Effects of Co-Addition of Guanidinium and Cesium to CH3NH3PbI3 Perovskite Solar Cells
Abstract
:1. Introduction
2. Calculation and Experimental Methods
3. Results and Discussion
3.1. Calculations
3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tailor, N.K.; Abdi-Jalebi, M.; Gupta, V.; Hu, H.; Dar, M.I.; Li, G.; Satapathi, S. Recent progress in morphology optimization in perovskite solar cell. J. Mater. Chem. A 2020, 8, 21356–21386. [Google Scholar] [CrossRef]
- Liu, S.; Guan, Y.; Sheng, Y.; Hu, Y.; Rong, Y.; Mei, A.; Han, H. A review on additives for halide perovskite solar cells. Adv. Energy Mater. 2020, 10, 1902492. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, Y.; Wang, T. Recent progress and prospects of integrated perovskite/organic solar cells. Appl. Phys. Rev. 2020, 7, 031303. [Google Scholar] [CrossRef]
- Oku, T. Crystal structures of perovskite halide compounds used for solar cells. Rev. Adv. Mater. Sci. 2020, 59, 264–305. [Google Scholar] [CrossRef]
- Ono, L.K.; Liu, S.; Qi, Y. Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem. Int. Ed. 2020, 59, 6676–6698. [Google Scholar] [CrossRef]
- Wang, R.; Mujahid, M.; Duan, Y.; Wang, Z.-K.; Xue, J.; Yang, Y. A review of perovskites solar cell stability. Adv. Funct. Mater. 2019, 29, 1808843. [Google Scholar] [CrossRef]
- Berhe, T.A.; Su, W.-N.; Chen, C.-H.; Pan, C.-J.; Cheng, J.-H.; Chen, H.-M.; Tsai, M.-C.; Chen, L.-Y.; Dubale, A.A.; Hwang, B.-J. Organometal halide perovskite solar cells: Degradation and stability. Energy Environ. Sci. 2016, 9, 323–356. [Google Scholar] [CrossRef]
- Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D’Haen, J.; D’Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 2015, 5, 1500477. [Google Scholar] [CrossRef]
- Byranvand, M.M.; Otero-Martínez, C.; Ye, J.; Zuo, W.; Manna, L.; Saliba, M.; Hoye, R.L.Z.; Polavarapu, L. Recent progress in mixed a-site cation halide perovskite thin-films and nanocrystals for solar cells and light-emitting diodes. Adv. Opt. Mater. 2022, 10, 2200413. [Google Scholar] [CrossRef]
- Wang, S.; Wang, A.; Hao, F. Toward stable lead halide perovskite solar cells: A knob on the A/X sites components. iScience 2022, 25, 103599. [Google Scholar] [CrossRef]
- Suzuki, A.; Taguchi, M.; Oku, T.; Okita, M.; Minami, S.; Fukunishi, S.; Tachikawa, T. Additive effects of methyl ammonium bromide or formamidinium bromide in methylammonium lead iodide perovskite solar cells using decaphenylcyclopentasilane. J. Mater. Sci. Mater. Electron. 2021, 32, 26449–26464. [Google Scholar] [CrossRef]
- Enomoto, A.; Suzuki, A.; Oku, T.; Fukunishi, S.; Tachikawa, T.; Hasegawa, T. First-principles calculations and device characterizations of formamidiniumcesium lead triiodide perovskite crystals stabilized by germanium or copper. Jpn. J. Appl. Phys. 2023, 62, SK1015. [Google Scholar] [CrossRef]
