Next Article in Journal
Hydrogen Release and Uptake of MgH2 Modified by Ti3CN MXene
Previous Article in Journal
Novel BODIPY Conjugates with Myrtenol: Design, Spectral Characteristics, and Possibilities for Practical Application
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Communication

Organomonophosphines in Pt(η3-X1X2X3)(PR3), (X = N1, N2, N3; S1, S2, S3; or Te1, Te2, Te3) Derivatives: Structural Aspects

1
Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
2
Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
3
Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
4
Toxicological and Antidoping Centre, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
*
Authors to whom correspondence should be addressed.
Inorganics 2023, 11(6), 242; https://doi.org/10.3390/inorganics11060242
Submission received: 15 May 2023 / Revised: 30 May 2023 / Accepted: 1 June 2023 / Published: 3 June 2023
(This article belongs to the Section Inorganic Materials)

Abstract

:
This paper covers nineteen Pt(II) complexes of the composition Pt(η3-X1X2X3)(PR3), (X = N1, N2, N3; S1, S2, S3; or Te1, Te2, Te3). These complexes crystallized in three crystal classes: triclinic (eleven examples), monoclinic (six examples), and orthorhombic (two examples). Each tridentate ligand creates two metallocyclic rings with common N2, S2, or Te2 donor ligands of the types N1C2N2C2N3, N1C2N2NC2N3, S1C2S2C2S3, S1C3S2C3S3, and Te1CNTe2NCTe3. The homotridentate ligand with monodentate PR3 ligand builds up a distorted square planar geometry about Pt(II) atoms. The degree of distortion ranges from 0.029 to 0.092, and the reason for the distortion is discussed. There is an example that contains two crystallographically independent molecules within the same crystal. This is a classic example of distortion isomerism.

1. Introduction

The coordination chemistry of platinum covers a huge number, as shown by a survey covering the crystallographic and structural data of almost two thousand monomeric examples [1,2,3]. Research activity in this field is always very active, and one of the reasons is the biological activity of platinum complexes [4]. Organophosphines as soft donor ligands are very useful for building a wide variety of platinum complexes. Much attention has been paid to organophosphines ligands in the chemistry of platinum. There have been numerous structural studies published of such complexes that were classified and analyzed [5]. Another review covers structural data of numerous platinum(II) coordination complexes with inner coordination spheres: PtP4, PtP3X (X = H, F, O, N, Cl, S, Br or I), and PtP2X2 (X – H, F, O, N, CN or B), in which P-donor ligands are monodentate organomonophosphines [6]. There are also numerous structures of Pt(II) complexes with organodiphosphines [7].
The aim of this paper is to analyze structural data of Pt(η3-X1X2X3)(PR3) (X = N1, N2, N3; S1, S2, S3; or Te1, Te2, Te3) complexes, where PR3 represents the ligand coordination via the P atom.

2. Pt(η3-X1X2X3)(PR3) Derivatives

Pt(η3-X1X2X3)(PR3) derivatives are divided into three groups, classified and discussed in this paper, namely Pt(η3-N1N2N3)(PR3), Pt(η3-S1S2S3)(PR3), and Pt(η3-Te1Te2Te3)(PR3) derivatives; their X-ray data are gathered in Table 1, Table 2 and Table 3, respectively.

2.1. Pt(η3-N1N2N3)(PR3) Type

There were fifteen complexes of such types which crystallized in three crystal classes: triclinic (nine examples), monoclinic (four examples), and orthorhombic (two examples) (see Table 1). In [Pt(η3-C12H10N4)(PPh3)] (at 100 K) (see Figure 1) [16], the tridentate ligand creates two dissimilar rings. Five- and six-membered complexes of the N1C2N2NC2N3 type had values of respective angles of 81.7° (N1-Pt-N2) and 89.6° (N2-Pt-N3). The values of the remaining L-Pt-L bind angles opened in the order 93.0° (N1-Pt-P) < 96.3° (N3-Pt-P) < 170.6° (N1-Pt-N3) < 177.2° (N2-Pt-P). The Pt-L bond distance elongated in the order 1.964 Å (Pt-N3, trans to N1) < 1.984 Å (Pt-N1) < 2.025 Å (Pt-N2, trans to P) < 2.255 Å (Pt-P).
In the remaining fourteen Pt(η3-N1N2N3) (Pt) complexes (see Table 1), a distorted square planar geometry around each Pt(II) atom was built up by η3-N1N2N3 with monodentate Pt ligands. Each tridentate donor ligand formed a pair of five-membered metallocyclic rings of the N1C2N2C2N3 type, with total mean values of the respective angles of 78.8° (N1-Pt-N2) and 79.9° (N2-Pt-N3). The remaining L-Pt-L bond angles opened in the order (total mean values) 100.5° (N1-Pt-P) < 102.9° (N3-Pt-P) < 157.2° (N3-Pt-N3) < 176.0° (N2-Pt-P). The Pt-L bond distance elongated in the order (total mean values) 2.013 Å (Pt-N3, trans to N1) < 2.017 Å (Pt-N1) < 2.018 Å (Pt-N2, trans to P) < 2.265 Å (Pt-P).

