Superior Rate Capability of High Mass Loading Supercapacitors Fabricated with Carbon Recovered from Methane Cracking
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Methane Cracking
3.2. Electrodes and Coin Cells Preparation
3.3. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Working Group II. IPCC WGII Sixth Assessment Report: Climate Change—Impacts, Adaptation and Vulnerability; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Abdin, Z.; Zafaranloo, A.; Rafiee, A.; Mérida, W.; Lipiński, W.; Khalilpour, K.R. Hydrogen as an Energy Vector. Renew. Sustain. Energy Rev. 2020, 120, 109620. [Google Scholar] [CrossRef]
- Ali Khan, M.H.; Daiyan, R.; Neal, P.; Haque, N.; MacGill, I.; Amal, R. A Framework for Assessing Economics of Blue Hydrogen Production from Steam Methane Reforming Using Carbon Capture Storage & Utilisation. Int. J. Hydrogen Energy 2021, 46, 22685–22706. [Google Scholar] [CrossRef]
- Sánchez-Bastardo, N.; Schlögl, R.; Ruland, H. Methane Pyrolysis for CO2-Free H2 Production: A Green Process to Overcome Renewable Energies Unsteadiness. Chem. Ing. Tech. 2020, 92, 1596–1609. [Google Scholar] [CrossRef]
- Weger, L.; Abánades, A.; Butler, T. Methane Cracking as a Bridge Technology to the Hydrogen Economy. Int. J. Hydrogen Energy 2017, 42, 720–731. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency. Global Hydrogen Review 2021; OECD: Paris, France, 2021; ISBN 9789264519312. [Google Scholar]
- Schütter, C.; Pohlmann, S.; Balducci, A. Industrial Requirements of Materials for Electrical Double Layer Capacitors: Impact on Current and Future Applications. Adv. Energy Mater. 2019, 9, 1900334. [Google Scholar] [CrossRef]
- Allaedini, G.; Aminayi, P.; Tasirin, S.M. Methane Decomposition for Carbon Nanotube Production: Optimization of the Reaction Parameters Using Response Surface Methodology. Chem. Eng. Res. Des. 2016, 112, 163–174. [Google Scholar] [CrossRef]
- Guizani, C.; Escudero Sanz, F.J.; Salvador, S. The Nature of the Deposited Carbon at Methane Cracking over a Nickel Loaded Wood-Char. Comptes Rendus Chim. 2016, 19, 423–432. [Google Scholar] [CrossRef]
- Keipi, T.; Tolvanen, K.E.S.; Tolvanen, H.; Konttinen, J. Thermo-Catalytic Decomposition of Methane: The Effect of Reaction Parameters on Process Design and the Utilization Possibilities of the Produced Carbon. Energy Convers. Manag. 2016, 126, 923–934. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhai, T.; Lu, X.; Yu, M.; Tong, Y.; Mai, K. Conductive Membranes of EVA Filled with Carbon Black and Carbon Nanotubes for Flexible Energy-Storage Devices. J. Mater. Chem. A 2013, 1, 505–509. [Google Scholar] [CrossRef]
- Portet, C.; Taberna, P.L.; Simon, P.; Flahaut, E.; Laberty-Robert, C. High Power Density Electrodes for Carbon Supercapacitor Applications. Electrochim. Acta 2005, 50, 4174–4181. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Zhu, J.; Li, Q.; Zhang, S.; Song, H.; Jia, D. Carbon Materials for High Mass-Loading Supercapacitors: Filling the Gap between New Materials and Practical Applications. J. Mater. Chem. A 2020, 8, 21930–21946. [Google Scholar] [CrossRef]
- Guo, W.; Yu, C.; Li, S.; Qiu, J. Toward Commercial-Level Mass-Loading Electrodes for Supercapacitors: Opportunities, Challenges and Perspectives. Energy Environ. Sci. 2021, 14, 576–601. [Google Scholar] [CrossRef]