- Nishi, K.; Oku, T.; Kishimoto, T.; Ueoka, N.; Suzuki, A. Photovoltaic characteristics of CH3NH3PbI3 perovskite solar cells added with ethylammonium bromide and formamidinium iodide. Coatings 2020, 10, 410. [Google Scholar] [CrossRef] [Green Version]
- Okumura, R.; Oku, T.; Suzuki, A.; Fukunishi, S.; Tachikawa, T.; Hasegawa, T. First-principles calculation analysis and photovoltaic properties of Cu compound added perovskite solar cells. Jpn. J. Appl. Phys. 2023, 62, SK1029. [Google Scholar] [CrossRef]
- Jodlowski, A.D.; Roldán-Carmona, C.; Grancini, G.; Salado, M.; Ralaiarisoa, M.; Ahmad, S.; Koch, N.; Camacho, L.; Miguel, G.; Nazeeruddin, M. Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nat. Energy 2017, 2, 972–979. [Google Scholar] [CrossRef] [Green Version]
- Kishimoto, T.; Suzuki, A.; Ueoka, N.; Oku, T. Effects of guanidinium addition to CH3NH3PbI3-xClx perovskite photovoltaic devices. J. Ceram. Soc. Jpn. 2019, 127, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Kishimoto, T.; Oku, T.; Suzuki, A.; Ueoka, N. Additive effects of guanidinium iodide on CH3NH3PbI3 perovskite solar cells. Phys. Status Solidi A 2021, 218, 2100396. [Google Scholar] [CrossRef]
- Ono, I.; Oku, T.; Suzuki, A.; Asakawa, Y.; Terada, S.; Okita, M.; Fukunishi, S.; Tachikawa, T. Fabrication and characterization of CH3NH3PbI3 solar cells with added guanidinium and inserted with decaphenylpentasilane. Jpn. J. Appl. Phys. 2022, 61, SB1024. [Google Scholar] [CrossRef]
- Song, J.; Xie, H.; Lim, E.L.; Hagfeldt, A.; Bi, D. Progress and perspective on inorganic CsPbI2Br perovskite solar cells. Adv. Energy Mater. 2022, 12, 2201854. [Google Scholar] [CrossRef]
- Ueoka, N.; Oku, T.; Suzuki, A. Additive effects of alkali metals on Cu-modified CH3NH3PbI3−δClδ photovoltaic devices. RSC Adv. 2019, 9, 24231–24240. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Luo, Y.; Chen, Z.; Niu, X.; Zhang, X.; Lu, J.; Kumar, R.; Jiang, J.; Liu, H.; Guo, X.; et al. Microscopic degradation in formamidinium-cesium lead iodide perovskite solar cells under operational stressors. Joule 2020, 4, 1743–1758. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, M.S.; Correa-Baena, J.-P.; Tress, R.W.; Abate, A.; Hagfeldt, A.; et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Ueoka, N.; Oku, T.; Suzuki, A. Effects of doping with Na, K, Rb, and formamidinium cations on (CH3NH3)0.99Rb0.01Pb0.99Cu0.01I3-x(Cl, Br)x perovskite photovoltaic cells. AIP Adv. 2020, 10, 125023. [Google Scholar] [CrossRef]
- Suzuki, A.; Oe, M.; Oku, T. Fabrication and characterization of Ni-, Co-, and Rb-incorporated CH3NH3PbI3 perovskite solar cells. J. Electron. Mater. 2021, 50, 1980–1995. [Google Scholar] [CrossRef]
- Machiba, H.; Oku, T.; Kishimoto, T.; Ueoka, N.; Suzuki, A. Fabrication and evaluation of K-doped MA0.8FA0.1K0.1PbI3(Cl) perovskite solar cells. Chem. Phys. Lett. 2019, 730, 117–123. [Google Scholar] [CrossRef]
