Poly-Coagulants for Removing Microcystis aeruginosa from Water. Inorganics, 11(5), 210. https://doi.org/10.3390/inorganics11050210