- Chang, L.; Hu, Y.H. Breakthroughs in Designing Commercial-Level Mass-Loading Graphene Electrodes for Electrochemical Double-Layer Capacitors. Matter 2019, 1, 596–620. [Google Scholar] [CrossRef]
- Obreja, V.V.N. Supercapacitors Specialities—Materials Review. AIP Conf. Proc. 2014, 1597, 98–120. [Google Scholar] [CrossRef]
- Zhang, J.; Ge, Y.; Gao, F.; Ren, M.; Hao, Q.; Chen, H.; Ma, X. Synergistic Conversion of Coal Char and Methane for Syngas and Carbon-Based Supercapacitor Electrodes. J. Colloid Interface Sci. 2020, 562, 235–243. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Sudhakaran, M.S.P.; Pazhamalai, P.; Mariappan, V.K.; Mok, Y.S.; Kim, S.J. A Highly Efficient 2D Siloxene Coated Ni Foam Catalyst for Methane Dry Reforming and an Effective Approach to Recycle the Spent Catalyst for Energy Storage Applications. J. Mater. Chem. A 2019, 7, 18950–18958. [Google Scholar] [CrossRef]
- Stolecka, K.; Rusin, A. Analysis of Hazards Related to Syngas Production and Transport. Renew. Energy 2020, 146, 2535–2555. [Google Scholar] [CrossRef]
- Sheng, L.; Zhao, Y.; Hou, B.; Xiao, Z.; Jiang, L.; Fan, Z. N-Doped Layered Porous Carbon Electrodes with High Mass Loadings for High-Performance Supercapacitors. Xinxing Tan Cailiao/New Carbon Mater. 2021, 36, 179–188. [Google Scholar] [CrossRef]
- Köps, L.; Zaccagnini, P.; Pirri, C.F.; Balducci, A. Determination of Reliable Resistance Values for Electrical Double-Layer Capacitors. J. Power Sources Adv. 2022, 16, 100098. [Google Scholar] [CrossRef]
- Dsoke, S.; Tian, X.; Täubert, C.; Schlüter, S.; Wohlfahrt-Mehrens, M. Strategies to Reduce the Resistance Sources on Electrochemical Double Layer Capacitor Electrodes. J. Power Sources 2013, 238, 422–429. [Google Scholar] [CrossRef]
- Bardini, L. EIS 101, an Introduction to Electrochemical Spectroscopy. What Was a Website is Now Available as a Self-Contained PDF. Available online: https://www.researchgate.net/publication/280009629_EIS_101_an_introduction_to_electrochemical_spectroscopy_What_was_a_website_is_now_available_as_a_self-contained_PDF (accessed on 24 July 2023).
- Scisco, G.P.; Orazem, M.E.; Ziegler, K.J.; Jones, K.S. On the Rate Capability of Supercapacitors Characterized by a Constant-Phase Element. J. Power Sources 2021, 516, 230700. [Google Scholar] [CrossRef]
- Huang, J. Diffusion Impedance of Electroactive Materials, Electrolytic Solutions and Porous Electrodes: Warburg Impedance and Beyond. Electrochim. Acta 2018, 281, 170–188. [Google Scholar] [CrossRef]
- Birch, M.E.; Ruda-Eberenz, T.A.; Chai, M.; Andrews, R.; Hatfield, R.L. Properties That Influence the Specific Surface Areas of Carbon Nanotubes and Nanofibers. Ann. Occup. Hyg. 2013, 57, 1148–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baptista, M.; Gaspar, G.; Wijayantha, K.G.U.; Lobato, K. The Impact of Laser-Scribing Carbon-Based Supercapacitor Electrodes. Appl. Surf. Sci. Adv. 2022, 10, 100262. [Google Scholar] [CrossRef]
- Hung, T.F.; Hsieh, T.H.; Tseng, F.S.; Wang, L.Y.; Yang, C.C.; Yang, C.C. High-Mass Loading Hierarchically Porous Activated Carbon Electrode for Pouch-Type Supercapacitors with Propylene Carbonate-Based Electrolyte. Nanomaterials 2021, 11, 785. [Google Scholar] [CrossRef]