- Kandori, S.; Oku, T.; Nishi, K.; Kishimoto, T.; Ueoka, N.; Suzuki, A. Fabrication and characterization of potassium- and formamidinium-added perovskite solar cells. J. Ceram. Soc. Jpn. 2020, 128, 805–811. [Google Scholar] [CrossRef]
- Oku, T.; Kandori, S.; Taguchi, M.; Suzuki, A.; Okita, M.; Minami, S.; Fukunishi, S.; Tachikawa, T. Polysilane-inserted methylammonium lead iodide perovskite solar cells doped with formamidinium and potassium. Energies 2020, 13, 4776. [Google Scholar] [CrossRef]
- Enomoto, A.; Suzuki, A.; Oku, T.; Okita, M.; Fukunishi, S.; Tachikawa, T.; Hasegawa, T. Effects of Cu, K and guanidinium addition to CH3NH3PbI3 perovskite solar cells. J. Electron. Mater. 2022, 51, 4317–4328. [Google Scholar] [CrossRef]
- Ueoka, N.; Oku, T. Effects of co-addition of sodium chloride and copper (II) bromide to mixed-cation mixed-halide perovskite photovoltaic devices. ACS Appl. Energy Mater. 2020, 3, 7272–7283. [Google Scholar] [CrossRef]
- Suzuki, A.; Kitagawa, K.; Oku, T.; Okita, M.; Fukunishi, S.; Tachikawa, T. Additive effects of copper and alkali metal halides into methylammonium lead iodide perovskite solar cells. Electron. Mater. Lett. 2022, 18, 176–186. [Google Scholar] [CrossRef]
- Okumura, R.; Oku, T.; Suzuki, A.; Okita, M.; Fukunishi, S.; Tachikawa, T.; Hasegawa, T. Effects of adding alkali metals and organic cations to Cu-based perovskite solar cells. Appl. Sci. 2022, 12, 1710. [Google Scholar] [CrossRef]
- Gandhi, M.B.; Oli, A.V.; Nicholson, S.; Adelt, M.; Martin, R.; Chen, Y.; Sridharan, M.B.; Ivaturi, A. Investigation on guanidinium bromide incorporation in methylammonium lead iodide for enhanced efficiency and stability of perovskite solar cells. Sol. Energy 2023, 253, 1–8. [Google Scholar] [CrossRef]
- Mishra, A.; Hope, M.A.; Grätzel, M.; Emsley, L. A complete picture of cation dynamics in hybrid perovskite materials from solid-state NMR spectroscopy. J. Am. Chem. Soc. 2023, 145, 978–990. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.; Zhang, T.; McMeekin, D.P.; Fürer, S.O.; Mao, W.; Li, W.; Scully, A.D.; Chesman, A.S.R.; Nakashima, P.N.H.; Bach, U.; et al. Structural and photophysical properties of guanidinium–iodide-treated perovskite solar cells. Sol. RRL 2023, 7, 2200852. [Google Scholar] [CrossRef]
- Oh, J.; Hwang, M.; Lee, H.; Ryu, M.-Y. Guanidinium cation substitution effects on perovskite solar cells. Appl. Sci. Converg. Technol. 2022, 31, 161–163. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, W.; Chen, X.; Chen, Y.; Li, X.; Wang, M.; Zhou, Y.; Yan, H.; Zheng, Z.; Zhang, Y. Dual optimization of bulk and surface via guanidine halide for efficient and stable 2D/3D hybrid perovskite solar cells. Adv. Energy Mater. 2022, 12, 2201105. [Google Scholar] [CrossRef]
- Mozaffari, N.; Duong, T.; Shehata, M.M.; Bui, A.D.; Pham, H.T.; Yin, Y.; Mayon, Y.O.; Zheng, J.; Mahmud, M.A.; Tabi, G.D.; et al. Above 23% efficiency by binary surface passivation of perovskite solar cells using guanidinium and octylammonium spacer cations. Sol. RRL 2022, 6, 2200355. [Google Scholar] [CrossRef]
- Serafini, P.; Gualdrón-Reyes, A.F.; Sánchez, R.S.; Barea, E.M.; Masi, S.; Mora-Seró, I. Balanced change in crystal unit cell volume and strain leads to stable halide perovskite with high guanidinium content. RSC Adv. 2022, 12, 32630–32639. [Google Scholar] [CrossRef] [PubMed]
- Susic, I.; Gil-Escrig, L.; Palazon, F.; Sessolo, M.; Bolink, H.J. Quadruple-cation wide-bandgap perovskite solar cells with enhanced thermal stability enabled by vacuum deposition. ACS Energy Lett. 2022, 7, 1355–1363. [Google Scholar] [CrossRef]
- Hu, H.; Zhou, X.; Chen, J.; Wang, D.; Li, D.; Huang, Y.; Zhang, L.; Peng, Y.; Wang, F.; Huang, J.; et al. Crystallization regulation and morphological evolution for HTM-free tin-lead (1.28eV) alloyed perovskite solar cells. Energy Environ. Mater. 2023, 6, e12322. [Google Scholar] [CrossRef]
- Ma, J.; Su, J.; Lin, Z.; He, J.; Zhou, L.; Li, T.; Zhang, J.; Liu, S.; Chang, J.; Hao, Y. Double side interfacial optimization for low-temperature stable CsPbI2Br perovskite solar cells with high efficiency beyond 16%. Energy Environ. Mater. 2022, 5, 637–644. [Google Scholar] [CrossRef]
- Tang, X.; Chen, M.; Jiang, L.; Li, M.; Tang, G.; Liu, H. Improvements in efficiency and stability of perovskite solar cells using a cesium chloride additive. ACS Appl. Mater. Interfaces 2022, 14, 26866–26872. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, M.; Zhang, Y.; Xia, J.; Yin, J.; Li, M.; Brooks, K.G.; Hu, R.; Gao, X.; Kim, Y.H.; et al. High-efficiency perovskite photovoltaic modules achieved via cesium doping. Chem. Eng. J. 2022, 431, 133713. [Google Scholar] [CrossRef]
- Ašmontas, S.; Čerškus, A.; Gradauskas, J.; Grigucevičienė, A.; Juškėnas, R.; Leinartas, K.; Lučun, A.; Petrauskas, K.; Selskis, A.; Sužiedėlis, A.; et al. Impact of cesium concentration on optoelectronic properties of metal halide perovskites. Materials 2022, 15, 1936. [Google Scholar] [CrossRef] [PubMed]
- Tien, C.H.; Lin, W.C.; Chen, L.C. Efficient perovskite solar cells via phenethylamine iodide cation-modified hole transport layer/perovskite interface. ACS Omega 2022, 7, 37359–37368. [Google Scholar] [CrossRef]
- Kuan, C.H.; Chih, J.M.; Chen, Y.C.; Liu, B.H.; Wang, C.H.; Hou, C.H.; Shyue, J.J.; Diau, E.W.G. Additive engineering with triple cations and bifunctional sulfamic acid for tin perovskite solar cells attaining a PCE value of 12.5% without hysteresis. ACS Energy Lett. 2022, 7, 4436–4442. [Google Scholar] [CrossRef]
- Xu, H.; Miao, Y.; Wei, N.; Chen, H.; Qin, Z.; Liu, X.; Wang, X.; Qi, Y.; Zhang, T.; Zhao, Y. CsI enhanced buried interface for efficient and uv-robust perovskite solar cells. Adv. Energy Mater. 2022, 12, 2103151. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Miao, Y.; Wei, N.; Chen, H.; Qin, Z.; Feng, M.; Wang, Y.; Wang, X.; Zhao, Y. Stable pure iodide MA0.95Cs0.05PbI3 perovskite toward efficient 1.6 eV bandgap photovoltaics. J. Phys. Chem. Lett. 2022, 13, 5088–5093. [Google Scholar] [CrossRef]
- Suzuki, A.; Kishimoto, K.; Oku, T.; Okita, M.; Fukunishi, S.; Tachikawa, T. Additive effect of lanthanide compounds into perovskite layer on photovoltaic properties and electronic structures. Synth. Met. 2022, 287, 117092. [Google Scholar] [CrossRef]
- Suzuki, A.; Oku, T. Effects of mixed-valence states of Eu-doped FAPbI3 perovskite crystals studied by first-principles calculation. Mater. Adv. 2021, 2, 2609–2616. [Google Scholar] [CrossRef]
- Suzuki, A.; Oku, T. First-principles calculation study of electronic structures of alkali metals (Li, K, Na and Rb)-incorporated formamidinium lead halide perovskite compounds. Appl. Surf. Sci. 2019, 483, 912–921. [Google Scholar] [CrossRef]
- Suzuki, A.; Oku, T. Electronic structures and molecular dynamics of gadolinium-doped FAPbI3 perovskite crystals. Jpn. J. Appl. Phys. 2023, 62, SK1006. [Google Scholar] [CrossRef]
- Oku, T.; Ohishi, Y.; Ueoka, N. Highly (100)-oriented CH3NH3PbI3(Cl) perovskite solar cells prepared with NH4Cl using an air blow method. RSC Adv. 2018, 8, 10389–10395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oku, T.; Taguchi, M.; Suzuki, A.; Kitagawa, K.; Asakawa, Y.; Yoshida, S.; Okita, M.; Minami, S.; Fukunishi, S.; Tachikawa, T. Effects of polysilane addition to chlorobenzene and high temperature annealing on CH3NH3PbI3 perovskite photovoltaic devices. Coatings 2021, 11, 665. [Google Scholar] [CrossRef]
- Taguchi, M.; Suzuki, A.; Oku, T.; Ueoka, N.; Minami, S.; Okita, M. Effects of annealing temperature on decaphenylcyclopentasilane-inserted CH3NH3PbI3 perovskite solar cells. Chem. Phys. Lett. 2019, 737, 136822. [Google Scholar] [CrossRef]
- Tanaka, H.; Oku, T.; Ueoka, N. Structural stabilities of organic-inorganic perovskite crystals. Jpn. J. Appl. Phys. 2018, 57, 08RE12. [Google Scholar] [CrossRef]
- Kim, Y.; Nandi, P.; Lee, D.; Shin, H. Stabilization of 3-D trigonal phase in guanidinium (C(NH2)3) lead triiodide (GAPbI3) films. Appl. Surf. Sci. 2021, 542, 148575. [Google Scholar] [CrossRef]
- Suzuki, A.; Oku, T. Electronic structures and magnetic properties of transition metal doped CsPbI3 perovskite compounds by first-principles calculation. Phys. Solid State 2019, 61, 1074–1085. [Google Scholar] [CrossRef]
- Liu, D.; Shao, Z.; Li, C.; Pang, S.; Yan, Y.; Cui, G. Structural properties and stability of inorganic CsPbI3 perovskites. Small Struct. 2021, 2, 2000089. [Google Scholar] [CrossRef]
Perovskite | t |
---|---|
MAPbI3 | 0.912 |
