Proton Conduction Properties of Intrinsically Sulfonated Covalent Organic Framework Composites
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis Procedure
4.2.1. Preparation of TpPa
4.2.2. Preparation of TpPa@H2SO4
4.2.3. Preparation of TpPa–SO3H
4.2.4. Preparation of PANa@TpPa and PANa@TpPa–SO3H
4.3. Proton Conductivity Measurement
4.4. Water Uptake and Swelling Ratio of PANa@TpPa–SO3H Pellets
4.5. Other Measurements
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LIB | Lithium–ion batteries |
PEMFCs | Proton exchange membrane fuel cells |
EC | Electrochemical capacitor |
PEM | Proton exchange membrane |
HOFs | Hydrogen–bonded organic frameworks |
MOFs | Metal–organic frameworks |
COFs | Covalent Organic Frameworks |
FT–IR | Fourier transform infrared |
BET | Brunauer−Emmett−Teller |
RH | Relative humidity |
References
- Rode, A.; Carleton, T.; Delgado, M.; Greenstone, M.; Houser, T.; Hsiang, S.; Hultgren, A.; Jina, A.; Kopp, R.E.; McCusker, K.E.; et al. Estimating a Social Cost of Carbon for Global Energy Consumption. Nature 2021, 598, 308–314. [Google Scholar] [CrossRef]
- Renn, O. Towards Climate Neutrality for Household Energy Consumption. Natl. Sci. Rev. 2022, 9, 83. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Z.; Fan, M.; Yang, J.; Xiao, J.; Wang, Y. Future Energy Infrastructure, Energy Platform and Energy Storage. Nano Energy 2022, 104, 107915. [Google Scholar] [CrossRef]
- Palmer, G. Renewables Rise above Fossil Fuels. Nat. Energy 2019, 4, 538–539. [Google Scholar] [CrossRef]
- Shih, C.F.; Zhang, T.; Li, J.; Bai, C. Powering the Future with Liquid Sunshine. Joule 2018, 2, 1925–1949. [Google Scholar] [CrossRef] [Green Version]
- Gür, T.M. Review of Electrical Energy Storage Technologies, Materials and Systems: Challenges and Prospects for Large–Scale Grid Storage. Energy Environ. Sci. 2018, 11, 2696–2767. [Google Scholar] [CrossRef]
- Li, X.; Jiang, C.; Ying, Y.; Ping, J. Biotriboelectric Nanogenerators: Materials, Structures, and Applications. Adv. Energy Mater. 2020, 10, 2002001. [Google Scholar] [CrossRef]
- Wei, H.; Cui, D.; Ma, J.; Chu, L.; Zhao, X.; Song, H.; Liu, H.; Liu, T.; Wang, N.; Guo, Z. Energy Conversion Technologies Towards Self–Powered Electrochemical Energy Storage Systems: The State of the Art and Perspectives. J. Mater. Chem. A 2017, 5, 1873–1894. [Google Scholar] [CrossRef]
- Ren, W.; Ding, C.; Fu, X.; Huang, Y. Advanced Gel Polymer Electrolytes for Safe and Durable Lithium Metal Batteries: Challenges, Strategies, and Perspectives. Energy Storage Mater. 2021, 34, 515–535. [Google Scholar] [CrossRef]
- Fan, C.; Zhang, L.; Kong, Y.; Pang, X.; Gao, Z.; Wang, S.; Xing, N.; Wu, H.; Jiang, Z. Solid–State Synthesis of Intrinsically Proton–Conducting Covalent Organic Framework Membrane. J. Membr. Sci. 2023, 676, 121610. [Google Scholar] [CrossRef]
- Fic, K.; Platek, A.; Piwek, J.; Frackowiak, E. Sustainable Materials for Electrochemical Capacitors. Mater. Today 2018, 21, 437–454. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, Y.C.; Wu, Z.P.; Chen, G.; Yang, F.; Zhu, S.; Siddharth, K.; Kong, Z.; Lu, A.; Li, J.C.; et al. Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells. Adv. Mater. 2021, 33, 2006292. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xie, C.; Yang, Q.; Wang, S.; Gao, Y.; Ji, J.; Du, Z.; Kang, Z.; Wang, R.; Sun, D. PANa/Covalent Organic Framework Composites with Improved Water Uptake and Proton Conductivity. Chem. Commun. 2022, 58, 1131–1134. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.A.; Mansor, N.; Gadipelli, S.; Brett, D.J.; Guo, Z. Superacidity in Nafion/MOF Hybrid Membranes Retains Water at Low Humidity to Enhance Proton Conduction for Fuel Cells. ACS Appl. Mater. Interfaces 2016, 8, 30687–30691. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, P.; Zhang, Y.; Liu, Y.; Wu, W.; Liu, J. Porous Nafion Nanofiber Composite Membrane with Vertical Pathways for Efficient through–Plane Proton Conduction. J. Membr. Sci. 2019, 585, 157–165. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.; Shang, Y.; Du, J.; Yin, J.; Liu, D.; Kang, Z.; Wang, R.; Sun, D.; Jiang, J. Three Hydrogen–Bonded Organic Frameworks with Water–Induced Single–Crystal–to–Single–Crystal Transformation and High Proton Conductivity. Cryst. Growth Des. 2020, 20, 3456–3465. [Google Scholar] [CrossRef]
- Fan, W.; Wang, K.Y.; Welton, C.; Feng, L.; Wang, X.; Liu, X.; Li, Y.; Kang, Z.; Zhou, H.C.; Wang, R.; et al. Aluminum Metal–Organic Frameworks: From Structures to Applications. Coord. Chem. Rev. 2023, 489, 215175. [Google Scholar] [CrossRef]
- Gong, Y.N.; Guan, X.; Jiang, H.L. Covalent Organic Frameworks for Photocatalysis: Synthesis, Structural Features, Fundamentals and Performance. Coord. Chem. Rev. 2023, 475, 214889. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, Y.; Du, C.; Ma, X.; Cao, C. Advances and Challenges in Metal–Organic Framework Derived Porous Materials for Batteries and Electrocatalysis. J. Mater. Chem. A 2020, 8, 24895–24919. [Google Scholar] [CrossRef]
- Shinde, D.B.; Aiyappa, H.B.; Bhadra, M.; Biswal, B.P.; Wadge, P.; Kandambeth, S.; Garai, B.; Kundu, T.; Kurungot, S.; Banerjee, R. A Mechanochemically Synthesized Covalent Organic Framework as a Proton–Conducting Solid Electrolyte. J. Mater. Chem. A 2016, 4, 2682–2690. [Google Scholar] [CrossRef]
- Shi, B.; Pang, X.; Lyu, B.; Wu, H.; Shen, J.; Guan, J.; Wang, X.; Fan, C.; Cao, L.; Zhu, T.; et al. Spacer–Engineered Ionic Channels in Covalent Organic Framework Membranes toward Ultrafast Proton Transport. Adv. Mater. 2023, 35, 2211004. [Google Scholar] [CrossRef]
- Kang, C.; Zhang, Z.; Usadi, A.K.; Calabro, D.C.; Baugh, L.S.; Chai, K.; Wang, Y.; Zhao, D. Tunable Interlayer Shifting in Two–Dimensional Covalent Organic Frameworks Triggered by CO2 Sorption. J. Am. Chem. Soc. 2022, 144, 20363–20371. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wang, D.Y.; Shi, J.R.; Li, G. Proton Conductive Metal Sulfonate Frameworks. Coord. Chem. Rev. 2021, 431, 213747. [Google Scholar] [CrossRef]
- Chandra, S.; Kundu, T.; Kandambeth, S.; Babarao, R.; Marathe, Y.; Kunjir, S.M.; Banerjee, R. Phosphoric Acid Loaded Azo (–N=N–) Based Covalent Organic Framework for Proton Conduction. J. Am. Chem. Soc. 2014, 136, 6570–6573. [Google Scholar] [CrossRef]
- Dang, J.; Zhao, L.; Zhang, J.; Liu, J.; Wang, J. Imidazole Microcapsules toward Enhanced Phosphoric Acid Loading of Polymer Electrolyte Membrane for Anhydrous Proton Conduction. J. Membr. Sci. 2018, 545, 88–98. [Google Scholar] [CrossRef]
- Zhong, W.; Sa, R.; Li, L.; He, Y.; Li, L.; Bi, J.; Zhuang, Z.; Yu, Y.; Zou, Z. A Covalent Organic Framework Bearing Single Ni Sites as a Synergistic Photocatalyst for Selective Photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615–7621. [Google Scholar] [CrossRef]
- Jeong, K.; Park, S.; Jung, G.Y.; Kim, S.H.; Lee, Y.H.; Kwak, S.K.; Lee, S.Y. Solvent–Free, Single Lithium–Ion Conducting Covalent Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 5880–5885. [Google Scholar] [CrossRef]
- Liu, L.; Yin, L.; Cheng, D.; Zhao, S.; Zang, H.Y.; Zhang, N.; Zhu, G. Surface-Mediated Construction of an Ultrathin Free-Standing Covalent Organic Framework Membrane for Efficient Proton Conduction. Angew. Chem. Int. Ed. 2021, 60, 14875–14880. [Google Scholar] [CrossRef]
- Cao, L.; Wu, H.; Cao, Y.; Fan, C.; Zhao, R.; He, X.; Yang, P.; Shi, B.; You, X.; Jiang, Z. Weakly Humidity-Dependent Proton-Conducting COF Membranes. Adv. Mater. 2020, 32, 2005565. [Google Scholar] [CrossRef]
- Yang, Y.; He, X.; Zhang, P.; Andaloussi, Y.H.; Zhang, H.; Jiang, Z.; Chen, Y.; Ma, S.; Cheng, P.; Zhang, Z. Combined Intrinsic and Extrinsic Proton Conduction in Robust Covalent Organic Frameworks for Hydrogen Fuel Cell Applications. Angew. Chem. Int. Ed. 2020, 59, 3678–3684. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Jiang, G.; Zhang, W.; Zhang, L.; Cui, Z.; Song, H.; Liang, Z.; Du, L. Hierarchically Macro–Microporous Covalent Organic Frameworks for Efficient Proton Conduction. Adv. Funct. Mater. 2023, 15, 2213642. [Google Scholar] [CrossRef]
- Shao, Z.; Xue, X.; Gao, K.; Chen, J.; Zhai, L.; Wen, T.; Xiong, S.; Hou, H.; Mi, L. Sulfonated Covalent Organic Framework Packed Nafion Membrane with High Proton Conductivity for H2/O2 Fuel Cell Applications. J. Mater. Chem. A 2023, 11, 3446–3453. [Google Scholar] [CrossRef]
- Wang, F.D.; Yang, L.J.; Wang, X.X.; Rong, Y.; Yang, L.B.; Zhang, C.X.; Yan, F.Y.; Wang, Q.L. Pyrazine-Functionalized Donor-Acceptor Covalent Organic Frameworks for Enhanced Photocatalytic H2 Evolution with High Proton Transport. Small 2023, 18, 2207421. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Zhao, Z.; Zhang, P.; Zhang, Y.; Liu, J.; Ma, S.; Cheng, P.; Chen, Y.; Zhang, Z. Green Synthesis of Olefin-Linked Covalent Organic Frameworks for Hydrogen Fuel Cell Applications. Nat. Commun. 2021, 12, 1982. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Wu, Y.; Chen, S.; Zhang, W.; Zhang, Y.; Yan, T.; Yang, B.; Ma, H. Zwitterionic Covalent Organic Frameworks: Attractive Porous Host for Gas Separation and Anhydrous Proton Conduction. ACS Nano 2021, 15, 19743–19755. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Hong, Y.L.; Xu, B.; Nishiyama, Y.; Jiang, W.; Zhu, J.; Zhang, G.; Kitagawa, S.; Horike, S. Perfluoroalkyl-Functionalized Covalent Organic Frameworks with Superhydrophobicity for Anhydrous Proton Conduction. J. Am. Chem. Soc. 2020, 142, 14357–14364. [Google Scholar] [CrossRef]