2.2. Pt(η3-S1S2S3)(PR3) Type

Monoclinic [Pt{η3-S(C6H4)S(C6H4)S}(PPh3)](PPh3)] [17] and triclinic [Pt{η3-MeS(CH2)3S(CH2)3SMe}(PPh3)].BF4 [18] are the only examples of such a type (Table 2). The structure of the cation is shown in Figure 2 [18]. The tridentate ligand formed a pair of six-membered metallocyclic rings with a common S2 atom of the monoclinic S1C2S2C2S3 and triclinic S1C3S2C3S3 type. The values of the respective angles were 87.69(4)° (S1-Pt-S2) and 87.08(4)° (S2-Pt-S3) in monoclinic and in triclinic were 87.1(2)° (S1-Pt-S2) and 89.5(2)° (S2-Pt-S3).
The remaining L-Pt-L bond angles opened in the order 91.1(2)° (S1-Pt-P) < 92.3(2)° (S3-Pt-P) < 171.0(2)° (S2-Pt-P) < 176.3(2)° (S1-Pt-S3). The Pt-L bond distance elongated in the order 2.330(2) Å (Pt-S1, trans to S3) < 2.332(2) Å (Pt-P, trans to S2) < 2.338(2) Å (Pt-S3) < 2.339(2) Å (Pt-S2). The monodentate PPh3 ligand completed a distorted squared planar geometry around the Pt(II) atom.

2.3. Pt(η3-Te1Te2Te3)(PR3) Type

There were two complexes of such a type; monoclinic [Pt{η3-C10H8N2Te3}(PPt3)] and triclinic [Pt{η3-C12H12N2Te3}(PPh3)]C6H6 [19] (see Table 3). The structure of the former is shown in Figure 3. Each tridentate ligand formed a pair of five-membered metallocyclic rings of the Te1CNTe2NCTe3 type with the values of the respective angles of 92.8° (Te1-Pt-Te2) and 92.5° (Te2-Pt-Te3) in monoclinic; in triclinic they were 91.6° and 91.4°. The remaining L-Pt-L bond angles opened in the order 81.1° (Te1-Pt-P) < 89.3° (Te3-Pt-P) < 171.4° (Te2-Pt-P) < 171.172.27° (Te1-Pt-Te3) in monoclinic, and in triclinic the order of 87.0° (Te3-Pt-P) < 90.4° (Te1-Pt-P) < 174.0° (Te1-Pt-Te3) < 175.5° (Te2-Pt-P).
The Pt-L bond distance elongated in the order 2.282(2) Å (Pt-P, trans to Te2) < 2.5720(2) Å (Pt-Te3, trans to Te1) < 2.5752(2) Å (Pt-Te2) < 2.5940(7) Å (Pt-Te1) (in monoclinic); in triclinic, the order was 2.283(3) Å (Pt-P, trans to Te2) < 2.569(2) Å (Pt-Te2) < 2.588(3) Å (Pt-Te1, trans to Te3) < 2.612(3) Å (Pt-Te3). The monodentate PPh3 completed a distorted square-planar geometry around the Pt(II) atoms.

