Fabrication of ZnWO4-SnO2 Core–Shell Nanorods for Enhanced Solar Light-Driven Photoelectrochemical Performance
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Analysis
2.2. Morphological Study
2.3. Absorption Study
2.4. Photoelectrochemical Study
3. Experimental Section
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, M.; Meena, B.; Subramanyam, P.; Suryakala, D.; Subrahmanyam, C. Recent trends in photoelectrochemical water splitting: The role of cocatalysts. NPG Asia Mater. 2022, 14, 88. [Google Scholar] [CrossRef]
- Ghayeb, Y.; Momeni, M.M.; Shafiei, M. WO3-TiO2 nanotubes modified with tin oxide as efficient and stable photocatalysts for photoelectrochemical water splitting. J. Iran Chem. Soc. 2020, 17, 1131–1140. [Google Scholar] [CrossRef]
- Li, P.; Liu, M.; Li, J.; Guo, J.; Zhou, Q.; Zhao, X.; Wang, S.; Wang, L.; Wang, J.; Chen, Y.; et al. Atomic heterojunction-induced accelerated charge transfer for boosted photocatalytic hydrogen evolution over 1D CdS nanorod/2D ZnIn2S4 nanosheet composites. J. Colloid Interface Sci. 2021, 604, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-C.; Li, Y.; Arul, K.T.; Ohigashi, T.; Nga, T.T.T.; Lu, Y.-R.; Chen, C.-L.; Chen, J.-L.; Shen, S.; Pong, W.-F.; et al. Atomic Nickel on Graphitic Carbon Nitride as a Visible Light-Driven Hydrogen Production Photocatalyst Studied by X-ray Spectromicroscopy. ACS Sustain. Chem. Eng. 2023, 11, 5390–5399. [Google Scholar] [CrossRef]
- Babu, B.; Talluri, B.; Gurugubelli, T.R.; Kim, J.; Yoo, K. Effect of annealing environment on the photoelectrochemical water oxidation and electrochemical supercapacitor performance of SnO2 quantum dots. Chemosphere 2022, 286, 131577. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Chen, J.; Lu, Y.-R.; Arul, K.T.; Ohigashi, T.; Chen, J.-L.; Chen, C.-L.; Shen, S.; Chou, W.-C.; Pong, W.-F.; et al. Single-atom cobalt-incorporating carbon nitride for photocatalytic solar hydrogen conversion: An X-ray spectromicroscopy study. J. Electron Spectrosc. Relat. Phenom. 2023, 264, 147319. [Google Scholar] [CrossRef]
- Nga, T.T.T.; Huang, Y.-C.; Chen, J.-L.; Chen, C.-L.; Lin, B.-H.; Yeh, P.-H.; Du, C.-H.; Chiou, J.-W.; Pong, W.-F.; Arul, K.T.; et al. Effect of Ag-Decorated BiVO4 on Photoelectrochemical Water Splitting: An X-ray Absorption Spectroscopic Investigation. Nanomaterials 2022, 12, 3659. [Google Scholar] [CrossRef]
- Abubakar, H.L.; Tijani, J.O.; Abdulkareem, S.A.; Mann, A.; Mustapha, S. A review on the applications of zinc tungstate (ZnWO4) photocatalyst for wastewater treatment. Heliyon 2022, 8, e09964. [Google Scholar] [CrossRef]
- Sun, M.; Gong, Z.; Zhang, Z.; Li, Y.; Xie, D.; Wu, F.; Li, R. Dependence of photoelectrochemical water splitting for oriented-SnO2 on Carrier behaviors: Concentration, depletion and transportation. Thin Solid Films 2021, 732, 138794. [Google Scholar] [CrossRef]
- Kumar, G.M.; Lee, D.J.; Jeon, H.C.; Ilanchezhiyan, P.; Young, K.D.; Won, K.T. One dimensional ZnWO4 nanorods coupled with WO3 nanoplates heterojunction composite for efficient photocatalytic and photoelectrochemical activity. Ceram. Int. 2022, 48, 4332–4340. [Google Scholar] [CrossRef]
- Cui, Y.; Pan, L.; Chen, Y.; Afzal, N.; Ullah, S.; Liu, D.; Wang, L.; Zhang, X.; Zou, J.-J. Defected ZnWO4-decorated WO3 nanorod arrays for efficient photoelectrochemical water splitting. RSC Adv. 2019, 9, 5492–5500. [Google Scholar] [CrossRef]
