Stem Bark-Mediated Green Synthesis of Silver Nanoparticles from Pyrus pashia: Characterization, Antioxidant, and Antibacterial Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Macro- and Micro-Morphological Analysis
2.2. UV-Visible Spectroscopy
2.3. FTIR Spectroscopy
2.4. Detection of Phytochemicals in the Extract
2.5. Antioxidant Activity
2.6. Antibacterial Activity
3. Materials and Methods
3.1. Materials
3.2. Preparation and Phytochemical Screening of Plant Extract
3.3. Preparation of Silver Nanoparticles
3.4. Effect of Concentration
3.5. Effect of pH
3.6. Effect of Reaction Time
3.7. Biosynthesis of Silver Nanoparticles (AgNPs)
3.8. Characterization of Silver Nanoparticles
3.9. In Vitro Antioxidant Activity
3.10. Antibacterial Activity
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rafique, M.; Sadaf, I.; Rafique, M.S.; Tahir, M.B. A Review on Green Synthesis of Silver Nanoparticles and Their Applications. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1272–1291. [Google Scholar] [CrossRef]
- Hawar, S.N.; Al-Shmgani, H.S.; Al-Kubaisi, Z.A.; Sulaiman, G.M.; Dewir, Y.H.; Rikisahedew, J.J. Green Synthesis of Silver Nanoparticles from Alhagi graecorum Leaf Extract and Evaluation of Their Cytotoxicity and Antifungal Activity. J. Nanomater. 2022, 2022, 1058119. [Google Scholar] [CrossRef]
- Shrestha, D.; Nayaju, T.; Kandel, M.R.; Pradhananga, R.R.; Park, C.H.; Kim, C.S. Rice Husk-Derived Mesoporous Biogenic Silica Nanoparticles for Gravity Chromatography. Heliyon 2023, 9, e15142. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Al-Enazi, N.M.; Ibraheem, I.B.M.; Alharbi, R.M.; Alkhulaifi, M.M. Biosynthesis of Silver Nanoparticles by Using of the Marine Brown Alga Padina pavonia and Their Characterization. Saudi J. Biol. Sci. 2019, 26, 1207–1215. [Google Scholar] [CrossRef]
- Adhikari, A.; Chhetri, K.; Acharya, D.; Pant, B.; Adhikari, A. Green Synthesis of Iron Oxide Nanoparticles Using Psidium guajava L. Leaves Extract for Degradation of Organic Dyes and Anti-Microbial Applications. Catalysts 2022, 12, 1188. [Google Scholar] [CrossRef]
- Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green Synthesis of Nanoparticles: Current Developments and Limitations. Environ. Technol. Innov. 2022, 26, 102336. [Google Scholar] [CrossRef]
- Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Rokhum, S.L. Green Synthesis of Silver Nanoparticles Using Plant Extracts and Their Antimicrobial Activities: A Review of Recent Literature. RSC Adv. 2021, 11, 2804–2837. [Google Scholar] [CrossRef] [PubMed]
- Hemlata; Meena, P.R.; Singh, A.P.; Tejavath, K.K. Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity against Cancer Cell Lines. ACS Omega 2020, 5, 5520–5528. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, A.; Lamichhane, L.; Adhikari, A.; Gyawali, G.; Acharya, D.; Baral, E.R.; Chhetri, K. Green Synthesis of Silver Nanoparticles Using Artemisia vulgaris Extract and Its Application toward Catalytic and Metal-Sensing Activity. Inorganics 2022, 10, 113. [Google Scholar] [CrossRef]