3. Conclusions

This paper includes nineteen monomeric Pt(II) complexes with the composition of (Pt (η3-X1X2X3)(R3), (X = N, S or Te)). These complexes crystallized in three classes: triclinic (eleven examples), monoclinic (six examples), and orthorhombic (two examples). Based on tridentate ligands, these complexes could be divided into three sub-groups. In each sub-group, the Pt-L bond distance (mean values) with sums of Pt-L(x4) bond distances were:
Pt(η3-N1 N2 N3)(PR3);
PtN3P: 2.017 Å (Pt-N1, trans to N3); 2.018 Å (Pt-N2, trans to P); 2.013 Å (Pt-N3); 2.265 Å (Pt-P); Σ 8.313 Å (see Table 1);
Pt(η3-S1 S2 S3)(PR3);
PtS3P: 2.330 Å (Pt-S1, trans to S3); 2.339 Å (Pt-S2, trans to P); 2.338 Å (Pt-S3); 2.332 Å (Pt-P); Σ 9.339 Å (see Table 2);
Pt(η3-Te1 Te2 Te3)(PR3);
PtTe3P: 2.591 Å (Pt-Te1, trans to Te3); 2.572 Å (Pt-Te2, trans to P); 2.592 Å (Pt-Te3); 2.283 Å (Pt-P); Σ 10.038 Å (see Table 3).
The total mean values of Pt-L(x4) bond distances grew with the value of the covalent radius of coordinated atoms in the sequence 8.313 Å (0.73 Å, N) (PtN3P) < 9.339 (1.02 Å, S) (PtS3P) < 10.038 Å (1.36 Å, Te) (PtTe3P).
Each tridentate ligand formed two metallocyclic rings with common N2, S2, or Te2 of the following types, with the mean value of L-Pt-L bond angles:
5 + 5, rings N1C2N2C2N3 78.8° (N1-Pt-N2) and 78.9° (N2-Pt-N3);
5 + 5, rings S1C2S2C2S3 87.69(4)° (S1-Pt-S2) and 87.08(4)° (S2-Pt-S3)
5 + 5, rings Te1CNTe2NCTe3 92.1° (Te1-Pt-Te2) and 92.0° (Te2-Pt-Te3);
5 + 6, rings N1C2N2NC2N3 81.7° (N1-Pt-N2) and 89.6° (N2-Pt-N3);
6 + 6, rings S1C3S2C3S3 87.1° (S1-Pt-S2) and 89.5° (S2-Pt-S3).
In transition metal complexes, the oxidation state plays a leading role in the geometry formed, and platinum is no exception. In four coordinates, Pt(II) prefers a square-planar geometry. The utility of a simple metric to assess the molecule shape and degree of distortion as well as exemplify best the τ4 parameter for a perfect square-planar geometry is provided by the equation introduced by [20].
τ 4 = 360 ( α + β ) 360   f o r   s q u a r e   p l a n a r ,   a n d
τ 4 = 360 ( α + β ) 141     f o r   t e t r a h e d r a l .
The values of τ4 ranged from 0.00 for the perfect square-planar geometry to 1.00 for a perfect tetrahedral geometry, since 360 − 2(109.5) = 141.
There is a cooperative effect between the size of the metallocyclic rings and donor atoms and the distortion of square-planar geometry around the Pt(II) atom. The distortion diminishes when the size of the metallocyclic rings grows, and the covalent radius increases as 0.75 Å (N) < 1.02 Å (S) < 1.31 Å (Te) of donor atoms, as can be seen:
5 + 5, rings 0.068 (τ4) 78.8° (N1C2N2C2N3) < 0.053 (τ4) 81.4° (S1C2S2C2S3) < 0.036 (τ4) 92.0° (Te1CNTe2NCTe3);
5 + 5, rings 0.068 (τ4) 78.8° (N1C2N2C2N3);
5 + 6, rings 0.034 (τ4) 81.7° and 84.6° (N1C2N2C2N3);
5 + 5, rings 0.053 (τ4) 87.4° S1C2S2C2S3;
6 + 6, rings 0.035 (τ4)) 87.1° and 89.54.6° S1C3S2C3S3.
Monoclinic [Pt{η3-C15H11N3}(PPh3)].SO3CF3 (at 173 k) [13] contains two crystallographically independent molecules within the same crystal (Table 1). These two molecules are different from each other by the degree of distortion, with values of τ4 0.070 and 0.082. They are a classic example of a distortion isomerism [21].

Author Contributions

Conceptualization, M.M. and P.M.; methodology M.M. and P.M.; writing—original draft preparation, M.M. and P.M.; data curation, M.M.; writing—review and editing, V.M.; supervision, M.M. and P.M.; funding acquisition, P.M. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the project VEGA 1/0514/22.

Data Availability Statement

Data supporting the reported results can be found from author M.M.

Acknowledgments

This work was supported by the Faculty of Pharmacy, Comenius University, Bratislava.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

