Study of the Cathode Pt-Electrocatalysts Based on Reduced Graphene Oxide with Pt-SnO2 Hetero-Clusters
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of Pt/SnO2(Sn)/GRO Catalysts
3.2. Structural and Morphological Studies
3.3. Electrochemical Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Takeshi, D.; Sasaki, K.; Lyth, S.M. Defective Graphene Foam: A Platinum Catalyst Support for PEMFCs. J. Electrochem. Soc. 2014, 161, F838. [Google Scholar] [CrossRef]
- Yin, M.; Xu, J.; Li, Q.; Jensen, J.O.; Huang, Y.; Cleemann, L.N.; Bjerrum, N.J.; Xing, W. Highly Active and Stable Pt Electrocatalysts Promoted by Antimony-Doped SnO2 Supports for Oxygen Reduction Reactions. Appl. Catal. B Environ. 2014, 144, 112–120. [Google Scholar] [CrossRef]
- Ignaszak, A.; Teo, C.; Ye, S.; Gyenge, E. Pt-SnO2-Pd/C Electrocatalyst with Enhanced Activity and Durability for the Oxygen Reduction Reaction at Low Pt Loading: The Effect of Carbon Support Type and Activation. J. Phys. Chem. C 2010, 114, 16488–16504. [Google Scholar] [CrossRef]
- Xu, J.; Aili, D.; Li, Q.; Pan, C.; Christensen, E.; Jensen, J.O.; Zhang, W.; Liu, G.; Wang, X.; Bjerrum, N.J. Antimony Doped Tin Oxide Modified Carbon Nanotubes as Catalyst Supports for Methanol Oxidation and Oxygen Reduction Reactions. J. Mater. Chem. A 2013, 1, 9737–9745. [Google Scholar] [CrossRef]
- Nakazato, Y.; Kawachino, D.; Noda, Z.; Matsuda, J.; Lyth, S.M.; Hayashi, A.; Sasaki, K. PEFC Electrocatalysts Supported on Nb-SnO2 for MEAs with High Activity and Durability: Part I. Application of Different Carbon Fillers. J. Electrochem. Soc. 2018, 165, F1154. [Google Scholar] [CrossRef]
- Spasov, D.D.; Ivanova, N.A.; Pushkarev, A.S.; Pushkareva, I.V.; Presnyakova, N.N.; Chumakov, R.G.; Presnyakov, M.Y.; Grigoriev, S.A.; Fateev, V.N. On the Influence of Composition and Structure of Carbon-Supported Pt-SnO2 Hetero-Clusters onto Their Electrocatalytic Activity and Durability in PEMFC. Catalysts 2019, 9, 803. [Google Scholar] [CrossRef] [Green Version]
- Mensharapov, R.M.; Ivanova, N.A.; Spasov, D.D.; Kukueva, E.V.; Zasypkina, A.A.; Seregina, E.A.; Grigoriev, S.A.; Fateev, V.N. Carbon-Supported Pt-SnO2 Catalysts for Oxygen Reduction Reaction over a Wide Temperature Range: Rotating Disk Electrode Study. Catalysts 2021, 11, 1469. [Google Scholar] [CrossRef]
- Trogadas, P.; Fuller, T.F.; Strasser, P. Carbon as Catalyst and Support for Electrochemical Energy Conversion. Carbon 2014, 75, 5–42. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y.S. Synthesis of Graphene and Its Applications: A Review. Crit. Rev. Solid State Mater. Sci. 2010, 35, 52–71. [Google Scholar] [CrossRef]
- Chae, S.J.; Güneş, F.; Kim, K.K.; Kim, E.S.; Han, G.H.; Kim, S.M.; Shin, H.-J.; Yoon, S.-M.; Choi, J.-Y.; Park, M.H. Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation. Adv. Mater. 2009, 21, 2328–2333. [Google Scholar] [CrossRef]
- Chua, C.K.; Pumera, M. Chemical Reduction of Graphene Oxide: A Synthetic Chemistry Viewpoint. Chem. Soc. Rev. 2014, 43, 291–312. [Google Scholar] [CrossRef] [PubMed]
