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Abstract: Ullmann-type C–N heterocoupling reactions have been applied for the syntheses of
N-arylated amines. In the past decade, transition metal-catalyzed N-arylations have been recog-
nized as particularly efficient procedures for the preparation of nitrogen-containing aromatic systems.
These reactions typically carried out under optimized conditions, have also been found to be suitable
for the synthesis of complex molecules with other functional groups, including natural products,
drugs, or pharmaceuticals. Most importantly, copper-catalyzed N-arylations have been studied
and employed in the total synthesis of biologically active compounds. The construction of fused
N-heterocyclic compounds also remained the subject of extensive research because of their potential
applications in drug discovery and the development of functional materials. The aim of this review is
to summarize the recent progress in the synthetic applications of Ullmann-type N-arylation reactions
performed in heterogeneous systems. In particular, the utilization of copper and palladium species
immobilized on various support materials, modified by surface functionalization, has been discussed
and evaluated.

Keywords: Ullmann reaction; N-arylation; heterocoupling; palladium; copper; magnetic nanoparticle;
immobilization; functionalization

1. Introduction

Ullmann-type N-arylations have long been employed for the synthesis of various
molecules and intermediates, suitable for a large number of biological, medicinal, and
pharmaceutical applications, and, therefore, they belong to the most important transition
metal-catalyzed cross-coupling reactions [1–3]. However, copper-catalyzed N-arylations
have often been found to require harsh reaction conditions and displayed a poor tolerance
towards other functional groups [4]. In the past decade, the efficiency of copper-catalyzed
Ullmann reactions has been considerably improved by applying novel copper sources,
specific ligands, and additives [5–8]. Several mild and sustainable methods have been devel-
oped for these reactions, including the N-arylations of indoles and other heterocycles [9–13].
The reaction pathway suggested for the Ullmann-type C–N heterocoupling reaction is indi-
cated in Scheme 1. The reaction of an amine with the active CuI species is followed by the
oxidative addition of an aromatic halide, producing an aryl complex, in which the oxidation
state of copper has changed to CuIII. The final step is reductive elimination, which releases
the coupling product, containing a new C–N bond, and regenerates the active CuI species,
which is able to participate in another catalytic cycle.

Although the homogeneous N-arylations catalyzed by copper complexes afforded
high product yields and selectivities, problems associated with the recovery and recycling
of these complexes initiated further studies focused on the development of more efficient
and recyclable heterogeneous catalysts. Novel synthesis procedures based on the immobi-
lization of catalytically active metal species or organometallic complexes on various support
materials provided reusable heterogeneous catalysts with improved performances [14].

Inorganics 2023, 11, 276. https://doi.org/10.3390/inorganics11070276 https://www.mdpi.com/journal/inorganics

https://doi.org/10.3390/inorganics11070276
https://doi.org/10.3390/inorganics11070276
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/inorganics
https://www.mdpi.com
https://orcid.org/0000-0002-8038-4635
https://doi.org/10.3390/inorganics11070276
https://www.mdpi.com/journal/inorganics
https://www.mdpi.com/article/10.3390/inorganics11070276?type=check_update&version=2


Inorganics 2023, 11, 276 2 of 20

Whereas recent studies on the Ullmann homocoupling reactions clearly indicated the
predominance of heterogeneous Pd catalysts [15], C–N heterocoupling reactions have
still been preferably conducted by using more readily available and less toxic Cu-based
catalysts [16–21]. The subject of the current review is the presentation of the recent progress
achieved in the Ullmann-type N-arylation reactions performed in heterogeneous systems,
including the utilization of Cu and Pd-based catalysts and magnetic nanoparticles.
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2. Results
2.1. Copper-Based Catalysts

As related to its inert character, low cost, and facile functionalization, polystyrene
has been considered one of the most popular polymer support materials of immobilized
metal complexes, which have been found to be active and reusable heterogeneous cata-
lysts of C–C coupling reactions performed in aqueous systems [22–24]. Mandapati et al.
synthesized a polymer anchored CuII N,N-dimethylethylenediamine complex, to be ap-
plied as a catalyst for the N-arylations of indoles [25]. The immobilized complex was
prepared in an acetonitrile solution of chloromethylated polystyrene (PS) in the pres-
ence of N,N-dimethylethylenediamine and NaI. After heating the mixture for 48 h and
drying, the polymeric ligand was treated with ethanol and CuBr2, which afforded a ligand-
functionalized polystyrene-supported CuBr2 complex. Structural characterization of the
product was performed by FTIR, energy dispersive X-ray spectroscopy (EDX), TGA, SEM,
and atomic absorption spectroscopy (AAS). The amount of copper incorporated in the
polymer was found to be 6.22 wt%. The ligand-polymer interaction was confirmed by FTIR
spectroscopy, and the formation of the polymer-supported CuBr2 complex was revealed
by EDX analysis. The sample was examined as a catalyst in the N-arylation reaction of
iodobenzene with indole. The reactions were performed in water at 110 ◦C for 10 h, in the
presence of 0.03 mmol of catalyst, K2CO3 as a base, and cetyltrimethylammonium bromide
(CTAB). The results are shown in Scheme 2.
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It was established that the substituent had only a minor effect on the product yield.
Recycling of the catalyst was investigated for the reaction of iodobenzene with indole, and
decreasing yields were obtained (yield: 82–74%, avg. 78.5%, four runs), together with a
rather significant Cu leaching of 0.2% and 5%, observed after the first and fourth reaction,
respectively. Furthermore, a hot filtration test indicated that CuBr2-diamine-PS may be
considered as a heterogeneous catalyst.