- Mohamed, D.S.; El-Baky, R.M.A.; Sandle, T.; Mandour, S.A.; Ahmed, E.F. Antimicrobial Activity of Silver-Treated Bacteria against Other Multi-Drug Resistant Pathogens in Their Environment. Antibiotics 2020, 9, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, N.; Jain, P.; Rajput, D.; Patil, U.K. Green Synthesized Plant-Based Silver Nanoparticles: Therapeutic Prospective for Anticancer and Antiviral Activity. Micro Nano Syst. Lett. 2021, 9, 5. [Google Scholar] [CrossRef]
- Sharma, V.; Kaushik, S.; Pandit, P.; Dhull, D.; Yadav, J.P.; Kaushik, S. Green Synthesis of Silver Nanoparticles from Medicinal Plants and Evaluation of Their Antiviral Potential against Chikungunya virus. Appl. Microbiol. Biotechnol. 2019, 103, 881–891. [Google Scholar] [CrossRef]
- Rahuman, H.B.H.; Dhandapani, R.; Narayanan, S.; Palanivel, V.; Paramasivam, R.; Subbarayalu, R.; Thangavelu, S.; Muthupandian, S. Medicinal Plants Mediated the Green Synthesis of Silver Nanoparticles and Their Biomedical Applications. IET Nanobiotechnol. 2022, 16, 115–144. [Google Scholar] [CrossRef] [PubMed]
- Prakash, O.; Selvi, M.K.; Vijayaraj, P.; Kudachikar, V.B. Lipidome, Nutraceuticals and Nutritional Profiling of Pyrus pashia Buch.-Ham Ex D. Don (Kainth) Seeds Oil and Its Antioxidant Potential. Food Chem. 2021, 338, 128067. [Google Scholar] [CrossRef] [PubMed]
- Janbaz, K.H.; Ahsan, M.Z.; Saqib, F.; Imran, I.; Zia-Ul-Haq, M.; Rashid, M.A.; Jaafar, H.Z.E.; Moga, M. Scientific Basis for Use of Pyrus pashia Buch.-Ham. Ex D. Don. Fruit in Gastrointestinal, Respiratory and Cardiovascular Ailments. PLoS ONE 2015, 10, e0118605. [Google Scholar] [CrossRef]
- Khanal, L.N.; Sharma, K.R.; Pokharel, Y.R.; Kalauni, S.K. Assessment of Phytochemical, Antioxidant and Antimicrobial Activities of Some Medicinal Plants from Kaski District of Nepal. Am. J. Plant Sci. 2020, 11, 1383–1397. [Google Scholar] [CrossRef]
- Kandel, M.R.; Pan, U.N.; Dhakal, P.P.; Ghising, R.B.; Nguyen, T.T.; Zhao, J.; Kim, N.H.; Lee, J.H. Unique Heterointerface Engineering of Ni2P−MnP Nanosheets Coupled Co2P Nanoflowers as Hierarchical Dual-Functional Electrocatalyst for Highly Proficient Overall Water-Splitting. Appl. Catal. B Environ. 2023, 331, 122680. [Google Scholar] [CrossRef]
- Balaji, D.S.; Basavaraja, S.; Deshpande, R.; Mahesh, D.B.; Prabhakar, B.K.; Venkataraman, A. Extracellular Biosynthesis of Functionalized Silver Nanoparticles by Strains of Cladosporium cladosporioides Fungus. Colloids Surf. B Biointerfaces 2009, 68, 88–92. [Google Scholar] [CrossRef]
- Rajakumar, G.; Gomathi, T.; Thiruvengadam, M.; Rajeswari, V.D.; Kalpana, V.N.; Chung, I.-M. Evaluation of anti-cholinesterase, antibacterial and cytotoxic activities of green synthesized silver nanoparticles using from Millettia pinnata flower extract. Microb. Pathog. 2017, 103, 123–128. [Google Scholar] [CrossRef]
- Cheng, Z.; Tang, S.W.; Feng, J.; Wu, Y. Biosynthesis and Antibacterial Activity of Silver Nanoparticles Using Flos Sophorae Immaturus Extract. Heliyon 2022, 8, e10010. [Google Scholar] [CrossRef]
- Khanal, L.N.; Sharma, K.R.; Paudyal, H.; Parajuli, K.; Dahal, B.; GC, G.; Pokharel, Y.R.; Kalauni, S.K. Green Synthesis of Silver Nanoparticles from Root Extracts of Rubus ellipticus Sm. and Comparison of Antioxidant and Antibacterial Activity. J. Nanomater. 2022, 2022, 1832587. [Google Scholar] [CrossRef]