mmonoclinic
C25H19N5(2,6-bis(3-(4-methyl)-1H-pyrazol-5yl)pyridinate)
PPh3triphenylphosphine
C29H33N7(2,6-bis(3-(adamantam-1-yl)-1H-1,2,4-triazol-5-yl) pyridinate)
C31H35N5(2,6-bis(3-(adamantam-1-yl)-1H-pyrazol-5-yl) pyridinate)
C12H6F6N7O(4-methoxy-2,6-bis(3-(trifluoromethyl)-1H-1,2,4-triazol-5-yl))pyridinate)
C13H5F6N5{2,6-bis[3-(trifluoromethyl)-1H-pyrazol-5-yl]pyridinato}
C18H23N7O(2,6-bis(3-t-butyl-1H-1,2,4-triazol-5-yl)-4-methoxypyridinate)
C22H15N7O(4-methoxy-2,6-bis(3-phenyl-1H-1,2,4-triazol-5-yl)pyridinate)
C17H21N7(2,6-bis(3-t-butyl-1H-1,2,4-triazol-5-yl))pyridinate)
C17H22N8(2-(3-(adamantan-1-yl)-1H-1,2,4-triazol-5-yl)-6-(1H-tetrazol-5-yl)pyridinato)
C11H3F6N7(2,6-bis(3-(trifluoromethyl)-1H-1,2,4-triazol-5-yl)pyridinate)
C15H11N3(2,2′.6′2″-terpyridine)
C31H30F6N4O8S24′-[4-(4-morpholinobutyloxy)phenyl]-2,2′:6′,2″-terpyridine
P(CH3)Ph2methyldiphenylphenylphosphine
P(η1-C14H19-O5)(Ph)2(benzo-5-crown[5])diphenylphosphine)
C12H10N4(2-(2-amino)phenyl diazenyl)anilinate)
C10H8N2Te3(1,1′-tellanyl)bis(5-pyridine-2-tellurolate)
C12H10N2Te3(1,1′-tellanyl)bis(3-methyl-1λ5-pyridine-2-tellurolate)