- Ye, L.; Liang, Q.; Huang, Z.H.; Lei, Y.; Zhan, C.; Bai, Y.; Li, H.; Kang, F.; Yang, Q.H. A Supercapacitor Constructed with a Partially Graphitized Porous Carbon and Its Performance over a Wide Working Temperature Range. J. Mater. Chem. A 2015, 3, 18860–18866. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Ding, Z.; Wei, Q.; Wang, Z.; Yang, X.; Qiu, J. Biomass-Based Hierarchical Porous Carbon for Supercapacitors: Effect of Aqueous and Organic Electrolytes on the Electrochemical Performance. ChemSusChem 2019, 12, 5099–5110. [Google Scholar] [CrossRef]
- Jäckel, N.; Weingarth, D.; Schreiber, A.; Krüner, B.; Zeiger, M.; Tolosa, A.; Aslan, M.; Presser, V. Performance Evaluation of Conductive Additives for Activated Carbon Supercapacitors in Organic Electrolyte. Electrochim. Acta 2016, 191, 284–298. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Li, M.; El-Kady, M.F.; Kaner, R.B. Next-Generation Activated Carbon Supercapacitors: A Simple Step in Electrode Processing Leads to Remarkable Gains in Energy Density. Adv. Funct. Mater. 2016, 27, 1605745. [Google Scholar] [CrossRef]
- Yang, C.H.; Nguyen, Q.D.; Chen, T.H.; Helal, A.S.; Li, J.; Chang, J.K. Functional Group-Dependent Supercapacitive and Aging Properties of Activated Carbon Electrodes in Organic Electrolyte. ACS Sustain. Chem. Eng. 2018, 6, 1208–1214. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, F.; Yang, X.; Leng, K.; Huang, Y.; Chen, Y. High-Performance Supercapacitor Electrode Materials Prepared from Various Pollens. Small 2013, 9, 1342–1347. [Google Scholar] [CrossRef]
- Msheik, M.; Rodat, S.; Abanades, S. Methane Cracking for Hydrogen Production: A Review of Catalytic and Molten Media Pyrolysis. Energies 2021, 14, 3107. [Google Scholar] [CrossRef]
- Vlčková Živcová, Z.; Mortet, V.; Taylor, A.; Zukal, A.; Frank, O.; Kavan, L. Electrochemical Characterization of Porous Boron-Doped Diamond Prepared Using SiO2 Fiber Template. Diam. Relat. Mater. 2018, 87, 61–69. [Google Scholar] [CrossRef]
- Wu, F.; Liu, M.; Li, Y.; Feng, X.; Zhang, K.; Bai, Y.; Wang, X.; Wu, C. High-Mass-Loading Electrodes for Advanced Secondary Batteries and Supercapacitors. Electrochem. Energy Rev. 2021, 4, 382–446. [Google Scholar] [CrossRef]
MC-Recovered | Commercial ca | |
---|---|---|
R1 (Ω) | 1.8 | 1.5 |
R2 (Ω) | 0.6 | 3.4 |
CPE (sN/Ω) | 8.0 × 10−5 | 2.1 × 10−5 |
N | 0.9 | 0.9 |
W (/ Ω) | 0.36 | 0.29 |
R3 (Ω) | 1.9 | 2.1 |
C (F) | 1.1 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baptista, J.; Shacklock, J.; Shaban, M.; Alkayal, A.; Lobato, K.; Wijayantha, U. Superior Rate Capability of High Mass Loading Supercapacitors Fabricated with Carbon Recovered from Methane Cracking. Inorganics 2023, 11, 316. https://doi.org/10.3390/inorganics11080316
Baptista J, Shacklock J, Shaban M, Alkayal A, Lobato K, Wijayantha U. Superior Rate Capability of High Mass Loading Supercapacitors Fabricated with Carbon Recovered from Methane Cracking. Inorganics. 2023; 11(8):316. https://doi.org/10.3390/inorganics11080316
Chicago/Turabian StyleBaptista, Joana, Jack Shacklock, Muhammad Shaban, Anas Alkayal, Killian Lobato, and Upul Wijayantha. 2023. "Superior Rate Capability of High Mass Loading Supercapacitors Fabricated with Carbon Recovered from Methane Cracking" Inorganics 11, no. 8: 316. https://doi.org/10.3390/inorganics11080316
APA StyleBaptista, J., Shacklock, J., Shaban, M., Alkayal, A., Lobato, K., & Wijayantha, U. (2023). Superior Rate Capability of High Mass Loading Supercapacitors Fabricated with Carbon Recovered from Methane Cracking. Inorganics, 11(8), 316. https://doi.org/10.3390/inorganics11080316