- Chen, S.; Wu, Y.; Zhang, Y.; Zhang, W.; Fu, Y.; Huang, W.; Yan, T.; Ma, H. Tuning Proton Dissociation Energy in Proton Carrier Doped 2D Covalent Organic Frameworks for Anhydrous Proton Conduction at Elevated Temperature. J. Mater. Chem. A 2020, 8, 13702–13709. [Google Scholar] [CrossRef]
- Samanta, P.; Desai, A.V.; Anothumakkool, B.; Shirolkar, M.M.; Karmakar, A.; Kurungot, S.; Ghosh, S.K. Enhanced Proton Conduction by Post-Synthetic Covalent Modification in a Porous Covalent Framework. J. Mater. Chem. A 2017, 5, 13659–13664. [Google Scholar] [CrossRef]
- Peng, Y.; Xu, G.; Hu, Z.; Cheng, Y.; Chi, C.; Yuan, D.; Cheng, H.; Zhao, D. Mechanoassisted Synthesis of Sulfonated Covalent Organic Frameworks with High Intrinsic Proton Conductivity. ACS Appl. Mater. Interfaces 2016, 8, 18505–18512. [Google Scholar] [CrossRef]
- Jiang, G.; Zou, W.; Ou, Z.; Zhang, L.; Zhang, W.; Wang, X.; Song, H.; Cui, Z.; Liang, Z.; Du, L. Tuning the Interlayer Interactions of 2D Covalent Organic Frameworks Enables an Ultrastable Platform for Anhydrous Proton Transport. Angew. Chem. Int. Ed. 2022, 61, 202208086. [Google Scholar] [CrossRef]
- Guo, Z.C.; You, M.L.; Wang, Z.J.; Li, Z.F.; Li, G. Metal@Cofs Possess High Proton Conductivity with Mixed Conducting Mechanisms. ACS Appl. Mater. Interfaces 2022, 14, 15676–15687. [Google Scholar] [CrossRef]
- Meng, Z.; Aykanat, A.; Mirica, K.A. Proton Conduction in 2D Aza-Fused Covalent Organic Frameworks. Chem. Mater. 2018, 31, 819–825. [Google Scholar] [CrossRef]
- Ma, H.; Liu, B.; Li, B.; Zhang, L.; Li, Y.G.; Tan, H.Q.; Zang, H.Y.; Zhu, G. Cationic Covalent Organic Frameworks: A Simple Platform of Anionic Exchange for Porosity Tuning and Proton Conduction. J. Am. Chem. Soc. 2016, 138, 5897–5903. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Kundu, T.; Dey, K.; Addicoat, M.; Heine, T.; Banerjee, R. Interplaying Intrinsic and Extrinsic Proton Conductivities in Covalent Organic Frameworks. Chem. Mater. 2016, 28, 1489–1494. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Kong, Z.; Li, X.; Guo, Q.; Wang, Z.; Kang, Z.; Wang, R.; Sun, D. Proton Conduction Properties of Intrinsically Sulfonated Covalent Organic Framework Composites. Inorganics 2023, 11, 283. https://doi.org/10.3390/inorganics11070283
Yang J, Kong Z, Li X, Guo Q, Wang Z, Kang Z, Wang R, Sun D. Proton Conduction Properties of Intrinsically Sulfonated Covalent Organic Framework Composites. Inorganics. 2023; 11(7):283. https://doi.org/10.3390/inorganics11070283
Chicago/Turabian StyleYang, Jianjian, Zhihui Kong, Xinyu Li, Qinglei Guo, Zhen Wang, Zixi Kang, Rongming Wang, and Daofeng Sun. 2023. "Proton Conduction Properties of Intrinsically Sulfonated Covalent Organic Framework Composites" Inorganics 11, no. 7: 283. https://doi.org/10.3390/inorganics11070283
APA StyleYang, J., Kong, Z., Li, X., Guo, Q., Wang, Z., Kang, Z., Wang, R., & Sun, D. (2023). Proton Conduction Properties of Intrinsically Sulfonated Covalent Organic Framework Composites. Inorganics, 11(7), 283. https://doi.org/10.3390/inorganics11070283