References

  1. Holloway, C.E.; Melnik, M. Structural aspects of platinum coordination compounds: PART I. Monomeric PT0, PT1 and PTIIA4derivatives. Rev. Inorg. Chem. 2002, 22, 163–284. [Google Scholar] [CrossRef]
  2. Holloway, C.E.; Melnik, M. Structural Aspect of Platinum Coordination Compounds: Part II. Monomeric Pt(II) Compounds with PtA3Band PtA2B2 Composition. Rev. Inorg. Chem. 2003, 23, 125–162. [Google Scholar] [CrossRef]
  3. Holloway, C.E.; Melnik, M. Structural aspects of platinum coordination compounds: PART III. Monomeric square-planar (PtA2XYand PtABXY) and trigonal bipyramidal PtII Coordination Compounds. Rev. Inorg. Chem. 2004, 24, 135–299. [Google Scholar] [CrossRef]
  4. Chen, J.; Zhang, Z.; Ma, J.; Nezamzadeh-Ejhieh, A.; Lu, C.; Pan, Y.; Liu, J.; Bai, Z. Current status and prospects of MOFs in controlled delivery of Pt anticancer drugs. Dalton Trans. 2023, 52, 6226–6238. [Google Scholar] [CrossRef] [PubMed]
  5. Melník, M.; Mikuš, P. Organomonophosphines in PtP2Cl2 derivatives:structural aspects. Rev. Inorg. Chem. 2015, 35, 179–190. [Google Scholar] [CrossRef]
  6. Melník, M.; Mikuš, P. Organomonophosphines in Pt(II) coordination complexes. Part 1. Monomeric square-planar: PtP4, PtP3X and PtP2I2. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 1764–1780. [Google Scholar] [CrossRef]
  7. Melník, M.; Mikuš, P. Organodiphosphines in cis-Pt(g2-P2L)(SR)2 derivatives—Structural aspects. Phosphorous Sulfur Silicon Relat. Elem. 2019, 194, 857–860. [Google Scholar] [CrossRef]
  8. Chai, K.; Kuang, W.; Lan, Z.; Zhang, L.; Jiang, Y.; Han, T.; Niu, J.; Wang, J. Synthesis, characterization, DNA binding, topoisomerase I inhibition and antiproliferation activities of three new functionalized terpyridine platinum(II) complexes. J. Inorg. Biochem. 2019, 192, 17–24. [Google Scholar] [CrossRef]
  9. Cebrián, C.; Mauro, M.; Kourkoulos, D.; Mercandelli, P.; Hertel, D.; Meerholz, K.; Strassert, C.A.; De Cola, L. Luminescent neutral platinum complexes bearing an asymmetric N^N^N ligand for high-performance solution-processed OLEDs. Adv. Mat. 2013, 25, 437–442. [Google Scholar] [CrossRef]
  10. Delcanale, P.; Galstyan, A.; Daniliuc, C.G.; Grecco, H.E.; Abbruzzetti, S.; Faust, A.; Viappiani, C.; Strassert, C.A. Oxygen-Insensitive Aggregates of Pt(II) Complexes as Phosphorescent Labels of Proteins with Luminescence Lifetime-Based Readouts. ACS Appl. Mater. Interfaces 2018, 10, 24361–24369. [Google Scholar] [CrossRef]
  11. Galstyan, A.; Naziruddin, A.R.; Cebrián, C.; Ioedache, A.; Daniliuc, C.G.; de Cola, L.; Strassert, C.A. Correlating the structural and photophysical features of pincer luminophores and monodentate ancillary ligands in PtII phosphors. J. Inorg. Chem. 2015, 36, 5822–5831. [Google Scholar] [CrossRef]
  12. Sanning, J.; Ewen, P.R.; Stegemann, L.; Schmidt, J.; Daniliuc, C.G.; Koch, T.; Doltsinis, N.L.; Wegner, D.; Strassert, C.A. Scanning-Tunneling-Spectroscopy-Directed Design of Tailored Deep-Blue Emitters. Angew. Chem.-Int. Edit. 2015, 54, 786–791. [Google Scholar] [CrossRef]
  13. Pappenfus, T.M.; Burney, J.R.; McGee, K.A.; Lee, G.G.W.; Jarvis, L.R.; Ekerholm, D.P.; Farah, M.; Smith, L.I.; Hinkle, L.M.; Mann, K.R. Alternative syntheses and reactivity of platinum(II) terpyridyl acetonitrile complexes. Inorg. Chim. Acta 2010, 363, 3214–3221. [Google Scholar] [CrossRef]