GAPbI3 | 1.039 |
CsPbI3 | 0.851 |
MA0.75GA0.125Cs0.125PbI3 | 0.920 |
MA0.845GA0.125Cs0.03PbI3 | 0.926 |
Perovskite | VBM (eV) | CBM (eV) | Eg (eV) | me*/m0 | mh*/m0 | Ecell (eV cell−1) |
---|---|---|---|---|---|---|
MAPbI3 | 0.786 | 2.14 | 1.34 | 0.35 | 0.20 | −3497 |
MA0.75GA0.125Cs0.125PbI3 | 0.269 | 1.66 | 1.39 | 0.48 | 0.33 | −3500 |
Devices | JSC (mA cm−2) | VOC (V) | FF | RS (Ω cm2) | RSh (Ω cm2) | η (%) | ηave (%) | Eg (eV) |
---|---|---|---|---|---|---|---|---|
GA 0% + Cs 0% | 19.7 | 0.890 | 0.589 | 7.20 | 54,800 | 10.3 | 5.83 | 1.56 |
GA 12.5% + Cs 0% | 22.4 | 0.824 | 0.632 | 3.44 | 762 | 11.65 | 8.15 | 1.60 |
GA 12.5% + Cs 3% | 21.8 | 0.851 | 0.663 | 3.89 | 1540 | 12.27 | 10.18 | 1.55 |
GA 12.5% + Cs 6% | 14.6 | 0.764 | 0.621 | 2.45 | 695 | 6.92 | 4.98 | 1.55 |
GA 12.5% + Cs 9% | 12.1 | 0.705 | 0.620 | 2.05 | 557 | 5.41 | 3.89 | 1.59 |
GA 25% + Cs 3% | 18.3 | 0.874 | 0.686 | 2.71 | 490 | 10.96 | 3.70 | 1.56 |
GA 25% + Cs 6% | 16.6 | 0.810 | 0.572 | 4.77 | 502 | 7.70 | 6.84 | 1.55 |
Devices | Lattice constant (Å) | Crystallite size (Å) | I100 / I210 |
---|---|---|---|
GA 0% + Cs 0% | 6.270(0) | 482 | 6.77 |
GA 12.5% + Cs 0% | 6.273(0) | 365 | 2.25 |
GA 12.5% + Cs 3% | 6.268(0) | 447 | 19.25 |
GA 12.5% + Cs 6% | 6.265(0) | 469 | 5.97 |
GA 12.5% + Cs 9% | 6.263(6) | 392 | 2.96 |
GA 25% + Cs 3% | 6.288(1) | 475 | 6.83 |
GA 25% + Cs 6% | 6.297(0) | 451 | 6.50 |
Devices | Time (Day) | ηave (%) | Change of η (%) | Decrease Rate (% Day−1) |
---|---|---|---|---|
GA 12.5% + Cs 0% | 224 | 5.86 | 71.9 | 0.13 |
GA 12.5% + Cs 3% | 252 | 9.02 | 88.6 | 0.04 |
GA 12.5% + Cs 6% | 184 | 1.92 | 38.6 | 0.34 |
GA 12.5% + Cs 9% | 184 | 1.44 | 37.0 | 0.34 |
GA 25% + Cs 3% | 104 | 3.00 | 81.1 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oku, T.; Uchiya, S.; Okumura, R.; Suzuki, A.; Ono, I.; Fukunishi, S.; Tachikawa, T.; Hasegawa, T. Effects of Co-Addition of Guanidinium and Cesium to CH3NH3PbI3 Perovskite Solar Cells. Inorganics 2023, 11, 273. https://doi.org/10.3390/inorganics11070273
Oku T, Uchiya S, Okumura R, Suzuki A, Ono I, Fukunishi S, Tachikawa T, Hasegawa T. Effects of Co-Addition of Guanidinium and Cesium to CH3NH3PbI3 Perovskite Solar Cells. Inorganics. 2023; 11(7):273. https://doi.org/10.3390/inorganics11070273
Chicago/Turabian StyleOku, Takeo, Shoma Uchiya, Riku Okumura, Atsushi Suzuki, Iori Ono, Sakiko Fukunishi, Tomoharu Tachikawa, and Tomoya Hasegawa. 2023. "Effects of Co-Addition of Guanidinium and Cesium to CH3NH3PbI3 Perovskite Solar Cells" Inorganics 11, no. 7: 273. https://doi.org/10.3390/inorganics11070273
APA StyleOku, T., Uchiya, S., Okumura, R., Suzuki, A., Ono, I., Fukunishi, S., Tachikawa, T., & Hasegawa, T. (2023). Effects of Co-Addition of Guanidinium and Cesium to CH3NH3PbI3 Perovskite Solar Cells. Inorganics, 11(7), 273. https://doi.org/10.3390/inorganics11070273