- Behravan, M.; Panahi, A.H.; Naghizadeh, A.; Ziaee, M.; Mahdavi, R.; Mirzapour, A. Facile Green Synthesis of Silver Nanoparticles Using Berberis vulgaris Leaf and Root Aqueous Extract and Its Antibacterial Activity. Int. J. Biol. Macromol. 2019, 124, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Dashora, A.; Rathore, K.; Raj, S.; Sharma, K. Synthesis of Silver Nanoparticles Employing Polyalthia longifolia Leaf Extract and Their In Vitro Antifungal Activity against Phytopathogen. Biochem. Biophys. Rep. 2022, 31, 101320. [Google Scholar] [CrossRef]
- Edison, T.J.I.; Sethuraman, M.G. Instant Green Synthesis of Silver Nanoparticles Using Terminalia chebula Fruit Extract and Evaluation of Their Catalytic Activity on Reduction of Methylene Blue. Process Biochem. 2012, 47, 1351–1357. [Google Scholar] [CrossRef]
- Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P.T. Optimization for Rapid Synthesis of Silver Nanoparticles and Its Effect on Phytopathogenic fungi. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 93, 95–99. [Google Scholar] [CrossRef]
- Nasar, M.Q.; Zohra, T.; Khalil, A.T.; Saqib, S.; Ayaz, M.; Ahmad, A.; Shinwari, Z.K. Seripheidium quettense Mediated Green Synthesis of Biogenic Silver Nanoparticles and Their Theranostic Applications. Green Chem. Lett. Rev. 2019, 12, 310–322. [Google Scholar] [CrossRef] [Green Version]
- Ovais, M.; Khalil, A.T.; Raza, A.; Khan, M.A.; Ahmad, I.; Islam, N.U.; Saravanan, M.; Ubaid, M.F.; Ali, M.; Shinwari, Z.K. Green Synthesis of Silver Nanoparticles via Plant Extracts: Beginning a New Era in Cancer Theranostics. Nanomedicine 2016, 12, 3157–3177. [Google Scholar] [CrossRef] [PubMed]
- Smitha, S.L.; Nissamudeen, K.M.; Philip, D.; Gopchandran, K.G. Studies on Surface Plasmon Resonance and Photoluminescence of Silver Nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 71, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkumar, S.; Malarkodi, C.; Paulkumar, K.; Vanaja, M.; Gnanajobitha, G.; Annadurai, G. Algae Mediated Green Fabrication of Silver Nanoparticles and Examination of Its Antifungal Activity against Clinical Pathogens. Int. J. Met. 2014, 2014, 692643. [Google Scholar] [CrossRef] [Green Version]
- Rosman, N.S.R.; Harun, N.A.; Idris, I.; Ismail, W.I.W. Eco-Friendly Silver Nanoparticles (AgNPs) Fabricated by Green Synthesis Using the Crude Extract of Marine Polychaete, Marphysa moribidii: Biosynthesis, Characterisation, and Antibacterial Applications. Heliyon 2020, 6, e05462. [Google Scholar] [CrossRef]
- Afreen, A.; Ahmed, R.; Mehboob, S.; Tariq, M.; Alghamdi, H.A.; Zahid, A.A.; Ali, I.; Malik, K.; Hasan, A. Phytochemical-Assisted Biosynthesis of Silver Nanoparticles from Ajuga bracteosa for Biomedical Applications. Mater. Res. Express 2020, 7, 075404. [Google Scholar] [CrossRef]
- Rautela, A.; Rani, J.; Debnath (Das), M. Green Synthesis of Silver Nanoparticles from Tectona Grandis Seeds Extract: Characterization and Mechanism of Antimicrobial Action on Different Microorganisms. J. Anal. Sci. Technol. 2019, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Jini, D.; Sharmila, S. Green Synthesis of Silver Nanoparticles from Allium cepa and Its In Vitro Antidiabetic Activity. Mater. Today Proc. 2020, 22, 432–438. [Google Scholar] [CrossRef]
- Salari, S.; Bahabadi, S.E.; Samzadeh-Kermani, A.; Yosefzaei, F. In-Vitro Evaluation of Antioxidant and Antibacterial Potential of Green Synthesized Silver Nanoparticles Using Prosopis farcta Fruit Extract. Iran. J. Pharm. Res. 2018, 18, 430–445. [Google Scholar]
- Hussain, A.; Mehmood, A.; Murtaza, G.; Ahmad, K.S.; Ulfat, A.; Khan, M.F.; Ullah, T.S. Environmentally Benevolent Synthesis and Characterization of Silver Nanoparticles Using Olea ferruginea Royle for Antibacterial and Antioxidant Activities. Green Process. Synth. 2020, 9, 451–461. [Google Scholar] [CrossRef]
- Phull, A.-R.; Abbas, Q.; Ali, A.; Raza, H.; Kim, S.J.; Zia, M.; Haq, I. Antioxidant, Cytotoxic and Antimicrobial Activities of Green Synthesized Silver Nanoparticles from Crude Extract of Bergenia Ciliata. Future J. Pharm. Sci. 2016, 2, 31–36. [Google Scholar] [CrossRef]
- Dipankar, C.; Murugan, S. The Green Synthesis, Characterization and Evaluation of the Biological Activities of Silver Nanoparticles Synthesized from Iresine herbstii Leaf Aqueous Extracts. Colloids Surf. B Biointerfaces 2012, 98, 112–119. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, S.; Srivastava, B.; Bhadouria, R.; Singh, R. Green Synthesis of Silver Nanoparticles Using Leaf Extract of Holoptelea integrifolia and Preliminary Investigation of Its Antioxidant, Anti-Inflammatory, Antidiabetic and Antibacterial Activities. J. Environ. Chem. Eng. 2019, 7, 103094. [Google Scholar] [CrossRef]
- Mohanta, Y.K.; Biswas, K.; Jena, S.K.; Hashem, A.; Allah, E.F.A.; Mohanta, T.K. Anti-Biofilm and Antibacterial Activities of Silver Nanoparticles Synthesized by the Reducing Activity of Phytoconstituents Present in the Indian Medicinal Plants. Front. Microbiol. 2020, 11, 1143. [Google Scholar] [CrossRef]
- Keshari, A.K.; Srivastava, R.; Singh, P.; Yadav, V.B.; Nath, G. Antioxidant and Antibacterial Activity of Silver Nanoparticles Synthesized by Cestrum nocturnum. J. Ayurveda Integr. Med. 2020, 11, 37–44. [Google Scholar] [CrossRef]
- Singh, R.; Hano, C.; Nath, G.; Sharma, B. Green Biosynthesis of Silver Nanoparticles Using Leaf Extract of Carissa carandas L. and Their Antioxidant and Antimicrobial Activity against Human Pathogenic Bacteria. Biomolecules 2021, 11, 299. [Google Scholar] [CrossRef] [PubMed]
- Urnukhsaikhan, E.; Bold, B.-E.; Gunbileg, A.; Sukhbaatar, N.; Mishig-Ochir, T. Antibacterial Activity and Characteristics of Silver Nanoparticles Biosynthesized from Carduus crispus. Sci. Rep. 2021, 11, 21047. [Google Scholar] [CrossRef]
- Wong, K.K.Y.; Liu, X. Silver Nanoparticles—The Real “Silver Bullet” in Clinical Medicine? Medchemcomm 2010, 1, 125–131. [Google Scholar] [CrossRef]
- Rai, M.; Yadav, A.; Gade, A. Silver Nanoparticles as a New Generation of Antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Durán, N.; Durán, M.; de Jesus, M.B.; Seabra, A.B.; Fávaro, W.J.; Nakazato, G. Silver Nanoparticles: A New View on Mechanistic Aspects on Antimicrobial Activity. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 789–799. [Google Scholar] [CrossRef]
- Chen, F.; Zheng, Q.; Li, X.; Xiong, J. Citrus sinensis Leaf Aqueous Extract Green-Synthesized Silver Nanoparticles: Characterization and Cytotoxicity, Antioxidant, and Anti-Human Lung Carcinoma Effects. Arab. J. Chem. 2022, 15, 103845. [Google Scholar] [CrossRef]
- Qais, F.A.; Shafiq, A.; Khan, H.M.; Husain, F.M.; Khan, R.A.; Alenazi, B.; Alsalme, A.; Ahmad, I. Antibacterial Effect of Silver Nanoparticles Synthesized Using Murraya koenigii (L.) against Multidrug-Resistant Pathogens. Bioinorg. Chem. Appl. 2019, 2019, 4649506. [Google Scholar] [CrossRef] [Green Version]
- Nayak, D.; Ashe, S.; Rauta, P.R.; Nayak, B. Biosynthesis, Characterisation and Antimicrobial Activity of Silver Nanoparticles Using Hibiscus rosa-sinensis Petals Extracts. IET nanobiotechnol. 2015, 9, 288–293. [Google Scholar] [CrossRef]
- de Barros, C.H.N.; Cruz, G.C.F.; Mayrink, W.; Tasic, L. Bio-Based Synthesis of Silver Nanoparticles from Orange Waste: Effects of Distinct Biomolecule Coatings on Size, Morphology, and Antimicrobial Activity. Nanotechnol. Sci. Appl. 2018, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Díaz, P.; Williams, D.W.; Vega-Arreguin, J.; Manisekaran, R.; Twigg, J.; Morse, D.; García-Contreras, R.; Arenas-Arrocena, M.C.; Acosta-Torres, L.S. Geranium Leaf-Mediated Synthesis of Silver Nanoparticles and Their Transcriptomic Effects on Candida Albicans. Green Process. Synth. 2023, 12, 20228105. [Google Scholar] [CrossRef]
- Yang, N.; Li, F.; Jian, T.; Liu, C.; Sun, H.; Wang, L.; Xu, H. Biogenic Synthesis of Silver Nanoparticles Using Ginger (Zingiber officinale) Extract and Their Antibacterial Properties against Aquatic Pathogens. Acta Oceanol. Sin. 2017, 36, 95–100. [Google Scholar] [CrossRef]
- Rajeshkumar, S. Synthesis of Silver Nanoparticles Using Fresh Bark of Pongamia pinnata and Characterization of Its Antibacterial Activity against Gram Positive and Gram Negative Pathogens. Resour. Technol. 2016, 2, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Tanase, C.; Berta, L.; Coman, N.A.; Roşca, I.; Man, A.; Toma, F.; Mocan, A.; Nicolescu, A.; Jakab-Farkas, L.; Biró, D.; et al. Antibacterial and Antioxidant Potential of Silver Nanoparticles Biosynthesized Using the Spruce Bark Extract. Nanomaterials 2019, 9, 1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Bhatt, D.; Sreedhar, B. Green Synthesis of Silver Nanoparticles Using Coffea arabica Seed Extract and Its Antibacterial Activity. Mater. Sci. Eng. C 2016, 58, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.K.; Tripathy, D.; Choudhary, A.; Aili, P.K.; Chatterjee, A.; Singh, I.P.; Banerjee, U.C. Bio-Synthesis of Silver Nanoparticles Using Potentilla fulgens Wall. Ex Hook. and Its Therapeutic Evaluation as Anticancer and Antimicrobial Agent. Mater. Sci. Eng. C 2015, 53, 120–127. [Google Scholar] [CrossRef]
- Hui, C.K.; Majid, N.I.; Mohd Zainol, M.K.; Mohamad, H.; Mohd Zin, Z. Preliminary Phytochemical Screening and Effect of Hot Water Extraction Conditions on Phenolic Contents and Antioxidant Capacities of Morinda citrifolia Leaf. Malaysian Appl. Biol. 2018, 47, 13–24. [Google Scholar]