  14. Stegemann, L.; Sanning, J.; Daniliuc, C.G.; Strassert, C.A. Influence of the monodentate ancillary ligand on the photophysical properties of Pt(II) complexes bearing a symmetric dianionic tridentate luminophore. Z. Naturforsch. B J. Chem. Sci. 2016, 71, 1087–1093. [Google Scholar] [CrossRef]
  15. Yam, V.W.-W.; Tang, R.P.-L.; Wong, K.M.-C.; Lu, X.-X.; Cheung, K.-K.; Zhu, N. Synthesis, electronic absorption, emission, and ion-binding studies of platinum(III) C empty set N empty set C and terpyridyl complexes containing crown ether pendants. Chem. Eur. J. 2002, 8, 4066–4076. [Google Scholar] [CrossRef]
  16. Mandal, P.; Lin, C.-H.; Barandao, P.; Mal, D.; Felix, V.; Pratihar, J.L. Synthesis, characterization, structure and catalytic activity of (NNN) tridentate azo-imine nickel(II), palladium(II) and platinum(II) complexes. Polyhedron 2016, 36, 171–177. [Google Scholar] [CrossRef]
  17. Sellmann, D.; Häußinger, D.; Heinemann, F.W. Transition Metal Complexes with Sulfur Ligands, 138 Synthesis, Structures, and Reactions of Sulfur-Rich Nickel and PlatinumComplexes with [MS3] and [MNS2] Cores. Eur. J. Inorg. Chem. 1999, 1999, 1715–1725. [Google Scholar] [CrossRef]
  18. Loeb, S.J.; Mansfield, J.R. Platinum(II) complexes of the tridentate thioether ligands RS(CH2)3S(CH2)3SR (R = Et, iPr, Ph). Structures of [PtCl(iPrS(CH2)3S(CH2) 3SiPr)][BF4], [Ptl(PhS(CH2)3S(CH 2)2SPh)][BF4], and [Pt(PPh3)(iPrS (CH2)3. Canad. J. Chem. 1996, 74, 1377–1390. [Google Scholar] [CrossRef]
  19. Chauhan, R.S.; Kedarnath, G.; Wadawale, A.; Munoz-Castro, A.; Arratia-Perrez, R.; Jain, V.K.; Kaim, W. Tellurium(0) as a Ligand: Synthesis and Characterization of 2-Pyridyltellurolates of Platinum(II) and Structures of [Pt{2-Te-3-(R)C5H3N}2Te(PR′3)] (R = H or Me). Inorg. Chem. 2010, 49, 4179–4185. [Google Scholar] [CrossRef]
  20. Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(i) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index. τ4. Dalton Trans. 2007, 9, 955–964. [Google Scholar] [CrossRef]
  21. Melník, M.; Holloway, C.E. Stereochemistry of platinum coordination compounds. Coord. Chem. Rev. 2006, 250, 2261–2270. [Google Scholar] [CrossRef]
Figure 1. Structure of [Pt(η3-C12H10N4)(PPh3)] [16].
Figure 1. Structure of [Pt(η3-C12H10N4)(PPh3)] [16].
Inorganics 11 00242 g001
Figure 2. Structure of [Pt{η3-MeS(CH2)3S(CH2)3SMe}(PPh3)]+ [18].
Figure 2. Structure of [Pt{η3-MeS(CH2)3S(CH2)3SMe}(PPh3)]+ [18].
Inorganics 11 00242 g002
Figure 3. Structure of [Pt{η3-C12H12N2Te3}(PPh3)] [19].
Figure 3. Structure of [Pt{η3-C12H12N2Te3}(PPh3)] [19].
Inorganics 11 00242 g003
Table 1. Structural data for Pt (η3-N1N2N3)(PR3) derivatives a.
Table 1. Structural data for Pt (η3-N1N2N3)(PR3) derivatives a.
Pt (η3-N1N2N3)(PR3)Crystal cl.
Space gr.
z
a [Å]
b [Å]
c [Å]
α [°]
β [°]
γ [°]
Chromophore
(Chelate Rings)
τ4
Pt-L b
[Å]
L-Pt-L b
[°]
Ref.
[Pt{η3-C31H30F6N4O8S2}.
(PPh3)]
[Pt{η3-C17H28N3}(PPh3)].
CH2Cl
tr
P 1
2
tr
P 1
2
11.925
14.820
17.550
11.135(2)
11.462(2)
13.808(2)
94.77
103.02
111.67
80.18(2)
81.74(2)
88.27(2)
PtN3P
(N1C2N2C2N3)
0.080
PtN3P
(N1C2N2C2N3)
0.089
N1 2.017
N2 2.040
N3 2.038
P 2.266
N1 1.996
N2 2.035
N3 2.032
P 2.268
N1,N2 79.8(4) c
N2,N3 79.2(3) c
N1,N3 160.4
N1,P 104.0
N3,P 96.9(2)
N2,P 170.8
N1,N2 78.5
N2,N3 78.2
N1,N3 156.5
N1,P 97.3
N3,P 106.1
N2,P 172.2
[8,9]
[Pt{η3-C13H5F6N5}.
(PPh3)]
tr
P 1
2
9.142