As related to their high surface areas, large pore volumes, and regular pore structures,
ordered mesoporous silicas have been considered excellent support materials for metal
complexes, cations, and nanoparticles. The structure of MCM-41, a mesoporous molecular
sieve, is composed of uniform hexagonal pores, which renders it a favorable host mate-
rial of catalytically active metal species [26–30]. Rangappan et al. synthesized a Schiff
base CuII complex supported on MCM-41, to be employed as a catalyst for the Ullmann-
type N-arylation reaction [31]. MCM-41 was synthesized from tetraethylorthosilicate
(TEOS) and cetyltrimethylammonium bromide (CTAB), followed by calcination at 550 ◦C
for 5 h. The Schiff base was prepared according to a previous synthesis procedure [32]
from the solutions of 3-aminopropyltrimethoxysilane (APTES), terephthalaldehyde, and
2-aminophenol, and the imine groups derived from the latter compounds via condensation
provided anchoring sites for the precursor CuCl2·2H2O. The final step was the addition of
the siloxane-functionalized CuII complex to MCM-41 under an N2 atmosphere, followed
by stirring for 24 h. Structural characterization of the product, CuCl2-Schiff-MCM-41, was
performed by TGA, SEM, XRD, EDX, N2 sorption, and FTIR studies. SEM images indicated
that no significant changes occurred in the morphology of MCM-41 after immobilization,
and the formation of the CuCl2-Schiff-MCM-41 complex was confirmed by EDX spectra and
N2 sorption isotherms. The catalytic investigation of the sample comprised the N-arylation
reactions of aniline and 2-aminopyridine with aromatic halogen derivatives. The reactions
were carried out at 110 ◦C for 24 h by using K2CO3 as a base and either DMSO or toluene as
a solvent. The amount of the catalyst was not specified. As shown in Scheme 3, the highest
product yields were experienced in DMSO, for the reactions of iodobenzene (90% and
85%, obtained for the heterocoupling of aniline and 2-aminopyridine, respectively). The
FTIR spectra of the recovered catalyst proved to be similar to that of the pristine sample,
indicating that no structural deterioration occurred under reaction conditions.
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Polysaccharides have been found to be important bio-resources on account of their
various functional groups, as well as their biodegradable, renewable, and eco-friendly
nature [33,34]. Among these materials, chitosan (CS) has been frequently applied as a cata-
lyst support material, as related to its high affinity to metals, water-soluble character, and
large number of amino groups, which make it suitable for chemical modification [35–37].
Chitosan-supported Cu catalysts have been successfully applied for Ullmann-type het-
eroarylations [38], but only a few examples have been reported for the utilization of
functionalized chitosan materials in these kinds of reactions [39,40]. Recently, Ge et al.
synthesized a functionalized chitosan-supported copper complex to be applied as a catalyst
in the Ullmann-type N-arylation reaction [41]. The amino groups of chitosan were modified
by pyridine-2-carboxaldehyde (PC) in methanol, and the modified chitosan was suspended
in an acetonitrile solution of CuI under stirring, followed by purification. The synthesis
product, CuI-PC/CS, was characterized by various instrumental techniques. The Cu load-
ing of the sample was found to be 2.05 mmol g−1 by ICP analysis. FTIR spectra indicated
that the introduction of pyridine-2-carboxaldehyde into CS resulted in the formation of a
Schiff base, and energy disperse spectra (EDS) revealed the successful chelate complex for-
mation of CuI with PC/CS. XPS patterns demonstrated characteristic peaks at the binding
energies 932.3 and 952.1 eV, assigned to the Cu 2p3/2 and 2p1/2 levels, which referred to
the occurrence of CuI species. The catalytic performance of the CuI-PC/CS sample was
studied in the Ullmann C–N heterocoupling reactions of aryl halides with imidazole. The
reactions were performed at 110 ◦C for 24 h, by using 5 mol% of catalyst, Cs2CO3 as a base,
and DMSO as a solvent. The results are displayed in Scheme 4.
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The isolated yields obtained for 4-substituted iodobenzenes containing electron-
donating substituents (96–98%) proved to be higher than those with electron-withdrawing
substituents (70–89%), and 2-substituted aryl halides also afforded substantial yields of
83–85%. The heterocoupling of chlorobenzene did not take place. The catalyst could be
reused four times without an appreciable deactivation (yield: 99–95%, avg. 97%, five runs),
and the copper content of the recovered catalyst was 1.89 mmol g−1, indicating that leaching
of the active copper species was negligible.

In a related study, based on previous results obtained for the combination of pyrrole-2-
carbohydrazide ligands with copper sources applied as catalysts in C–N heterocoupling
reactions [42], Zhu et al. investigated the catalytic application of functionalized chitosan
in N-arylation reactions [43]. Chitosan-supported pyrrole-2-carbohydrazide (CSP) was
prepared via the reaction of chitosan with 4-(diethoxymethyl)benzaldehyde, followed by
reduction with NaBH4. The product was subsequently treated with 6 M HCl, and then
a methanol solution of pyrrole-2-carbohydrazide was added, and the reaction mixture
was treated under reflux conditions for 12 h. Finally, another reduction was performed by
NaBH4. The functionalized chitosan was combined with CuO and applied as a catalyst for
the heterocoupling reactions of aniline with various aryl halides. The results are indicated
in Scheme 5.
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Scheme 5. CuO-CSP catalyzed C–N heterocoupling reactions.

In a recycling study performed for the C–N coupling reaction of 4-iodoanisole with
benzylamine, a significant activity decrease was experienced (yield: 90–50%, avg. 65.5%,
six runs), which was attributed to leaching of the active copper species.

Owing to their σ-donor characters, N-heterocyclic carbenes (NHCs) are considered
as versatile ligands with a pronounced affinity for the formation of Cu complexes [44].
Although a number of NHC-Cu complexes have been synthesized and employed in cat-
alytic reactions [45,46], less attention has been focused on their utilization in Ullmann-type
N-arylations. The application of a CuI complex containing a 1,10-phenantroline analog
NHC ligand for the heterocoupling of chlorobenzenes with nitrogen heterocycles has
been reported by Zeng and Liu et al. [47]. The CuI complex was synthesized from 1,8-
naphthyrido[1,2-a]-(2′,6′-diisopropylphenyl) imidazolium chloride [48] via the addition of
CuCl and K2CO3 in acetone, followed by heating at 60 ◦C for 24 h under an N2 atmosphere.
Structural characterization of the resulting CuI-NHC complex was performed by 1H and
13C NMR spectroscopy and XRD. The CuI-NHC complex was applied as a catalyst in
the N-arylation reactions of 4-nitrochlorobenzene with various N-heterocycles, including
imidazole, methylimidazole, 1,2,4-triazole, and benzimidazole. The results are indicated in
Scheme 6.
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The reactions were found to proceed with good to excellent yields (52–98%). The catalyst
was also tested in the N-arylation reactions of heteroaryl chlorides with azoles. The hetero-
coupling reaction of 2-chloroquinoline with imidazole, 1,2,3-triazole, and 4-phenylimidazole
afforded excellent yields of 90–98%, and the reactions of 2-chloropyridine derivatives pro-
vided the coupling product with substantial yields of 80–95%, which confirmed that the
CuI-NHC complex was an efficient catalyst. However, recycling data were not reported,
and, therefore, the stability of the catalyst cannot be evaluated.

On account of their favorable properties, including high chemical, thermal, and hy-
drothermal stabilities and substantial surface areas, microporous organic polymers (MOPs)
have been considered as suitable support materials for heterogeneous metal catalysts. The
application of hypercrosslinked polymers (HCPs), also regarded as low-cost MOPs, proved
to be particularly beneficial, as various metal complexes can be installed in their frame-
works without further chemical modification. Moreover, the permanent porosity of HCPs,
originating from an extensive chemical cross-linkage, was found to prevent the collapse of
the polymer chains, resulting in the formation of a nonporous state [49–51]. The immobi-
lization of an NHC-copper complex on hypercrosslinked polymers (HCPs) via an external
cross-linking reaction was reported by Tan and Gu et al. [52]. HCP-NHC was prepared
from N,N-dibenzylbenzimidazolium chloride and benzene, by using FeCl3 as a catalyst [53].
Cu-HCP-NHC was synthesized at room temperature under a nitrogen atmosphere by stir-
ring the mixture of HCP-NHC, CuCl, and sodium-tert-butoxide in tetrahydrofuran (THF)
for 24 h. The Cu loading of the product was 7.78 wt%. N2 sorption studies of Cu-HCP-NHC
revealed that a substantial amount of micropores were formed, together with some meso-
and macropores. XPS patterns displayed Cu 2p signals at 933.8–934.0 eV, indicating the
predominance of CuII species. The catalytic investigation of the sample was performed in
the Ullmann-type C–N coupling of 4-iodoanisole and indole at 120 ◦C for 10 h by using
0.53 mol% of catalyst, DMSO as a solvent, and 2 equiv of K2CO3 as a base. The isolated
yield for the coupling product was 93% and 91% for the first and second applications of the
catalyst, respectively. Further recycling studies were not reported, and hence the stability
of the catalyst was not confirmed.
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The functionalization of mesoporous materials (e.g., silica and alumina), with ionic
liquids (ILs), providing the combination of textural properties with a tunable chemical
environment, has been found to be a promising alternative for the preparation of supported
metal catalysts [54]. Alves-Fernandes and Abarca et al. introduced a novel synthesis
method for the generation of Cu nanoparticles immobilized on triazolium-based ionic
liquids, and grafted on the surface of silica [55]. Different support materials were fabri-
cated by anchoring various triazolium moieties on a silica matrix. The 1,4-disubstituted
1,2,3-triazoles were prepared by the click reaction of an alkyne and an azide, obtained in
situ, by using [CuI(PPh3)3] as a catalyst. A support material with a high electron density
(SIL1) was obtained via the addition of phenyl and benzyl groups to the triazolium ring,
and other supports with lower electronic densities (SIL2 and SIL3) were also generated
by applying alkyl chains instead of aromatic groups. Three samples were synthesized by
mixing different triazoles with SiO2, suspended in acetonitrile, followed by the addition
of CuCl2·2H2O in methanol and reduction by NaBH4, which resulted in the formation of
Cu nanoparticles immobilized on the surface of the support materials. The Cu loadings
were 2.6%, 3.1%, and 2.8% for Cu/SIL1, Cu/SIL2, and Cu/SIL3, respectively. Structural
characterization of the samples was performed by N2 sorption, FT-IR, and field emission
scanning electron microscopy (FE-SEM). XPS spectra indicated the formation of mixed
valence states of Cu0 and CuI for all samples, which was also confirmed by XRD patterns.
STEM analysis revealed the (111) lattice fringes of Cu nanoparticles associated with the
face-centered cubic (fcc) crystalline phase of Cu2O. The predominance of the CuI species
was also established by linear mixed model (LMM) analysis. The catalytic activities of the
samples were investigated in the Ullmann-type C–N heterocoupling reactions of haloarenes
with aniline, performed in DMSO at 100 ◦C for 4 h, by using 1 mol% of catalyst and KOH
as a base. The highest conversion (88%), product selectivity (95%), and turnover frequency
(374 h−1) were obtained for the reaction of iodobenzene, in the presence of the Cu/SIL1,
which proved to be the most active catalyst for all reactants. The transformations of
chlorobenzenes afforded conversions of 44%, 31%, and 30% for Cu/SIL1, Cu/SIL2, and
Cu/SIL3, respectively. Computational studies indicated a strong interaction between the
SIL1 support and the Cu nanoparticles, which was assigned to a charge transfer between
the ionic liquid and the Cu particles. It was suggested by the authors that the ionic liquid
cation of SIL1 acted as an electron-like reservoir and modified the electronic environment of
the active Cu particles by increasing the CuI/CuIII ratio, which contributed to the enhanced
catalytic activity of Cu/SIL1. However, the stability of the catalyst cannot be evaluated, as
recycling data were not provided.

Another study for the preparation of a heterogeneous CuII nanocatalyst has been
reported by Hemmati et al. The synthesis procedure was based on the functionaliza-
tion of silica by melamine-bearing pyridine groups, working as the capping agents of
catalytically active CuII species [56]. In the first synthesis step, a mixture of SiO2 and
aminopropyltrimethoxysilane (APTMS) was heated under reflux conditions in toluene for
24 h. After purification, the product was dispersed in THF, followed by the addition of
diisopropylethylamine and cyanuric chloride (CC). The resulting solid was treated with
diisopropylethylamine in acetonitrile, and then dipyridylamine was added, and the mix-
ture was treated at reflux temperature for 12 h. In this way, a solid material containing
dipiridylamine moieties attached to triazine-functionalized silica was obtained, which was
used as a support material of Cu(OAc)2. Immobilization of the precursor was accomplished
from an aqueous solution under stirring at room temperature for 24 h. The Cu loading of
the product, denoted as Cu(Oac)2-CCPy/SiO2, was 0.32 mmol g−1. FTIR spectra confirmed
that the functionalization of SiO2 by aminopropyl and melamine-bearing pyridine groups
actually took place. Nitrogen sorption measurements indicated that the product had a
microporous structure, and TEM images displayed silica nanoparticles of 10–15 nm, sug-
gesting that the morphology of the silica support was retained after functionalization. SEM
images also indicated the occurrence of aggregated particles. The Cu(OAc)2-CCPy/SiO2
sample was tested as a catalyst in the Ullmann heterocoupling reactions of amines with
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aryl halides under aerobic conditions. The reactions were performed at 50 ◦C, by using
0.7 mol% of catalyst, acetonitrile as a solvent, and trimethylamine as a base. The results
displayed in Scheme 7 also demonstrate the structure of the catalyst.
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The highest product yields of 90–96% were obtained for the transformations of iodoben-
zenes, proceeding for 0.5–2 h. For the reactions of bromo and chloro derivatives, similar
yields could only be achieved by applying prolonged treatments of 0.5–4 h and 4–24 h,
respectively. Recycling studies, effected for the reaction of bromobenzene and indole, gave
evidence that no appreciable deactivation of the catalyst occurred up to five repeated appli-
cations (yield: 96–93%, avg. 94.8%, six runs). Hot filtration experiments also indicated that
leaching of the active CuII species did not take place, and, therefore, the Cu/CCPy/SiO2
sample was considered a heterogeneous catalyst.

Another approach for the synthesis of heterogeneous copper catalysts was based on the
immobilization of CuI on thiosemicarbazide (tsc) modified multi-walled carbon nanotubes
(MWCNTs) [57]. In the synthesis procedure, a DMF solution of CuI was added to an as-
prepared DMF dispersion of tsc/MWCNT [58], followed by stirring at room temperature
for 24 h. After purification and drying, a solid product, denoted as CuI-tsc/MWCNT, was
obtained, for which the Cu loading was 0.32 mmol g−1. The formation of tsc/MWCNT was
confirmed by Raman and wavelength-dispersive X-ray (WDX) spectra. Energy dispersive
spectra (EDS) indicated that CuI was successfully immobilized on the surface of the support
material, whereas the covalent attachment of thiosemicarbazide moieties to MWCNT was
established by TEM images. The catalytic test reactions were the N-arylations of indole,
aniline, imidazole, and pyrazole, performed by various aryl halides, as shown in Scheme 8.
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It was established that the CuI-tsc/MWCNT sample was an efficient catalyst for the
heterocoupling reactions of aryl iodides and bromides, whereas the transformations of aryl
chlorides provided lower yields, even at prolonged reaction times. A hot filtration test
confirmed the absence of CuI leaching under reaction conditions, which referred to the
heterogeneous nature of the catalyst. Recycling studies were carried out for the reaction
of iodobenzene and indole, and only a minor decrease of activity was experienced (yield:
96–82%, avg. 92%, six runs), which indicated satisfactory catalyst stability.

Lignin, a natural, three-dimensional amorphous polymer containing a large number
of phenolic hydroxyl, carboxyl, and carbonyl groups, has been recently recognized as a
favorable support material of heterogeneous metal catalysts [59,60]. The unique physico-
chemical properties of lignin make it suitable for the immobilization of metal complexes,
which have been utilized in various catalytic transformations, including C–C coupling and
cross-coupling reactions [61–64]. In a current study, Chen, Pen, and coworkers reported the
synthesis and catalytic application of a lignin-supported copper complex in Ullmann-type
N-arylation reactions [65]. Polyhydroxylated lignin (PHL) was obtained by dissolving
demethylated lignin in an aqueous NaOH solution, followed by the addition of Fe(OH)3
and hydrogen peroxide, and stirring at 60 ◦C for 60 min. PHL was modified via the addition
of 4-dimethylaminopyridine (DMAP) and triethylamine (TEA) in THF and the subsequent
treatment by di-tert-butylchlorophosphane (tBu2PCl) at room temperature for 1 h, which
resulted in the formation of phosphane-modified lignin, tBu2PO/PHL. The immobilization
of CuI on tBu2PO/PHL was carried out under reflux conditions by using ethanol as a
solvent. The final product, CuI-tBu2PO/PHL, was subjected to structural characterization.
FT-IR spectra showed that PHL was successfully modified with phosphane groups, and
the incorporation of CuI was confirmed by EDS and XRD studies. N2 sorption measure-
ments revealed that CuI-tBu2PO/PHL had a mesoporous structure with a pore diameter
of 2.5–4 nm and a low specific surface area of 0.795 m2g−1. XPS spectra displayed two
characteristic peaks at 933.9 eV and 953.7 eV, associated with the Cu 2p3/2 and Cu 2p1/2
signals, indicating the predominance of CuI. The CuI-tBu2PO/PHL sample was tested as a
catalyst in the Ullmann heterocoupling reactions of indoles with aryl halides, as displayed
in Scheme 9.
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It was found that the reactions of 5-nitroindole with monosubstituted iodobenzenes
bearing either electron donating groups (EDGs) or electron-withdrawing groups (EWGs)
afforded the coupling products with moderate to good yields. On the other hand, the trans-
formations of iodobenzene with substituted indoles proceeded with higher yields for the
EWG-containing reactants. Recycling of the catalyst, investigated for the coupling reaction
of iodobenzene with 5-nitroindole, revealed a significant activity decrease (yield: 85–28%,
avg. 55%, five runs). The low stability of the catalyst was attributed to excessive copper
leaching (the Cu content of CuI-tBu2PO/PHL decreased from 0.557 to 0.0132 mmolg−1 by
the fifth cycle), together with fundamental structural changes, as revealed by SEM images.

2.2. Pd-Based Catalysts

There are only a few recent examples discussing Ullmann-type C–N heterocoupling
reactions promoted by heterogeneous Pd catalysts. The N-arylations of indoles were inves-
tigated by using catalytically active melamine–pyridine functionalized SBA-15-supported
Pd0 nanoparticles by Veisi et al. [66]. The catalyst was prepared via anchoring of melamine-
containing pyridine groups on SBA-15, followed by the generation of Pd nanoparticles.
SBA-15 was synthesized from tetraethylorthosilicate (TEOS), by using Pluronic P123 tri-
block polymer as a template. Treatment of the aminopropyl-functionalized SBA-15 by
cyanuric chloride and dipyridylamine resulted in the formation of dipyridylamine moi-
eties on the surface of triazine-functionalized SBA-15, working as anchoring sites for the
precursor PdCl2, which was subsequently reduced by hydrazine hydrate. The Pd loading
of the final product, denoted as Pd0-CCPy/SBA-15, was 0.29 mmol g−1 from ICP analysis.
The sample was characterized by FT-IR spectroscopy and N2 sorption measurements, and
the formation of metallic Pd0 species on the surface of SBA-15 was confirmed by XRD
patterns, EDX analysis, and TEM images [67]. The Pd0-CCPy/SBA-15 sample displayed a
pronounced catalytic activity in the Suzuki reactions of aryl halides with phenylboronic
acid, and therefore it was also applied for the N-arylations of indoles under mild conditions.

The results shown in Scheme 10 indicated that all the substituted iodobenzenes af-
forded the coupling products with high yields. It was found that 2-methylindole was
less active than indole and 3-methylindole, which was attributed to steric effects. The
absence of the C-arylation of indole was also pointed out. A recycling test, accomplished
for the heterocoupling of iodobenzene and indole, gave evidence that the catalyst could be
efficiently reused up to six times, with only a minor extent of deactivation (yield: 98–95%,
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avg. 97%, seven runs). A hot filtration test also confirmed that the reactions proceeded in
the heterogeneous phase.
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The preparation and application of another SBA-15-supported Pd0 catalyst has been
reported in a related study. In this case, 2-cyanoethyl-functionalized SBA-15 was treated
with an aqueous solution of hydroxylamine, resulting in the formation of amidoxime
(AO) groups utilized as anchoring species for the immobilization of PdCl2. The precursor
was subsequently reduced by hydrazine hydrate [68]. SEM images revealed a rod-like
morphology of the product, Pd0-AO/SBA-15, and TEM images indicated the formation of
Pd0 nanoparticles. For the catalytic investigation of Pd0-AO/SBA-15, the N-arylations of
indoles with substituted aryl iodides were applied as model reactions. The results obtained
for the heterocoupling reactions are summarized in Scheme 11.
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The reactions afforded the coupling products with high yields and proved to be
selective for the N-arylated product, as the C-arylation of indole was not observed. A hot
filtration test, accomplished for the N-arylation of indole with iodobenzene, revealed that
after the removal of the catalyst from the reaction mixture, no further reaction took place,
indicating that the Pd0-AO/SBA-15 sample was a heterogeneous catalyst. The sample
also displayed good stability, as revealed by the minor decline of activity experienced in
consecutive cycles (yield: 98–96%, avg. 97.3%, five runs).

2.3. Magnetic Catalysts

Heterogeneous catalysts containing magnetite (Fe3O4) nanoparticles have been the
subject of considerable attention because of their low cost, enhanced stability, large surface
area, low toxicity, and good biocompatibility. More importantly, these catalysts can be
readily removed from the reaction mixtures with an external magnet, which considerably
improves their recyclability [69–72]. In a recent study, Yousefi et al. reported results
obtained for the catalytic application of CuI species immobilized on polyvinyl-alcohol (PVA)
coated magnetic Fe3O4 nanoparticles in Ullmann-type N-arylations [73]. In the first step of
the synthesis procedure, an aqueous dispersion of as-prepared Fe3O4 nanoparticles [74]
was subjected to ultrasonic treatment, followed by the addition of PVA, and then the
reaction mixture was left under stirring for 24 h at 80 ◦C. The resulting solid, PVA/Fe3O4,
was impregnated with an aqueous solution of CuCl at room temperature for another 24 h,
which afforded the product, CuCI-PVA/Fe3O4, with a copper loading of 0.44 mmol g−1.
Structural characterization of the sample was performed by FT-IR spectroscopy, field
emission scanning electron microscopy (FESEM), EDX, vibrating sample magnetometry
(VSM), ICP, XRD, and TEM. According to XRD patterns, the crystalline phase of Fe3O4
was unaffected by the PVA coating, and FT-IR spectra indicated that the interaction of
PVA with the magnetic nanoparticles took place via the surface hydroxyl groups. FESEM
images revealed the formation of quasi-spherical Fe3O4 nanoparticles with a mean diameter
of 10–20 nm, and EDX spectra confirmed that efficient coordination of the copper ions
on the Fe3O4-PVA surface took place. The characteristic signals of the CuI species also
appeared on the XPS spectra at the binding energies 932.3 and 952.2 eV, assigned to the Cu
2p3/2 and Cu 2p1/2 signals, respectively. The sample was tested as a catalyst in the C–N
heterocoupling reactions of various heterocyclic amines with aryl halides. The results are
indicated in Scheme 12.

Inorganics 2023, 11, 276 12 of 19 
 

 

The reactions afforded the coupling products with high yields and proved to be se-
lective for the N-arylated product, as the C-arylation of indole was not observed. A hot 
filtration test, accomplished for the N-arylation of indole with iodobenzene, revealed that 
after the removal of the catalyst from the reaction mixture, no further reaction took place, 
indicating that the Pd0-AO/SBA-15 sample was a heterogeneous catalyst. The sample also 
displayed good stability, as revealed by the minor decline of activity experienced in con-
secutive cycles (yield: 98–96%, avg. 97.3%, five runs). 

2.3. Magnetic Catalysts 
Heterogeneous catalysts containing magnetite (Fe3O4) nanoparticles have been the 

subject of considerable attention because of their low cost, enhanced stability, large sur-
face area, low toxicity, and good biocompatibility. More importantly, these catalysts can 
be readily removed from the reaction mixtures with an external magnet, which consider-
ably improves their recyclability [69–72]. In a recent study, Yousefi et al. reported results 
obtained for the catalytic application of CuI species immobilized on polyvinyl-alcohol 
(PVA) coated magnetic Fe3O4 nanoparticles in Ullmann-type N-arylations [73]. In the first 
step of the synthesis procedure, an aqueous dispersion of as-prepared Fe3O4 nanoparticles 
[74] was subjected to ultrasonic treatment, followed by the addition of PVA, and then the 
reaction mixture was left under stirring for 24 h at 80 °C. The resulting solid, PVA/Fe3O4, 
was impregnated with an aqueous solution of CuCl at room temperature for another 24 
h, which afforded the product, CuCI-PVA/Fe3O4, with a copper loading of 0.44 mmol g−1. 
Structural characterization of the sample was performed by FT-IR spectroscopy, field 
emission scanning electron microscopy (FESEM), EDX, vibrating sample magnetometry 
(VSM), ICP, XRD, and TEM. According to XRD patterns, the crystalline phase of Fe3O4 
was unaffected by the PVA coating, and FT-IR spectra indicated that the interaction of 
PVA with the magnetic nanoparticles took place via the surface hydroxyl groups. FESEM 
images revealed the formation of quasi-spherical Fe3O4 nanoparticles with a mean diam-
eter of 10–20 nm, and EDX spectra confirmed that efficient coordination of the copper ions 
on the Fe3O4-PVA surface took place. The characteristic signals of the CuI species also ap-
peared on the XPS spectra at the binding energies 932.3 and 952.2 eV, assigned to the Cu 
2p3/2 and Cu 2p1/2 signals, respectively. The sample was tested as a catalyst in the C–N 
heterocoupling reactions of various heterocyclic amines with aryl halides. The results are 
indicated in Scheme 12. 

 
Scheme 12. Ullmann heterocoupling reactions catalyzed by CuCl-PVA/Fe3O4. 

For the reactions of iodo- and bromobenzenes, high product yields were obtained, 
irrespective of the electron donating or withdrawing character of their substituent. On the 

Fe3O4

PVA layer

CuCl

CuClCuCl

2.8% CuCl-PVA/Fe3O4
(0.5 mol%)

X

X= I, Br, Cl
R= H, Me, MeO, 4-NC

R 2 equiv
Et3N (2 equiv)

DMF, 100 C, 8 h

+

2.8% CuCl-PVA/Fe3O4

N

R
H

N

indole imidazole piperidine morpholine
3 examples 2 examples 3 examples 10 examples 

60 92% 80%, 85% 90 95% 55 95%

Scheme 12. Ullmann heterocoupling reactions catalyzed by CuCl-PVA/Fe3O4.



Inorganics 2023, 11, 276 13 of 20

For the reactions of iodo- and bromobenzenes, high product yields were obtained,
irrespective of the electron donating or withdrawing character of their substituent. On
the other hand, the transformations of chlorobenzenes afforded considerably lower yields
of 55–60%. Recycling of the catalyst was investigated for the reaction of bromobenzene
and morpholine. After completing the reaction, the catalyst was removed by an external
magnet and reused. It was established that the catalyst remained efficient up to seven
cycles (yield: 95–86%, avg. 91.6%, eight runs), and a hot filtration test confirmed that the
CuCI-PVA/Fe3O4 sample may be considered a heterogeneous catalyst.

Eshghi et al. synthesized magnetic Cu nanorods and investigated their catalytic perfor-
mance in the Ullmann heterocoupling reaction [75]. Magnetic Fe3O4 particles, prepared by
co-precipitation, were covered by a silica layer by applying the Stöber sol-gel method [76].
The resulting solid, SiO2/Fe3O4, was added to an ethanol solution of epibromohydrin
(EP), and the mixture was subsequently stirred at 60 ◦C for 5 h. The dry precipitate was
suspended in ethylenediamine (EN), followed by stirring at 60 ◦C for another 24 h. Further
treatment of the product with another portion of epibromohydrin resulted in the formation
of a solid material, EP/SiO2/Fe3O4, containing a polydentate ligand bonded on the surface
hydroxyl groups of the silica-coated magnetic nanoparticles [77]. This was applied as the
support material of Cu nanorods, produced from the ethanol solution of the precursor
Cu(OAc)2 under reflux conditions, followed by reduction with NaBH4. The final product,
Cu0-EP/SiO2/Fe3O4, was subjected to structural characterization. XRD patterns indicated
that the crystal structure of Fe3O4 was retained after modification. According to TGA
curves, the amount of the organic linker on the surface of the magnetic nanoparticles was
0.6 mmol g−1. TEM images gave evidence that Cu nanorods of 10 nm were distributed on
the surface of spherical SiO2/Fe3O4 particles with an average diameter of 20 nm. The Cu
loading of the product, 2.59 mmol g−1, was determined by ICP analysis. The catalytic test
reactions, the N-arylations of various heterocycles with aryl halides, were performed by
using 8 mol% of catalyst, K2CO3 as a base, and DMF as a solvent. The results are displayed
in Scheme 13.
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For the reactions of various heterocycles, including benzimidazole, indole, pyrazole,
and 1,2,4-triazole, substantial product yields were obtained by varying the reaction time
between 12–20 h. A recycling test was accomplished for the N-arylation of pyrazole with
4-methoxyiodobenzene, and no appreciable deactivation was observed (yield: 98–90%, avg.
94%, five runs). The Cu loading of the recovered catalyst was 1.82 mmol g−1 after the fifth
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cycle, indicating a low amount of leaching, and TEM images confirmed that no structural
modification of the catalyst occurred under reaction conditions.

The preparation and the catalytic application of a hydrotalcite-based magnetic CuI
nanocatalyst have been recently reported by Rajabzadeh and Khalifeh et al. [78]. In the
synthesis procedure, the surface of a magnetic hydrotalcite, HT/Fe3O4, was functionalized
by 3-chloropropyltrimethoxysilane via covalent attachment, performed in toluene under
reflux conditions [79]. The resulting solid was treated by a tricationic ionic linker (TIL)
obtained from epichlorohydrine and 1-methylimidazole. This linker was dissolved in
ethanol, and the reaction mixture was kept at boiling temperature under stirring for
24 h. The dispersion of the modified magnetic hydrotalcite, TIL/HT/Fe3O4, and CuI in
acetonitrile was subsequently heated at 50 ◦C under an Ar atmosphere for 8 h, which
afforded the final product, 7.7 wt% CuI-TIL/HT/Fe3O4. The anchoring of TIL on the
surface of the magnetic support material was revealed by FT-IR spectra. XRD analysis
indicated the formation of Fe3O4 nanoparticles on the surface of hydrotalcite, and the
presence of CuI in CuI-TIL/HT/Fe3O4 was also confirmed. According to FESEM and TEM
images, the plate-like morphology of HT/Fe3O4 was maintained after functionalization and
the immobilization of CuI. The catalytic properties of CuI-TIL/HT/Fe3O4 were investigated
in the N-arylations of various heterocycles with aryl halides, and the results are shown in
Scheme 14.

Inorganics 2023, 11, 276 14 of 19 
 

 

The preparation and the catalytic application of a hydrotalcite-based magnetic CuI 
nanocatalyst have been recently reported by Rajabzadeh and Khalifeh et al. [78]. In the 
synthesis procedure, the surface of a magnetic hydrotalcite, HT/Fe3O4, was functionalized 
by 3-chloropropyltrimethoxysilane via covalent attachment, performed in toluene under 
reflux conditions [79]. The resulting solid was treated by a tricationic ionic linker (TIL) 
obtained from epichlorohydrine and 1-methylimidazole. This linker was dissolved in eth-
anol, and the reaction mixture was kept at boiling temperature under stirring for 24 h. The 
dispersion of the modified magnetic hydrotalcite, TIL/HT/Fe3O4, and CuI in acetonitrile 
was subsequently heated at 50 °C under an Ar atmosphere for 8 h, which afforded the 
final product, 7.7 wt% CuI-TIL/HT/Fe3O4. The anchoring of TIL on the surface of the mag-
netic support material was revealed by FT-IR spectra. XRD analysis indicated the for-
mation of Fe3O4 nanoparticles on the surface of hydrotalcite, and the presence of CuI in 
CuI-TIL/HT/Fe3O4 was also confirmed. According to FESEM and TEM images, the plate-
like morphology of HT/Fe3O4 was maintained after functionalization and the immobiliza-
tion of CuI. The catalytic properties of CuI-TIL/HT/Fe3O4 were investigated in the N-ary-
lations of various heterocycles with aryl halides, and the results are shown in Scheme 14. 

 
Scheme 14. Heterocoupling reactions of N-heterocycles with aryl halides, promoted by CuI-
TIL/HT/Fe3O4. 

The coupling products were formed with good yields, and the transformations of 
aryl halides containing both Br and I substituents were found to be selective for the C–I 
bond. Recycling studies performed for the reaction of p-methoxyiodobenzene with ben-
zimidazole gave evidence that the catalyst could be used in six consecutive cycles without 
an appreciable decrease of activity (yield: 97–92%, avg. 95.8%, six runs). A hot filtration 
test also indicated the heterogeneous nature of the catalyst. 

The preparation and the catalytic application of a magnetically recoverable Pd nano-
catalyst have been reported by Ghorbani-Vaghei et al. [80]. The synthesis procedure was 
based on the production of amidoxime-functionalized Fe3O4 particles, which were applied 
as the support material of the active Pd species. Magnetic Fe3O4 nanoparticles were ob-
tained by chemical co-precipitation of FeIII and FeII ions, followed by the addition of 
NH4OH, which resulted in the formation of surface hydroxyl groups [81]. After dispersing 
the Fe3O4 powder in toluene, triethoxyethylcyanide was added, and the reaction was com-
pleted at 100 °C for 48 h under an argon atmosphere. Subsequent treatment with an aque-
ous hydroxylamine solution produced amidoxime (AO) groups on the surface of the mag-
netic nanoparticles. The resulting solid (AO/Fe3O4) was dispersed in acetonitrile, followed 

Scheme 14. Heterocoupling reactions of N-heterocycles with aryl halides, promoted by CuI-
TIL/HT/Fe3O4.

The coupling products were formed with good yields, and the transformations of
aryl halides containing both Br and I substituents were found to be selective for the
C–I bond. Recycling studies performed for the reaction of p-methoxyiodobenzene with
benzimidazole gave evidence that the catalyst could be used in six consecutive cycles
without an appreciable decrease of activity (yield: 97–92%, avg. 95.8%, six runs). A hot
filtration test also indicated the heterogeneous nature of the catalyst.

The preparation and the catalytic application of a magnetically recoverable Pd nanocat-
alyst have been reported by Ghorbani-Vaghei et al. [80]. The synthesis procedure was based
on the production of amidoxime-functionalized Fe3O4 particles, which were applied as the
support material of the active Pd species. Magnetic Fe3O4 nanoparticles were obtained
by chemical co-precipitation of FeIII and FeII ions, followed by the addition of NH4OH,
which resulted in the formation of surface hydroxyl groups [81]. After dispersing the Fe3O4
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powder in toluene, triethoxyethylcyanide was added, and the reaction was completed
at 100 ◦C for 48 h under an argon atmosphere. Subsequent treatment with an aqueous
hydroxylamine solution produced amidoxime (AO) groups on the surface of the magnetic
nanoparticles. The resulting solid (AO/Fe3O4) was dispersed in acetonitrile, followed by
the addition of PdCl2 and stirring at room temperature for 10 h and the subsequent reduc-
tion of the precursor with hydrazine hydrate. The final product, Pd0-AO/Fe3O4, had a Pd
loading of 1.83 wt%, obtained from ICP-AES and EDS. FESEM and TEM images revealed
spherical morphologies for both the functionalized Fe3O4 and the Pd nanoparticles, for
which the mean diameters were 10–15 and 3 nm, respectively. The catalytic performance of
the Pd0-AO/Fe3O4 sample was investigated in the Ullmann-type N-arylations of indoles
with iodobenzenes by using 0.1 mol% catalyst, triethylamine as a base and DMF as a
solvent. The results are summarized in Scheme 15.
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Scheme 15. N-Arylations catalyzed by 1.83% Pd0-AO/Fe3O4.

The coupling reaction proved to be selective for the formation of the N-aryl-substituted
product and proceeded with excellent yields for aryl iodides containing both electron-
donating and electron-withdrawing substituents. Recycling of the Pd0-AO/Fe3O4 catalyst
revealed satisfactory stability (yield: 96–82%, avg. 90%, seven runs). However, it should be
noted that these data were obtained for the Suzuki reaction of 4-methyliodobenzene with
phenylboronic acid, and no related data were disclosed for the N-arylations.

Another recyclable magnetic Pd nanocatalyst has been fabricated by Hajipour et al. [82]. The
magnetic Fe3O4 nanoparticles, prepared by co-precipitation [80], were coated with a silica layer
upon reaction with tetraethyl orthosilicate (TEOS). In the next step, 3-iodopropyltrimethoxysilane
was added in a nitrogen atmosphere to the Fe3O4/SiO2 material, dispersed in toluene, and
the mixture was heated under reflux conditions for 24 h. The following treatment of the
product with cysteine and K2CO3 was performed under similar conditions in acetonitrile.
The formation of iodo-functionalized groups on the surface of the silica layer ensured the
grafting of cysteine moieties on the magnetic nanoparticles. Finally, palladium acetate
was immobilized on the magnetic support in ethanol, which resulted in the formation of
the product, Pd0-cysteine/Fe3O4. ICP analysis revealed that the Pd loading of the sample
was 0.47 wt%. Experimental evidence for the immobilization of cysteine moieties on the
surface of the magnetic nanoparticles was obtained by FT-IR spectroscopy. XRD spectra
displayed characteristic signals corresponding to the silica-coated magnetic nanoparticles
and the Pd0 species, whereas TEM images indicated the formation of monodispersed,
spherical Pd nanoparticles with an average diameter of 14 nm. The catalytic activity of
Pd0-cysteine/Fe3O4 was examined in the N-arylations of aryl halides with various amines,
and the coupling products were obtained with pronounced yields (Scheme 16).
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A heterogeneous pathway was confirmed by a hot filtration test, indicating that no
further reaction progress took place after the removal of the magnetic Pd catalyst, which
was in accordance with the result of ICP analysis, indicating that the amount of dissolved
Pd was 0.03 ppm.

3. Conclusions

It may be ascertained that the Ullmann-type C–N heterocoupling reaction remained an
efficient and versatile method for the synthesis of N-arylamines. Because of its importance
in medicinal chemistry and in materials science, substantial efforts have been made for
the development of novel and recyclable heterogeneous catalysts with improved perfor-
mances. A variety of ligands have been applied for the surface modifications of the support
materials utilized for the immobilization of the active metal species. The introduction
of green procedures, including mild reaction temperatures, ligand-free conditions, the
application of ionic liquids as modifiers, and the replacement of toxic organic compounds
by environmentally friendly alternatives, has also gained increasing importance. Although
copper-based catalysts have still been predominantly used for N-arylations, the efficiency
of Pd catalysts has also been confirmed. Furthermore, the utilization of magnetic Fe3O4
nanoparticles as support materials has been found to promote catalyst recovery and recy-
cling to an appreciable extent. Nevertheless, in a few cases, insufficient information has
been disclosed on the stabilities of the working catalysts. Considering the current limita-
tions of Ullmann-type C–N heterocoupling reactions, further studies should be focused on
the development of more efficient heterogeneous catalysts with low metal loadings and
enhanced stabilities to be applied for an extended substrate scope under mild conditions.
This would be a significant contribution to the prospective syntheses of pharmaceutically
important molecules, which may also be suitable for large-scale applications.
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