- De Silva, K.K.H.; Huang, H.-H.; Joshi, R.; Yoshimura, M. Restoration of the Graphitic Structure by Defect Repair during the Thermal Reduction of Graphene Oxide. Carbon 2020, 166, 74–90. [Google Scholar] [CrossRef]
- El-Hallag, I.S.; El-Nahass, M.N.; Youssry, S.M.; Kumar, R.; Abdel-Galeil, M.M.; Matsuda, A. Facile In-Situ Simultaneous Electrochemical Reduction and Deposition of Reduced Graphene Oxide Embedded Palladium Nanoparticles as High Performance Electrode Materials for Supercapacitor with Excellent Rate Capability. Electrochim. Acta 2019, 314, 124–134. [Google Scholar] [CrossRef]
- Xie, X.; Zhou, Y.; Huang, K. Advances in Microwave-Assisted Production of Reduced Graphene Oxide. Front. Chem. 2019, 7, 355. [Google Scholar] [CrossRef] [Green Version]
- Meng, H.-B.; Zhang, X.-F.; Pu, Y.-L.; Chen, X.-L.; Feng, J.-J.; Han, D.-M.; Wang, A.-J. One-Pot Solvothermal Synthesis of Reduced Graphene Oxide-Supported Uniform PtCo Nanocrystals for Efficient and Robust Electrocatalysis. J. Colloid Interface Sci. 2019, 543, 17–24. [Google Scholar] [CrossRef]
- Joshi, D.J.; Koduru, J.R.; Malek, N.I.; Hussain, C.M.; Kailasa, S.K. Surface Modifications and Analytical Applications of Graphene Oxide: A Review. TrAC Trends Anal. Chem. 2021, 144, 116448. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Li, Y. A Fundamental Comprehension and Recent Progress in Advanced Pt-Based ORR Nanocatalysts. SmartMat 2021, 2, 56–75. [Google Scholar] [CrossRef]
- Seselj, N.; Engelbrekt, C.; Zhang, J. Graphene-Supported Platinum Catalysts for Fuel Cells. Sci. Bull. 2015, 60, 864–876. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; Subhash, A.; Chemmenchery, N.; Kandasubramanian, B. Graphene and Graphene Oxide for Fuel Cell Technology. Ind. Eng. Chem. Res. 2018, 57, 9333–9350. [Google Scholar] [CrossRef]
- Marinoiu, A.; Carcadea, E.; Sacca, A.; Carbone, A.; Sisu, C.; Dogaru, A.; Raceanu, M.; Varlam, M. One-Step Synthesis of Graphene Supported Platinum Nanoparticles as Electrocatalyst for PEM Fuel Cells. Int. J. Hydrogen Energy 2021, 46, 12242–12253. [Google Scholar] [CrossRef]
- Navazani, S.; Shokuhfar, A.; Hassanisadi, M.; Di Carlo, A.; Nia, N.Y.; Agresti, A. A PdPt Decorated SnO2-RGO Nanohybrid for High-Performance Resistive Sensing of Methane. J. Taiwan Inst. Chem. Eng. 2019, 95, 438–451. [Google Scholar] [CrossRef]
- Kim, J.-H.; Zheng, Y.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Synthesis and Selective Sensing Properties of RGO/Metal-Coloaded SnO2 Nanofibers. J. Electron. Mater. 2017, 46, 3531–3541. [Google Scholar] [CrossRef]
- Bhangare, B.; Sinju, K.R.; Ramgir, N.S.; Gosavi, S.; Debnath, A.K. Noble Metal Sensitized SnO2/RGO Nanohybrids as Chemiresistive E-Nose for H2, H2S and NO2 Detection. Mater. Sci. Semicond. Process. 2022, 147, 106706. [Google Scholar] [CrossRef]
- Peng, R.; Chen, J.; Nie, X.; Li, D.; Si, P.; Feng, J.; Zhang, L.; Ci, L. Reduced Graphene Oxide Decorated Pt Activated SnO2 Nanoparticles for Enhancing Methanol Sensing Performance. J. Alloys Compd. 2018, 762, 8–15. [Google Scholar] [CrossRef]
- Wu, S.; Liu, J.; Ye, Y.; Tian, Z.; Zhu, X.; Liang, C. Oxygen Defects Induce Strongly Coupled Pt/Metal Oxides/RGO Nanocomposites for Methanol Oxidation Reaction. ACS Appl. Energy Mater. 2019, 2, 5577–5583. [Google Scholar] [CrossRef]
- Aryafar, A.; Ekrami-Kakhki, M.-S.; Naeimi, A. Enhanced Electrocatalytic Activity of Pt-SnO2 Nanoparticles Supported on Natural Bentonite-Functionalized Reduced Graphene Oxide-Extracted Chitosan from Shrimp Wastes for Methanol Electro-Oxidation. Sci. Rep. 2023, 13, 3597. [Google Scholar] [CrossRef]
- Xu, P.; Zhao, S.; Wang, T.; Ji, W.; Chen, Z.; Au, C.-T. A Pt/SnO 2/RGO Interface More Capable of Converting Ethanol to CO2 in Ethanol Electro-Oxidation: A Detailed Experimental/DFT Study. J. Mater. Chem. A 2022, 10, 10150–10161. [Google Scholar] [CrossRef]
- Wu, S.; Liu, J.; Liang, D.; Sun, H.; Ye, Y.; Tian, Z.; Liang, C. Photo-Excited in Situ Loading of Pt Clusters onto RGO Immobilized SnO2 with Excellent Catalytic Performance toward Methanol Oxidation. Nano Energy 2016, 26, 699–707. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, K.; Qiu, J.; Wu, J.; Shao, J.; Deng, Y.; Wu, Y.; Yan, L. Photoassisted Reduction Synthesis of Pt@ SnO2/Graphene Catalysts with Excellent Activities toward Methanol Oxidation. Energy Fuels 2021, 35, 12516–12526. [Google Scholar] [CrossRef]
- Yuan, X.; Yue, W.-B.; Zhang, J. Electrochemically exfoliated graphene as high-performance catalyst support to promote electrocatalytic oxidation of methanol on Pt catalysts. J. Cent. South Univ. 2020, 27, 2515–2529. [Google Scholar] [CrossRef]
- Hussain, S.; Kongi, N.; Erikson, H.; Rähn, M.; Merisalu, M.; Matisen, L.; Paiste, P.; Aruväli, J.; Sammelselg, V.; Estudillo-Wong, L.A. Platinum Nanoparticles Photo-Deposited on SnO2-C Composites: An Active and Durable Electrocatalyst for the Oxygen Reduction Reaction. Electrochim. Acta 2019, 316, 162–172. [Google Scholar] [CrossRef]
- Su, B.-J.; Wang, K.-W.; Tseng, C.-J.; Pao, C.-W.; Chen, J.-L.; Lu, K.-T.; Chen, J.-M. High Durability of Pt3Sn/Graphene Electrocatalysts toward the Oxygen Reduction Reaction Studied with in Situ QEXAFS. ACS Appl. Mater. Interfaces 2020, 12, 24710–24716. [Google Scholar] [CrossRef]
- Pushkareva, I.V.; Pushkarev, A.S.; Kalinichenko, V.N.; Chumakov, R.G.; Soloviev, M.A.; Liang, Y.; Millet, P.; Grigoriev, S.A. Reduced Graphene Oxide-Supported Pt-Based Catalysts for PEM Fuel Cells with Enhanced Activity and Stability. Catalysts 2021, 11, 256. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhu, E.; McLouth, T.; Chiu, C.-Y.; Huang, X.; Huang, Y. Stabilization of High-Performance Oxygen Reduction Reaction Pt Electrocatalyst Supported on Reduced Graphene Oxide/Carbon Black Composite. J. Am. Chem. Soc. 2012, 134, 12326–12329. [Google Scholar] [CrossRef]
- Grigoriev, S.A.; Fateev, V.N.; Pushkarev, A.S.; Pushkareva, I.V.; Ivanova, N.A.; Kalinichenko, V.N.; Yu, P.; Resnyakov, M.; Wei, X. Reduced Graphene Oxide and Its Modifications as Catalyst Supports and Catalyst Layer Modifiers for PEMFC. Materials 2018, 11, 1405. [Google Scholar] [CrossRef] [Green Version]
- Svetogorov, R.; Dorovatovskii, P.V.; Lazarenko, V.A. Belok/XSA Diffraction Beamline for Studying Crystalline Samples at Kurchatov Synchrotron Radiation Source. Cryst. Res. Technol. 2020, 55, 1900184. [Google Scholar] [CrossRef]
- Rehr, J.J.; Kas, J.J.; Vila, F.D.; Prange, M.P.; Jorissen, K. Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 2010, 12, 5503. [Google Scholar] [CrossRef]
- Newville, M. IFEFFIT: Interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 2001, 8, 322–324. [Google Scholar] [CrossRef]
- Mensharapov, R.M.; Spasov, D.D.; Ivanova, N.A.; Zasypkina, A.A.; Smirnov, S.A.; Grigoriev, S.A. Screening of Carbon-Supported Platinum Electrocatalysts Using Frumkin Adsorption Isotherms. Inorganics 2023, 11, 103. [Google Scholar] [CrossRef]
- Ivanova, N.A.; Spasov, D.D.; Zasypkina, A.A.; Alekseeva, O.K.; Kukueva, E.V.; Vorobyeva, E.A.; Kudinova, E.S.; Chumakov, R.G.; Millet, P.; Grigoriev, S.A. Comparison of the Performance and Durability of PEM Fuel Cells with Different Pt-Activated Microporous Layers. Int. J. Hydrogen Energy 2021, 46, 18093–18106. [Google Scholar] [CrossRef]
Element | Pt20/SnO210/c-RGO | Pt20/SnO210/t-RGO | Pt20/SnO210/C [6] |
---|---|---|---|
C | 64 | 67 | 67.5 |
Pt | 17 | 17 | 20 |
Sn | 9 | 8 | 8.5 |
O | 10 | 9 | 4 |
SnO2 | 11.5 | 9.8 | 10.7 |
Pt20/C | Pt20/SnO210/c-RGO | Pt20/SnO210/t-RGO | ||||
---|---|---|---|---|---|---|
Path | N | R, Å | N | R, Å | N | R, Å |
Pt-Pt(Pt foil) | 4.1 ± 1.2 | 2.75 | 8.9 ± 1.6 | 2.75 | 9.0 ± 1.9 | 2.76 |
Pt-O(PtO2) | 2.6 ± 0.3 | 2.02 | 1.0 ± 0.3 | 2.00 | 1.2 ± 0.4 | 2.01 |
Pt-Pt(PtO2) | 2.6 ± 0.3 | 3.13 | 1.0 ± 0.3 | 3.07 | 1.2 ± 0.4 | 3.07 |
Catalysts | Pt Foil, % | PtO2, % |
---|---|---|
Pt20/C | 52.5 | 47.5 |
Pt20/SnO210/c-RGO | 74.5 | 25.5 |
Pt20/SnO210/t-RGO | 72.5 | 27.5 |
Catalysts | ESA, m2 g−1 | ESA after AST, m2 g−1 |
---|---|---|
Pt20/C | 62 | 25 |
Pt20/SnO210/c-RGO | 85 | 52 |
Pt20/SnO210/t-RGO | 72 | 5 |
Pt20/SnO210/C [6] | 57 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spasov, D.D.; Ivanova, N.A.; Mensharapov, R.M.; Sinyakov, M.V.; Zasypkina, A.A.; Kukueva, E.V.; Trigub, A.L.; Kulikova, E.S.; Fateev, V.N. Study of the Cathode Pt-Electrocatalysts Based on Reduced Graphene Oxide with Pt-SnO2 Hetero-Clusters. Inorganics 2023, 11, 325. https://doi.org/10.3390/inorganics11080325
Spasov DD, Ivanova NA, Mensharapov RM, Sinyakov MV, Zasypkina AA, Kukueva EV, Trigub AL, Kulikova ES, Fateev VN. Study of the Cathode Pt-Electrocatalysts Based on Reduced Graphene Oxide with Pt-SnO2 Hetero-Clusters. Inorganics. 2023; 11(8):325. https://doi.org/10.3390/inorganics11080325
Chicago/Turabian StyleSpasov, Dmitry D., Nataliya A. Ivanova, Ruslan M. Mensharapov, Matvey V. Sinyakov, Adelina A. Zasypkina, Elena V. Kukueva, Alexander L. Trigub, Elizaveta S. Kulikova, and Vladimir N. Fateev. 2023. "Study of the Cathode Pt-Electrocatalysts Based on Reduced Graphene Oxide with Pt-SnO2 Hetero-Clusters" Inorganics 11, no. 8: 325. https://doi.org/10.3390/inorganics11080325
APA StyleSpasov, D. D., Ivanova, N. A., Mensharapov, R. M., Sinyakov, M. V., Zasypkina, A. A., Kukueva, E. V., Trigub, A. L., Kulikova, E. S., & Fateev, V. N. (2023). Study of the Cathode Pt-Electrocatalysts Based on Reduced Graphene Oxide with Pt-SnO2 Hetero-Clusters. Inorganics, 11(8), 325. https://doi.org/10.3390/inorganics11080325