- Reddy, C.V.; Koutavarapu, R.; Reddy, K.R.; Shetti, N.P.; Aminabhavi, T.M.; Shim, J. Z-scheme binary 1D ZnWO4 nanorods decorated 2D NiFe2O4 nanoplates as photocatalysts for high efficiency photocatalytic degradation of toxic organic pollutants from wastewater. J. Environ. Manag. 2020, 268, 110677. [Google Scholar] [CrossRef]
- Babu, B.; Koutavarapu, R.; Shim, J.; Kim, J.; Yoo, K. Enhanced solar-light-driven photocatalytic and photoelectrochemical properties of zinc tungsten oxide nanorods anchored on bismuth tungsten oxide nanoflakes. Chemosphere 2021, 268, 129346. [Google Scholar] [CrossRef]
- Zhuang, H.; Xu, W.; Lin, L.; Huang, M.; Xu, M.; Chen, S.; Cai, Z. Construction of one dimensional ZnWO4@SnWO4 core-shell heterostructure for boosted photocatalytic performance. J. Mater. Sci. Technol. 2019, 35, 2312–2318. [Google Scholar] [CrossRef]
- Wannapop, S.; Somdee, A. Effect of citric acid on the synthesis of ZnWO4/ZnO nanorods for photoelectrochemical water splitting. Inorg. Chem. Commun. 2020, 115, 107857. [Google Scholar] [CrossRef]
- Zhou, S.J.; Tang, R.; Zhang, L.Y.; Yin, L.W. Au Nanoparticles coupled Three-dimensional Macroporous BiVO4/SnO2 Inverse Opal Heterostructure For Efficient Photoelectrochemical Water Splitting. Electrochim. Acta 2017, 248, 593–602. [Google Scholar] [CrossRef]
- Bai, S.L.; Tian, K.; Meng, J.C.; Zhao, Y.Y.; Sun, J.H.; Zhang, K.W.; Feng, Y.J.; Luo, R.X.; Li, D.Q.; Chen, A.F. Reduced graphene oxide decorated SnO2/BiVO4 photoanode for photoelectrochemical water splitting. J. Alloys Compd. 2021, 855, 10. [Google Scholar] [CrossRef]
- Hu, W.G.; Quang, N.D.; Majumder, S.; Jeong, M.J.; Park, J.H.; Cho, Y.J.; Kim, S.B.; Lee, K.; Kim, D.; Chang, H.S. Three-dimensional nanoporous SnO2/CdS heterojunction for high-performance photoelectrochemical water splitting. Appl. Surf. Sci. 2021, 560, 10. [Google Scholar] [CrossRef]
- Lei, C.X.; Huang, X.; Liu, X.; Wang, L.S.; Zhang, G.S.; Peng, D.L. Photoelectrochemical performances of the SnO2-TiO2 bilayer composite films prepared by a facile liquid phase deposition method. J. Alloys Compd. 2017, 692, 227–235. [Google Scholar] [CrossRef]
- Kahng, S.; Kim, J.H. Heterojunction photoanode of SnO2 and Mo-doped BiVO4 for boosting photoelectrochemical performance and tetracycline hydrochloride degradation. Chemosphere 2022, 291, 10. [Google Scholar] [CrossRef]
- Babu, B.; Koutavarapu, R.; Shim, J.; Kim, J.; Yoo, K. Improved sunlight-driven photocatalytic abatement of tetracycline and photoelectrocatalytic water oxidation by tin oxide quantum dots anchored on nickel ferrite nanoplates. J. Electroanal. Chem. 2021, 900, 115699. [Google Scholar] [CrossRef]
- Babu, B.; Koutavarapu, R.; Shim, J.; Yoo, K. Enhanced visible-light-driven photoelectrochemical and photocatalytic performance of Au-SnO2 quantum dot-anchored g-C3N4 nanosheets. Sep. Purif. Technol. 2020, 240, 15. [Google Scholar] [CrossRef]
- Babu, B.; Kim, J.; Yoo, K. Improved solar light-driven photoelectrochemical performance of cadmium sulfide-tin oxide quantum dots core-shell nanorods. Mater. Lett. 2020, 274, 4. [Google Scholar] [CrossRef]
- Ranjith, K.S.; Castillo, R.B.; Sillanpaa, M.; Rajendra Kumar, R.T. Effective shell wall thickness of vertically aligned ZnO-ZnS core-shell nanorod arrays on visible photocatalytic and photo sensing properties. Appl. Catal. B Environ. 2018, 237, 128–139. [Google Scholar] [CrossRef]
- Guo, X.; Li, M.; Liu, Y.; Huang, Y.; Geng, S.; Yang, W.; Yu, Y. Hierarchical core-shell electrode with NiWO4 nanoparticles wrapped MnCo2O4 nanowire arrays on Ni foam for high-performance asymmetric supercapacitors. J. Colloid Interface Sci. 2020, 563, 405–413. [Google Scholar] [CrossRef]
- Ravi, P.; Navakoteswara Rao, V.; Shankar, M.V.; Sathish, M. CuO@NiO core-shell nanoparticles decorated anatase TiO2 nanospheres for enhanced photocatalytic hydrogen production. Int. J. Hydrogen Energy 2020, 45, 7517–7529. [Google Scholar] [CrossRef]
- Kumar, S.; Ganguli, A.K. Enhanced photoelectrochemical water splitting and mitigation of organic pollutants under visible light with NaNbO3@CuS Core-Shell heterostructures. Appl. Surf. Sci. Adv. 2022, 9, 10. [Google Scholar] [CrossRef]
- Kumar, S.; Malik, T.; Sharma, D.; Ganguli, A.K. NaNbO3/MoS2 and NaNbO3/BiVO4 Core-Shell Nanostructures for Photoelectrochemical Hydrogen Generation. ACS Appl. Nano Mater. 2019, 2, 2651–2662. [Google Scholar] [CrossRef]
- Mendhe, A.C.; Majumder, S.; Nair, N.; Sankapal, B.R. Core-shell cadmium sulphide @ silver sulphide nanowires surface architecture: Design towards photoelectrochemical solar cells. J. Colloid Interface Sci. 2021, 587, 715–726. [Google Scholar] [CrossRef]
- Mahajan, P.; Singh, A.; Arya, S. Improved performance of solution processed organic solar cells with an additive layer of sol-gel synthesized ZnO/CuO core/shell nanoparticles. J. Alloys Compd. 2020, 814, 152292. [Google Scholar] [CrossRef]
- Park, J.; Deshmukh, P.R.; Sohn, Y.; Shin, W.G. ZnO-TiO2 core-shell nanowires decorated with Au nanoparticles for plasmon-enhanced photoelectrochemical water splitting. J. Alloys Compd. 2019, 787, 1310–1319. [Google Scholar] [CrossRef]
- Koutavarapu, R.; Reddy, C.V.; Syed, K.; Reddy, K.R.; Saleh, T.A.; Lee, D.-Y.; Shim, J.; Aminabhavi, T.M. Novel Z-scheme binary zinc tungsten oxide/nickel ferrite nanohybrids for photocatalytic reduction of chromium (Cr (VI)), photoelectrochemical water splitting and degradation of toxic organic pollutants. J. Hazard. Mater. 2022, 423, 127044. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babu, B.; Peera, S.G.; Yoo, K. Fabrication of ZnWO4-SnO2 Core–Shell Nanorods for Enhanced Solar Light-Driven Photoelectrochemical Performance. Inorganics 2023, 11, 213. https://doi.org/10.3390/inorganics11050213
Babu B, Peera SG, Yoo K. Fabrication of ZnWO4-SnO2 Core–Shell Nanorods for Enhanced Solar Light-Driven Photoelectrochemical Performance. Inorganics. 2023; 11(5):213. https://doi.org/10.3390/inorganics11050213
Chicago/Turabian StyleBabu, Bathula, Shaik Gouse Peera, and Kisoo Yoo. 2023. "Fabrication of ZnWO4-SnO2 Core–Shell Nanorods for Enhanced Solar Light-Driven Photoelectrochemical Performance" Inorganics 11, no. 5: 213. https://doi.org/10.3390/inorganics11050213
APA StyleBabu, B., Peera, S. G., & Yoo, K. (2023). Fabrication of ZnWO4-SnO2 Core–Shell Nanorods for Enhanced Solar Light-Driven Photoelectrochemical Performance. Inorganics, 11(5), 213. https://doi.org/10.3390/inorganics11050213