- Tiwari, S.; Nepal, S.; Sigdel, S.; Bhattarai, S.; Rokaya, R.K.; Pandey, J.; Khadka, R.B.; Aryal, P.; Bhandari, R. Phytochemical Screening, Antibacterial-Guided Fractionation, and Thin-Layer Chromatography Pattern of the Extract Obtained from Diploknema butyracea. Pharmacogn. Res. 2020, 12, 437–443. [Google Scholar] [CrossRef]
- Lade, B.D.; Shanware, A.S. Phytonanofabrication: Methodology and Factors Affecting Biosynthesis of Nanoparticles. In Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis; Shabatina, T., Vladimir, B., Eds.; IntechOpen: London, UK, 2020; pp. 1–17. ISBN 9781838802547. [Google Scholar]
- Adebayo-Tayo, B.; Salaam, A.; Ajibade, A. Green Synthesis of Silver Nanoparticle Using Oscillatoria sp. Extract, Its Antibacterial, Antibiofilm Potential and Cytotoxicity Activity. Heliyon 2019, 5, e02502. [Google Scholar] [CrossRef] [Green Version]
- Rai, M.; Ingle, A.; Gupta, I.; Birla, S.; Yadav, A.; Abd-Elsalam, K. Potential Role of Biological Systems in Formation of Nanoparticles: Mechanism of Synthesis and Biomedical Applications. Curr. Nanosci. 2013, 9, 576–587. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Foss, K.; Przybyłowicz, K.E.; Sawicki, T. Antioxidant Activity and Profile of Phenolic Compounds in Selected Herbal Plants. Plant Foods Hum. Nutr. 2022, 77, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.R.; Baron, E.J.; Landry, M.L.; Jorgensen, J.H.; Pfallier, M.A. Manual of Clinical Microbiology, 9th ed.; American Society for Microbiology: Washington, DC, USA, 2007; Volume 1. [Google Scholar]
- Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial Properties and Mechanism of Action of Some Plant Extracts against Food Pathogens and Spoilage Microorganisms. Front. Microbiol. 2018, 9, 1639. [Google Scholar] [CrossRef] [PubMed]
S. N. | Phytoconstituents | PPAE |
---|---|---|
1 | Alkaloids | + |
2 | Polyphenols | ++ |
3 | Glycosides | + |
4 | Reducing sugars | + |
5 | Terpenoids | ++ |
6 | Tannins | ++ |
7 | Flavonoids | + |
Samples | IC50 (µg/mL) |
---|---|
Ascorbic acid | 8.19 ± 0.13 |
Pp-AgNPs | 10.67 ± 0.05 |
P. pashia (aq.) | 13.66 ± 0.35 |
Samples | Zones of Inhibition (mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
E. coli | PC | S. aureus | PC | E. faecalis | PC | S. typhi | PC | S. sonnei | PC | |
PPAE | 8.5 ± 0.5 | 18.0 | 7.5 ± 0.5 | 15.0 | 6.0 ± 0.0 | 12.0 | 7.5 ± 0.5 | 18.0 | 8.0 ± 1.0 | 18.0 |
AgNPs | 11.5 ± 0.5 | 11.5 ± 0.5 | 9.5 ± 0.5 | 12.5 ± 0.5 | 12.5 ± 0.5 |
S. No. | Parts of the Plant | Family | Solvents | Shape and Size | Application | References |
---|---|---|---|---|---|---|
1. | Leaves of Citrus sinensis | Rutaceae | Distilled water (1 mM), AgNO3 | Spherical, 78.12 nm | Antioxidant and anticancer | [46] |
2. | Leaves of Murraya koegnigii | Rutaceae | Distilled water (1 mM), AgNO3 | Spherical, anisotropic, 13.54 nm | Antibacterial against MDR bacteria | [47] |
3. | Petals of Hibiscus rosa-sinensis | Malvaceae | Distilled water (1 mM), AgNO3 | Spherical, anisotropic, 76.25 nm | Antibacterial activity against E. coli, S. aureus, V. cholera, and K. pneumoniae | [48] |
4. | Peels of Citrus sinensis | Rutaceae | 1 mM AgNO3, nano-cellulose, and hesperidin from orange peel | Spherical and nonuniform, size = 48.11 ± 20.5 nm | Antibacterial against Xanthomonas axonopodis pv. citri (Xac) | [49] |
5. | Leaves of Pelargonium hortorum (Geranium) | Geraniaceae | 25 mM AgNO3, distilled water, and ethylene glycol | Spherical, anisotropic, size = 35–50 nm | Antifungal against Candida albicans | [50] |
6. | Rhizome of Zingiber officinale | Zingiberaceae | 70% ethanol extract + 1 mM AgNO3 | Polygonal, heterogenous, size = 20–80 nm | Antimicrobial against Vibrio anguillarum, Vibrioalginolyticus, Aeromonas punctata, Vibrio parahaemolyticus, Vibrio splendidus, and Vibrio harveyi | [51] |
7. | Stem barks of Pongamia pinnata | Fabaceae | Distilled water, 1 mM AgNO3 | Polydispersed, size = 5–55 nm | Antibacterial against Klebsiella planticola and Staphylococcus aureus | [52] |
8. | Stem barks of Picea abies | Pinaceae | Distilled water, 1 mM AgNO3/ AgC2H3O2 | Spherical/polygonal Size = 44 nm | Antioxidant, and antibacterial against MRSA, S. aureus, K. pneumoniae, and Pseudomonasaeruginosa | [53] |
9. | Seeds of Coffea arabica | Rubiaceae | 0.1–0.05 M AgNO3 and hydroalcoholic extract | Spherical to ellipsoidal | Antibacterial against E. coli and S. aureus | [54] |
10. | Roots of Potentilla fulgens | Rosaceae | Distilled water, 1 mM AgNO3 | Spherical size = 10–15 nm | Antibacterial against E. coli and Bacillus subtilis | [55] |
11. | Stem barks of Pyrus pashia | Rosaceae | Distilled water, 1 mM AgNO3 | Spherical size, average diameter = 23.92 nm | Antioxidant, and antibacterial against E.coli, S. aureus, E. faecalis, S. typhi,and S. sonnei | This Work |
S. No. | Name of Bacteria | ATCC | Type |
---|---|---|---|
1 | Escherichia coli | 25922 | Gram-negative |
2 | Staphylococcus aureus | 25923 | Gram-positive |
3 | Enterococcus faecalis | 29212 | Gram-positive |
4 | Salmonella typhi | 14028 | Gram-negative |
5 | Shigella sonnei | 25931 | Gram-negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanal, L.N.; Dhakal, P.P.; Kandel, M.R.; Acharya, D.; Baral, E.R.; Chhetri, K.; Kalauni, S.K. Stem Bark-Mediated Green Synthesis of Silver Nanoparticles from Pyrus pashia: Characterization, Antioxidant, and Antibacterial Properties. Inorganics 2023, 11, 263. https://doi.org/10.3390/inorganics11060263
Khanal LN, Dhakal PP, Kandel MR, Acharya D, Baral ER, Chhetri K, Kalauni SK. Stem Bark-Mediated Green Synthesis of Silver Nanoparticles from Pyrus pashia: Characterization, Antioxidant, and Antibacterial Properties. Inorganics. 2023; 11(6):263. https://doi.org/10.3390/inorganics11060263
Chicago/Turabian StyleKhanal, Lekha Nath, Purna Prasad Dhakal, Mani Ram Kandel, Debendra Acharya, Ek Raj Baral, Kisan Chhetri, and Surya Kant Kalauni. 2023. "Stem Bark-Mediated Green Synthesis of Silver Nanoparticles from Pyrus pashia: Characterization, Antioxidant, and Antibacterial Properties" Inorganics 11, no. 6: 263. https://doi.org/10.3390/inorganics11060263
APA StyleKhanal, L. N., Dhakal, P. P., Kandel, M. R., Acharya, D., Baral, E. R., Chhetri, K., & Kalauni, S. K. (2023). Stem Bark-Mediated Green Synthesis of Silver Nanoparticles from Pyrus pashia: Characterization, Antioxidant, and Antibacterial Properties. Inorganics, 11(6), 263. https://doi.org/10.3390/inorganics11060263