Temperature-Driven Synthesis of 1D Fe2O3@3D Graphene Composite Applies as Anode of Lithium-Ion Batteries
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterization
2.2. Electrochemical Characterization
3. Materials and Methods
3.1. Preparation of Fe2O3@3DG Composite
3.2. Physical Characterization
3.3. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef]
- Tarascon, J.M. Key challenges in future Li-battery research. Phil. Trans. R. Soc. A 2010, 368, 3227–3241. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Liu, T.; Luo, Y.; Zhao, Y.; Ren, Z.; Bai, J.; Wang, H. Preparation of Fe2O3/graphene composite and its electrochemical performance as an anode material for lithium ion batteries. J. Alloys Compd. 2011, 509, L216–L220. [Google Scholar] [CrossRef]
- Fu, W.; Liu, T.; Hou, S.; Guo, Y.; Mei, C.; Zhao, L. Engineering MnO/C microsphere for enhanced lithium storage. J. Alloys Compd. 2021, 861, 157961. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Ren, D.; Wang, L.; He, X. Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Stor. Mater. 2021, 36, 147–170. [Google Scholar] [CrossRef]
- Cheng, H.; Shapter, J.G.; Li, Y.; Gao, G. Recent progress of advanced anode materials of lithium-ion batteries. J. Energy Chem. 2021, 57, 451–468. [Google Scholar] [CrossRef]
- Li, X.; Ma, Y.; Qin, L.; Zhang, Z.; Zhang, Z.; Zheng, Y.; Qu, Y. A bottom-up synthesis of α-Fe2O3 nanoaggregates and their composites with graphene as high performance anodes in lithium-ion batteries. J. Mater. Chem. A 2015, 3, 2158–2165. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, Y.; Murali, S.; Stoller, M.; Ruoff, R. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 2011, 5, 3333–3338. [Google Scholar] [CrossRef]
- Liu, L.; Song, Z.; Wang, J.; Shen, L.; Tu, B.; Wang, S.; Mao, D. Synthesis of Fe2O3/Graphene Composite Anode Materials with Good Cycle Stability for Lithium-ion Batteries. Int. J. Electrochem. Sci. 2016, 8654–8661. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, Z.; Guo, H.; Zhang, Y.; Zhang, Q.; Gan, L. A facile PVP-assisted hydrothermal fabrication of Fe2O3/Graphene composite as high performance anode material for lithium ion batteries. J. Alloys Compd. 2013, 560, 208–214. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Zhao, Y.; Li, M.; Tan, T.; Tan, M.; Zhao, Z.; Ke, C.; Qin, C.; Chen, Z.; et al. Preparation and Electrochemical Properties of Pomegranate-Shaped Fe2O3/C Anodes for Li-ion Batteries. Nanoscale Res. Lett. 2018, 13, 344. [Google Scholar] [CrossRef]
- Wang, R.; Xu, C.; Du, M.; Sun, J.; Gao, L.; Zhang, P.; Yao, H.; Lin, C. Solvothermal-induced self-assembly of Fe2O3/GS aerogels for high Li-storage and excellent stability. Small 2014, 10, 2260–2269. [Google Scholar] [CrossRef]
- Martinez-Vargas, S.; Mtz-Enriquez, A.I.; Flores-Zuñiga, H.; Encinas, A.; Oliva, J. Enhancing the capacitance and tailoring the discharge times of flexible graphene supercapacitors with cobalt ferrite nanoparticles. Synth. Met. 2020, 264, 116384. [Google Scholar] [CrossRef]
- Yang, C.; Xiao, W.; Ren, S.; Li, Q. Flexible Free-Standing Graphene-Fe2O3 Hybrid Paper with Enhanced Electrochemical Performance for Rechargeable Lithium-Ion Batteries. Coatings 2022, 12, 1726. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, G.; Duan, X. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors. Acc. Chem. Res. 2015, 48, 1666–1675. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhao, X.; Wang, H.; Fan, S.; Sun, S. Three-Dimensional α-Fe2O3/Graphene Hydrogel Composites as Anode Materials for High-Performance Asymmetric Supercapacitors. J. Electron. Mater. 2022, 52, 925–938. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Z.; Tian, S.; Liu, X.; Li, Z.; Huang, J.; Deng, X.; Huang, Y. The alpha-Fe2O3/graphite anode composites with enhanced electrochemical performance for lithium-ion batteries. Nanotechnology 2020, 31, 435404. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, X.; Chen, X.; Liu, X.; Xiao, L.; Cao, Y. Fe2O3 amorphous nanoparticles/graphene composite as high-performance anode materials for lithium-ion batteries. J. Alloys Compd. 2017, 711, 15–21. [Google Scholar] [CrossRef]
- Jiang, J.; Li, Y.; Liu, J.; Huang, X. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale 2011, 3, 45–58. [Google Scholar] [CrossRef]
- Qin, G.; Ding, L.; Zeng, M.; Zhang, K.; Zhang, Y.; Bai, Y.; Wen, J.; Li, J. Mesoporous Fe2O3/N-doped graphene composite as an anode material for lithium ion batteries with greatly enhanced electrochemical performance. J. Electroanal. Chem. 2020, 866. [Google Scholar] [CrossRef]
- Yuan, C.; Wu, H.B.; Xie, Y.; Lou, X.W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 2014, 53, 1488–1504. [Google Scholar] [CrossRef]
- Cao, K.; Jin, T.; Yang, L.; Jiao, L. Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Mater. Chem. Front. 2017, 1, 2213–2242. [Google Scholar] [CrossRef]
- Zheng, Y.; Cheng, Y.; Wang, Y.; Bao, F.; Zhou, L.; Wei, X.; Zhang, Y.; Zheng, Q. Quasicubic α-Fe2O3 nanoparticles with excellent catalytic performance. J. Phys. Chem. B 2006, 110, 3093–3097. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Yang, H.; Xie, X.; Li, L.; Zhang, L.; Yu, J.; Zhao, H.; Liu, B. Controlled synthesis and gas-sensing properties of hollow sea urchin-like α-Fe2O3 nanostructures and α-Fe2O3 nanocubes. Sens. Actuators B Chem. 2009, 141, 381–389. [Google Scholar] [CrossRef]
- Liu, Z.; Tay, S.W. Direct growth Fe2O3 nanorods on carbon fibers as anode materials for lithium ion batteries. Mater. Lett. 2012, 72, 74–77. [Google Scholar] [CrossRef]
- Domacena, A.M.G.; Aquino, C.L.E.; Balela, M.D.L. Photo-Fenton Degradation of Methyl Orange Using Hematite (α-Fe2O3) of Various Morphologies. Mater. Today Proc. 2020, 22, 248–254. [Google Scholar] [CrossRef]
- Deng, B.; Li, Q.; Wang, C. Hydrothermal Synthesis and Charaction of α-Fe2O3 Mesocrystals and Nanorings. Adv. Mat. Res. 2011, 239–242, 886–890. [Google Scholar]
- Zhang, Y.; Zhang, K.; Ren, S.; Jia, K.; Dang, Y.; Liu, G.; Li, K.; Long, X.; Qiu, J. 3D nanoflower-like composite anode of α-Fe2O3/coal-based graphene for lithium-ion batteries. J. Alloys Compd. 2019, 792, 828–834. [Google Scholar] [CrossRef]
- Chen, L.; Liu, D.; Yang, P. Preparation of α-Fe2O3/rGO composites toward supercapacitor applications. RSC Adv. 2019, 9, 12793–12800. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Cheng, C.; Wang, Y.; Liu, B.; Huang, Z.; Yang, H. Seed-assisted growth of α-Fe2O3 nanorod arrays on reduced graphene oxide: A superior anode for high-performance Li-ion and Na-ion batteries. J. Mater. Chem. A 2016, 4, 11800–11811. [Google Scholar] [CrossRef]
- Li, J.; Hu, B.; Nie, P.; Shang, X.; Jiang, W.; Xu, K.; Yang, J.; Liu, J. Fe-regulated δ-MnO2 nanosheet assembly on carbon nanofiber under acidic condition for high performance supercapacitor and capacitive deionization. Appl. Surf. Sci. 2021, 542, 148715. [Google Scholar] [CrossRef]
- Fang, H.; Meng, F.; Yan, J.; Chen, G.; Zhang, L.; Wu, S.; Zhang, S.; Wang, L.; Zhang, Y. Fe3O4 hard templating to assemble highly wrinkled graphene sheets into hierarchical porous film for compact capacitive energy storage. RSC Adv. 2019, 9, 20107–20112. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Wu, D.; Han, S.; Huang, Y.; Li, S.; He, M.; Zhang, F.; Feng, X. Self-assembled Fe2O3/graphene aerogel with high lithium storage performance. ACS Appl. Mater. Interfaces 2013, 5, 3764–3769. [Google Scholar] [CrossRef]
- Meng, J.; Fu, L.; Liu, Y.; Zheng, G.; Zheng, X.; Guan, X.; Zhang, J. Gas-liquid interfacial assembly and electrochemical properties of 3D highly dispersed α-Fe2O3@graphene aerogel composites with a hierarchical structure for applications in anodes of lithium ion batteries. Electrochim. Acta 2017, 224, 40–48. [Google Scholar] [CrossRef]
- Huang, H.; Kong, L.; Shuang, W.; Xu, W.; He, J.; Bu, X. Controlled synthesis of core-shell Fe2O3@N-C with ultralong cycle life for lithium-ion batteries. Chin. Chem. Lett. 2022, 33, 1037–1041. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, H.; Xu, J.; Wu, X.; Yang, D.; Qu, J.; Yu, Z. Highly Efficient High-Pressure Homogenization Approach for Scalable Production of High-Quality Graphene Sheets and Sandwich-Structured alpha-Fe2O3/Graphene Hybrids for High-Performance Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 11025–11034. [Google Scholar] [CrossRef]
- Huang, M.; Chen, C.; Wu, S.; Tian, X. Remarkable high-temperature Li-storage performance of few-layer graphene-anchored Fe3O4 nanocomposites as an anode. J. Mater. Chem. A 2017, 5, 23035–23042. [Google Scholar] [CrossRef]
- Han, T.; Wei, Y.; Jin, X.; Jiu, H.; Zhang, L.; Sun, Y.; Tian, J.; Shang, R.; Hang, D.; Zhao, R. Hydrothermal self-assembly of α-Fe2O3 nanorings@graphene aerogel composites for enhanced Li storage performance. J. Mater. Sci. 2019, 54, 7119–7130. [Google Scholar] [CrossRef]
- Ye, F.; Hu, Y.; Zhao, Y.; Zhu, D.; Wang, Y.; Pu, M.; Mao, S. Engineering a hierarchical hollow hematite nanostructure for lithium storage. J. Mater. Chem. A 2016, 4, 14687–14692. [Google Scholar] [CrossRef]
- Ji, L.; Toprakci, O.; Alcoutlabi, M.; Yao, Y.; Li, Y.; Zhang, S.; Guo, B.; Lin, Z.; Zhang, X. alpha-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 2672–2679. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Guo, X.; Yan, Y.; Xue, H.; Pang, H. FeOx -Based Materials for Electrochemical Energy Storage. Adv. Sci. 2018, 5, 1700986. [Google Scholar]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597. [Google Scholar] [CrossRef]
- Ma, T.; Xu, Y.; Sun, L.; Liu, X.; Zhang, J. Synthesis of graphene/α-Fe2O3 nanospindles by hydrothermal assembly and their lithium storage performance. Ceram. Int. 2018, 44, 364–368. [Google Scholar] [CrossRef]
- Nguyen, T.; Lee, S. Green synthesis of N-doped carbon modified iron oxides (N-Fe2O3@Carbon) using sustainable gelatin cross-linker for high performance Li-ion batteries. Electrochim. Acta 2017, 248, 37–45. [Google Scholar] [CrossRef]
- Ganesan, V.; Park, C. Rational Design of Fe2O3 Nanocube-Based Anodes for High-Performance Li–Ion Batteries. ChemistrySelect 2019, 4, 11103–11109. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, J.; Li, X.; Xia, Z.; Zhang, Q.; Zhou, M.; Tian, W.; Wang, M.; Hu, H.; Li, Z.; et al. Graphene oxide-induced synthesis of button-shaped amorphous Fe2O3/rGO/CNFs films as flexible anode for high-performance lithium-ion batteries. Chem. Eng. J. 2019, 369, 215–222. [Google Scholar] [CrossRef]
- Han, T.; Wei, Y.; Jin, X.; Yu, S.; Shang, R.; Hang, D. Facile assembly of α-Fe2O3 nanorings@reduced graphene oxide composites with high lithium storage performance. J. Electroanal. Chem. 2019, 838, 163–171. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.; Feng, Y.; Yang, G.; Ji, H.; Miao, X. Characterization of Fe2O3/Graphene Composites Synthesized using an In Situ Reaction of Inexpensive Graphite Oxide and FeCl3. ChemElectroChem 2020, 7, 5013–5020. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, Y.; Zhao, C.; Pan, E.; Jia, M. Fe3O4 nanoparticle/graphene aerogel composite with enhanced lithium storage performance. Appl. Surf. Sci. 2018, 458, 1035–1042. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, S.; Xi, B.; Feng, Z.; Sun, D.; Ma, X.; Zhang, J.; Feng, J.; Xiong, S. Unusual Formation of CoO@C “Dandelions” Derived from 2D Kagóme MOLs for Efficient Lithium Storage. Adv. Energy Mater. 2018, 8, 1703242. [Google Scholar] [CrossRef]
- Zaaba, N.I.; Foo, K.L.; Hashim, U.; Tan, S.J.; Liu, W.; Voon, C.H. Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Eng. 2017, 184, 469–477. [Google Scholar] [CrossRef]
Anode Material | Current Density | Initial Capacity (mAh g−1) | Cycle Number | Reversible Capacity (mAh g−1) | Ref |
---|---|---|---|---|---|
Pomegranate-shaped Fe2O3/C | 0.1 A g−1 | ~900 | 100 | 705 | [11] |
graphene-Fe2O3 | 0.2 A g−1 | 1466 | 100 | 765 | [14] |
α-Fe2O3@graphene | 0.1 A g−1 | ~1300 | 100 | 745 | [34] |
graphene/α-Fe2O3 | 0.1 A g−1 | ~1200 | 100 | 607 | [43] |
N-Fe2O3@Carbon | 0.1 C | 1049 | 30 | 800 | [44] |
Fe2O3@graphite | 0.1 A g−1 | ~1200 | 100 | 865 | [45] |
Fe2O3/rGO/CNFs | 0.1 A g−1 | 1378 | 150 | 811 | [46] |
α-Fe2O3@rGO | 0.1 A g−1 | 1268 | 100 | 781 | [47] |
Fe2O3/graphene | 0.5 A g−1 | 1086.3 | 100 | 653.2 | [48] |
Fe3O4/graphene | 0.1 A g−1 | 1462 | 100 | 985 | [49] |
1D-Fe2O3@3DG | 0.1 A g−1 | 1451.1 | 100 | 951.9 | This work |
200 | 775.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Li, R.; Xu, J.; Yang, L.; Zhou, Y. Temperature-Driven Synthesis of 1D Fe2O3@3D Graphene Composite Applies as Anode of Lithium-Ion Batteries. Inorganics 2023, 11, 211. https://doi.org/10.3390/inorganics11050211
Zhu S, Li R, Xu J, Yang L, Zhou Y. Temperature-Driven Synthesis of 1D Fe2O3@3D Graphene Composite Applies as Anode of Lithium-Ion Batteries. Inorganics. 2023; 11(5):211. https://doi.org/10.3390/inorganics11050211
Chicago/Turabian StyleZhu, Shengyuan, Ruizhi Li, Jiapeng Xu, Liu Yang, and Yingke Zhou. 2023. "Temperature-Driven Synthesis of 1D Fe2O3@3D Graphene Composite Applies as Anode of Lithium-Ion Batteries" Inorganics 11, no. 5: 211. https://doi.org/10.3390/inorganics11050211
APA StyleZhu, S., Li, R., Xu, J., Yang, L., & Zhou, Y. (2023). Temperature-Driven Synthesis of 1D Fe2O3@3D Graphene Composite Applies as Anode of Lithium-Ion Batteries. Inorganics, 11(5), 211. https://doi.org/10.3390/inorganics11050211