10.264
16.507
103.04
103.07
99.68
PtN3P
(N1C2N2C2N3)
0.075
N1 2.011
N2 2.024
N3 2.015
P 2.257
N1,N2 79.0 c
N2,N3 78.9
N1,N3 157.8
N1,P 102.7
N3,P 99.5
N2,P 175.1
[10]
[Pt{η3-C25H19N5}(PPh3)]. 3CH2Cl2
(at 223 k)
m
P21/n
4
6.068(0)
8.323(0)
33.868(0)
90.86(0)PtN3P
(N1C2N2C2N3)
0.070
N1 2.015
N2 2.017
N3 1.996
P 2.253
N1,N2 79.2 c
N2,N3 79.3 c
N1,N3 158.4
N1,P 96.9
N3,P 104.6
N2,P 176.2
[11]
[Pt{η3-C29H33N7}(PPh3)]. CH2Cl2
(at 223 k)
tr
P 1
2
11.926(0)
13.052(0)
14.258(0)
97.75(0)
102.93(0)
95.73(0)
PtN3P
(N1C2N2C2N3)
0.070
N1 2.012
N2 2.036
N3 2.009
P 2.244
N1,N2 78.9 c
N2,N3 78.9 c
N1,N3 157.7
N1,P 99.9
N3,P 102.2
N2,P 177.1
[11]
[Pt{η3-C30H35N5}(PPh3)]
(at 223 k)
tr
P 1
2
11.005(0)
12.424(0)
15.305(0)
75.50(0)
82.31(0)
87.08(0)
PtN3P
(N1C2N2C2N3)
0.067
N1 2.009
N2 2.022
N3 2.010
P 2.243
N1,N2 79.1 c
N2,N3 78.8 c
N1,N3 157.5
N1,P 99.4
N3,P 102.3
N2,P 178.4
[11]
[Pt{η3-C12H6F6N7O}(PPh3)]
(at 223 k)
tr
P 1
2
7.952(0)
11.542(0)
16.515(0)
76.83(0)
83.35(0)
89.27(0)
PtN3P
(N1C2N2C2N3)
0.077
N1 2.015
N2 2.031
N3 2.035
P 2.263
N1,N2 78.0 c
N2,N3 78.4 c
N1,N3 156.4
N1,P 97.6
N3,P 105.9
N2,P 175.7
[12]
[Pt{η3-C18H23N7O}(PPh3)]
(at 223 k)
m
P21/n
4
13.371(0)
17.428(0)
15.657(0)
114.69(0)PtN3P
(N1C2N2C2N3)
0.081
N1 2.016
N2 2.026
N3 2.008
P 2.256
N1,N2 78.4 c
N2,N3 78.5 c
N1,N3 156.9
N1,P 98.4
N3,P 104.6
N2,P 173.9
[12]
[Pt{η3-C22H15N7O}(PPh3)]
(at 223 k)
m
C2/6
8
24.786(0)
30.842(0)
10.313(0)
101.98(0)PtN3P
(N1C2N2C2N3)
0.072
N1 2.006
N2 2.033
N3 2.012
P 2.269
N1,N2 78.0 c
N2,N3 78.3 c
N1,N3 156.3
N1,P 101.2
N3,P 102.4
N2,P 177.8
[12]
[Pt{η3-C17H21N7}(PPh3)]
(at 223 k)
tr
P 1
4
15.098(0)
16.025(0)
17.125(0)
114.45(0)
94.20(0)
112.02(0)
PtN3P
(N1C2N2C2N3)
0.078
N1 2.022
N2 2.021
N3 2.010
P 2.263
N1,N2 78.5 c
N2,N3 78.7 c
N1,N3 157.0
N1,P 101.0
N3,P 101.9
N2,P 174.8
[12]
[Pt{η3-C11H3F6N7}(PPh3)]
(at 223 k)
m
P21/n
4
17.477(0)
7.859(0)
22.016(0)
112.64(0)PtN3P
(N1C2N2C2N3)
0.076
N1 2.027
N2 2.037
N3 2.012
P 2.275
N1,N2 78.3 c
N2,N3 78.5 c
N1,N3 156.8
N1,P 105.9
N3,P 97.7
N2,P 175.7
[12]
[Pt{η3-C15H11N3}(PPh3)]. 2SO3CF3 e
(at 173 k)
tr
P 1
4
9.054(7)
19.936(14)
22.196(16)
111.04(1)
99.18(1)
99.74(1)
PtN3P
(N1C2N2C2N3)
0.070
PtN3P
(N1C2N2C2N3)
0.082
N1 2.043
N2 1.978
N3 2.052
P 2.276
N1 2.057
N2 1.975
N3 2.040
P 2.288
N1,N2 79.6 c
N2,N3 80.0 c
N1,N3 159.2
N1,P 101.8
N3,P 98.8
N2,P 175.4
N1,N2 79.9 c
N1,N3 79.3 c
N1,N3 158.5
N1,P 103.2
N3,P 98.1
N2,P 172.0
[13]
[Pt{η3-C11H3F6N7}. {P(CH3)Ph2}]
(at 223 k)
tr
P 1
2
7.892(0)
10.614(0)
16.050(0)
90.75(0)
97.77(0)
108.22(0)
PtN3P
(N1C2N2C2N3)
0.068
N1 2.005
N2 2.032
N3 2.006
P 2.256
N1,N2 78.6 c
N2,N3 79.2 c
N1,N3 157.7
N1,P 100.0
N3,P 102.2
N2,P 177.9
[14]
[Pt{η3-C15H11N3}{P(η1-C14H19O5)Ph2}].2SO3CF3.
2Me2CO
(at 223 k)
m
C2/c
4
31.541(4)
17.658(4)
24.072(4)
121.50(0)PtN3P
(N1C2N2C2N3)
0.068
N1 1.918(16)
N2 2.000(1)
N3 2.097(10)
P 2.287(3)
N1,N2 79.8(5) c
N2,N3 79.5(3) c
N1,N3 158.7(5)
N1,P 97.9(3)
N3,P 103.0(3)
N2,P 176.6(3)
[15]
[Pt{η3-C12H10N4}(PPh3)]
(at 100 k)
or
P212121
6
10.417(0)
13.328(0)
18.299(0)
PtN3P
(N1C2N2NC2N3)
0.034
N1 1.984
N2 2.025
N3 1.964
P 2.255
N1,N2 81.7 c
N2,N3 89.6 d
N1,N3 170.6
N1,P 93.0
N3,P 96.3
N2,P 177.2
[16]
a Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parentheses is e.s.d., and the second is the maximum deviation from the mean; b the chemical identity of a coordinate atom or ligand is specified in these columns; c five-membered metallocyclic ring; d six-membered metallocyclic ring; e there are two crystallographically independent molecules.
Table 2. Structural data for Pt(η3-S1S2S3)(PPh3) derivatives a.
Table 2. Structural data for Pt(η3-S1S2S3)(PPh3) derivatives a.
Pt(η3-S1S2S3)(PPh3)Crystal cl.
Space gr.
z
a [Å]
b [Å]
c [Å]
α [°]
β [°]
γ [°]
Chromophore
(Chelate Rings)
τ4
Pt-L b
[Å]
L-Pt-L b
[°]
Ref.
[Pt{η3-S(C6H4)S(C6H4)S}.
(PPh3)]
m
P21/n
4
8.990(1)
11.393(3)
25.587(3)
9093(1)PtS3P
(S1C2S2C2S3)
0.051
S1 2.312(1)
S2 2.287(1)
S3 2.312(1)
P 2.261(1)
S1,S2 87.69(4)
S2,S3 87.08(4)
S1,S3 163.92(3)
S1,P 94.40(1)
S3,P 90.76(4)
S2,P 177.85(4)
[17]
[Pt{η3-MeS(CH2)3S(CH2)3. SMe}(PPh3)]BF4tr
P 1
2
13.266(3)
11.315(2)
13.970(2)
106.04(2)
84.95(2)
86.56(2)
PtS3P
(S1C3S2C3S3)
0.035
S1 2.330(2)
S2 2.339(2)
S3 2.338(2)
P 2.332(2)
S1,S2 87.1(2) c
S2,S3 89.5(2) c
S1,S3 176.3(2)
S1,P 91.1(2)
S3,P 92.3(2)
S2,P 171.0(2)
[18]
a Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parentheses is e.s.d., and the second is the maximum deviation from the mean; b the chemical identity of coordinate atom or ligand is specified in these columns; c six-membered metallocyclic ring.
Table 3. Structural data for Pt(η3-Te1Te2Te3)(PPh3) derivatives a.
Table 3. Structural data for Pt(η3-Te1Te2Te3)(PPh3) derivatives a.
Pt(η3-S1S2S3)(PPh3)Crystal cl.
Space gr.
z
a [Å]
b [Å]
c [Å]
α [°]
β [°]
γ [°]
Chromophore
(Chelate Rings)
τ4
Pt-L b
[Å]
L-Pt-L b
[°]
Ref.
[Pt{η3-C10H8N2Te3}(PPh3)]m
C2/c
4
39.040(7)
13.261(4)
11.943(1)
93.85(1)PtTe3P (Te1CNTe2NCTe3)
0.044
Te1 2.5940(7)
Te2 2.5752(2)
Te3 2.570(2)
P 2.282(2)
Te1,Te2 92.83(2) c
Te2,Te3 92.56(2) c
Te1,Te3 172.74(2)
Te1,P 86.10(5)
Te3,P 89.29(6)
Te2,P 171.40(2)
[19]
[Pt{η3-C12H12N2Te3}(PPh3)]. C6H6tr
P 1
2
12.300(12)
15.251(8)
10.029(7)
107.38(3)
99.51(6)
83.25(4)
PtTe3P (Te1CNTe2NCTe3)
0.029
Te1 2.588(3)
Te2 2.569(2)
Te3 2.612(3)
P 2.283(3)
Te1,Te2 91.59(6) c
Te2,Te3 91.40(7) c
Te1,Te3 173.99(11)
Te1,P 90.40(10)
Te3,P 86.99(10)
Te2,P 17.56(9)
[19]
a Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parentheses is e.s.d., and the second is the maximum deviation from the mean; b the chemical identity of coordinate atom or ligand is specified in these columns; c five-membered metallocyclic ring.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Melník, M.; Mikušová, V.; Mikuš, P. Organomonophosphines in Pt(η3-X1X2X3)(PR3), (X = N1, N2, N3; S1, S2, S3; or Te1, Te2, Te3) Derivatives: Structural Aspects. Inorganics 2023, 11, 242. https://doi.org/10.3390/inorganics11060242

AMA Style

Melník M, Mikušová V, Mikuš P. Organomonophosphines in Pt(η3-X1X2X3)(PR3), (X = N1, N2, N3; S1, S2, S3; or Te1, Te2, Te3) Derivatives: Structural Aspects. Inorganics. 2023; 11(6):242. https://doi.org/10.3390/inorganics11060242

Chicago/Turabian Style

Melník, Milan, Veronika Mikušová, and Peter Mikuš. 2023. "Organomonophosphines in Pt(η3-X1X2X3)(PR3), (X = N1, N2, N3; S1, S2, S3; or Te1, Te2, Te3) Derivatives: Structural Aspects" Inorganics 11, no. 6: 242. https://doi.org/10.3390/inorganics11060242

APA Style

Melník, M., Mikušová, V., & Mikuš, P. (2023). Organomonophosphines in Pt(η3-X1X2X3)(PR3), (X = N1, N2, N3; S1, S2, S3; or Te1, Te2, Te3) Derivatives: Structural Aspects. Inorganics, 11(6), 242. https://doi.org/10.3390/inorganics11060242

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop