Copper(II) and Platinum(II) Naproxenates: Insights on Synthesis, Characterization and Evaluation of Their Antiproliferative Activities
Abstract
:1. Introduction
2. Results
2.1. Infrared and Raman Spectroscopic Measurements
2.2. UV–Vis Spectroscopic Analysis and Kinetic Studies for the Cu–Nap Complex
2.3. TGA Measurements
2.4. ESI Mass Spectrometric Analysis
2.5. NMR Measurements
2.6. EPR Spectra Analysis
2.7. Evaluation of Biological Activities
3. Discussion
3.1. Structure, Composition, and Coordination Sphere
3.2. Molecular Modeling
3.3. Biological Activity Assays
4. Materials and Methods
4.1. Materials and Equipment
4.2. Synthesis of Cu(II) Complex with Naproxenate (Cu–Nap)
4.3. Synthesis of Pt(II) Complex with Naproxenate (Pt–Nap)
4.4. Antibacterial Activity Assays In Vitro
4.5. Antiproliferative Activity Assay over Tumor and Normal Cells
4.6. Computational Simulations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gomes, F.R.; Addis, Y.; Tekamo, I.; Cavaco, I.; Campos, D.L.; Pavan, F.R.; Gomes, C.S.B.; Brito, V.; Santos, A.O.; Domingues, F.; et al. Antimicrobial and antitumor activity of S-methyl dithiocarbazate Schiff base zinc(II) complexes. J. Inorg. Biochem. 2021, 216, 111331. [Google Scholar] [CrossRef]
- Manzano, C.M.; Bergamini, F.R.G.; Lustri, W.R.; Ruiz, A.L.T.G.; De Oliveira, E.C.S.; Ribeiro, M.A.; Formiga, A.L.B.; Corbi, P.P. Pt(II) and Pd(II) complexes with ibuprofen hydrazide: Characterization, theoretical calculations, antibacterial and antitumor assays and studies of interaction with CT-DNA. J. Mol. Struct. 2018, 1154, 469–479. [Google Scholar] [CrossRef]
- Štarha, P.; Trávníček, Z. Non-platinum complexes containing releasable biologically active ligands. Coord. Chem. Rev. 2019, 395, 130–145. [Google Scholar] [CrossRef]
- Quintanilha, M.M.; Schimitd, B.A.; Costa, A.M.F.; Nakahata, D.H.; Simoni, D.A.; Clavijo, J.C.T.; Pereira, D.H.; Massabni, A.C.; Lustri, W.R.; Corbi, P.P. A novel water-soluble platinum(II) complex with the amino acid deoxyalliin: Synthesis, crystal structure, theoretical studies and investigations about its antibacterial activity. J. Mol. Struct. 2021, 1236, 130316. [Google Scholar] [CrossRef]
- Silconi, Z.B.; Benazic, S.; Milovanovic, J.; Jurisevic, M.; Djordjevic, D.; Nikolic, M.; Mijajlovic, M.; Ratkovic, Z.; Radić, G.; Radisavljevic, S.; et al. DNA binding and antitumor activities of platinum(IV) and zinc(II) complexes with some S-alkyl derivatives of thiosalicylic acid. Transit. Metal Chem. 2018, 43, 719–729. [Google Scholar] [CrossRef]
- Ravera, M.; Zanellato, I.; Gabano, E.; Perin, E.; Rangone, B.; Coppola, M.; Osella, D. Antiproliferative activity of Pt(IV) conjugates containing the non-steroidal anti-inflammatory drugs (NSAIDs) ketoprofen and naproxen. Int. J. Mol. Sci. 2019, 20, 3074. [Google Scholar] [CrossRef] [Green Version]
- Quirante, J.; Ruiz, D.; Gonzalez, A.; López, C.; Cascante, M.; Cortés, R.; Messeguer, R.; Calvis, C.; Baldomà, L.; Pascual, A.; et al. Platinum(II) and palladium(II) complexes with (N,N′) and (C,N,N′)—Ligands derived from pyrazole as anticancer and antimalarial agents: Synthesis, characterization and in vitro activities. J. Inorg. Biochem. 2011, 105, 1720–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, C.L. Silver sulfadiazine—A new topical therapy for Pseudomonas in burns. Therapy of Pseudomonas infection in burns. Arch. Surg. 1968, 96, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.H.; Lin, S.; Zhong, H.; Ma, D. Metal complexes as potential modulators of inflammatory and autoimmune responses. Chem. Sci. 2015, 6, 871. [Google Scholar] [CrossRef] [PubMed]
- Xun-Zhong, Z.; An-Sheng, F.; Fu-Ran, Z.; Min-Cheng, L.; Yan-Zhi, L.; Meng, M.; Yu, L. Synthesis, Crystal Structures, and Antimicrobial and Antitumor Studies of Two Zinc(II) Complexes with Pyridine Thiazole Derivatives. Bioinorg. Chem. Appl. 2020, 2020, 8852470. [Google Scholar] [CrossRef]
- Frei, A.; Zuegg, J.; Elliott, A.G.; Baker, M.; Braese, S.; Brown, C.; Chen, F.; Dowson, C.G.; Dujardin, G.; Jung, N.; et al. Metal complexes as a promising source for new Antibiotics. Chem. Sci. 2020, 11, 2627–2639. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.A.; Fares, H.; Darawsheh, M.; Rappocciolo, E.; Akkawi, M.; Jaber, S. Synthesis, characterization and biological activity of new mixed ligand complexes of Zn(II) naproxen with nitrogen-based ligands. Eur. J. Med. Chem. 2015, 89, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.P.; Carneiro, Z.A.; Ribeiro, C.M.; Lima, M.F.; Paixão, D.A.; Pivatto, M.; Souza, M.V.N.; Teixeira, L.R.; Lopes, C.D.; Albuquerque, S.; et al. Three new platinum complexes containing fluoroquinolones and DMSO: Cytotoxicity and evaluation against drug-resistant tuberculosis. J. Inorg. Biochem. 2018, 183, 77–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juin, S.; Muhammad, N.; Sun, Y.; Tan, Y.; Yuan, H.; Song, D.; Guo, Z.; Wang, X. Multispecific Platinum(IV) Complex Deters Breast Cancer via Interposing Inflammation and Immunosuppression as an Inhibitor of COX-2 and PD-L1. Angew. Chem. Int. 2020, 59, 23313–23321. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Q.; Li, Z.; Liu, Z.; Zhao, Y.; Zhang, J.; Liu, M.; Wang, Z.; Li, D.; Han, J. Naproxen platinum(IV) hybrids inhibiting cycloxygenases and matrix metalloproteinases and causing DNA damage: Synthesis and biological evaluation as antitumor agents in vitro and in vivo. Dalton Trans. 2020, 49, 5192–5204. [Google Scholar] [CrossRef] [PubMed]
- Bhattacherjee, P.; Roy, M.; Naskar, A.; Tsai, H.; Ghosh, A.; Patra, N.; John, R.P. A trinuclear copper (II) complex of naproxen-appended salicylhydrazide: Synthesis, crystal structure, DNA binding and molecular docking study. Appl. Organomet. Chem. 2022, 36, 6459. [Google Scholar] [CrossRef]
- Abuhijleh, A.L. Mononuclear and Binuclear Copper (II) Complexes of the Antinflammatory Drug Ibuprofen: Synthesis, Characterization, and Catecholase-Mimetic Activity. J. Inorg. Biochem. 1994, 55, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Nunes, J.H.B.; Paiva, R.E.F.; Cuin, A.; Ferreira, A.M.C.; Lustri, W.R.; Corbi, P.P. Synthesis, spectroscopic characterization, crystallographic studies and antibacterial assays of new copper(II) complexes with sulfathiazole and nimesulide. J. Mol. Struc. 2016, 1112, 14–20. [Google Scholar] [CrossRef]
- Spector, D.; Krasnovskaya, O.; Pavlov, K.; Erofeev, A.; Gorelkin, P.; Beloglazkina, E.; Majouga, A. Pt(IV) Prodrugs with NSAIDs as Axial Ligands. Int. J. Mol. Sci. 2021, 22, 3817. [Google Scholar] [CrossRef] [PubMed]
- Tolan, D.A.; Abdel-Monem, Y.K.; El-Nagar, M.A. Anti-tumor platinum (IV) complexes bearing the anti-inflammatory drug naproxen in the axial position. Appl Organometal. Chem. 2019, 33, 4763. [Google Scholar] [CrossRef]
- Dimiza, F.; Papadopoulos, A.N.; Tangoulis, V.; Psycharis, V.; Raptopoulou, C.P.; Kessissoglou, D.P.; Psomas, G. Biological evaluation of cobalt(II) complexes with non-steroidal anti-inflammatory drug naproxen. J. Inorg. Biochem. 2012, 107, 54–64. [Google Scholar] [CrossRef]
- Shaheen, M.A.; Feng, S.; Anthony, M.; Tahir, M.N.; Hassan, M.; Seo, S.; Ahmad, S.; Igbal, M.; Saleem, M.; Lu, C. Metal-Based Scaffolds of Schiff Bases Derived from Naproxen: Synthesis, Antibacterial Activities, and Molecular Docking Studies. Molecules 2019, 24, 1237. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.; Wang, T.; Ge, X.; Yang, P.; Li, W.; Zhao, J.; Zhu, H. Synthesis, characterization and biological evaluation of naproxen Cu(II) complexes. J. Mol. Struct. 2019, 1178, 564–569. [Google Scholar] [CrossRef]
- Wang, T.; Tang, G.; Wan, W.; Wu, Y.; Tian, T.; Wang, J.; He, C.; Long, X.; Wang, J.; Ng, S.W. New homochiral ferroelectric supramolecular networks of complexes constructed by chiral S-naproxen ligand. CrystEngComm 2012, 14, 3802. [Google Scholar] [CrossRef]
- Hasan, M.S.; Das, N. A detailed in vitro study of naproxen metal complexes in quest of new therapeutic possibilities. Alex. J. Med. 2017, 53, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Trinchero, A.; Bonora, S.; Tinti, A.; Fini, G. Spectroscopic Behavior of Copper Complexes of Nonsteroidal Anti-Inflammatory Drugs. Biopolymers 2004, 74, 120–124. [Google Scholar] [CrossRef]
- Dimiza, F.; Perdih, F.; Tangoulis, V.; Turel, I.; Kessissoglou, D.P.; Psomas, G. Interaction of copper(II) with the non-steroidal anti-inflammatory drugs naproxen and diclofenac: Synthesis, structure, DNA- and albumin-binding. J. Inorg. Biochem. 2011, 105, 476–489. [Google Scholar] [CrossRef] [PubMed]
- Martins, D.J.; Hanif-Ur-Rehman; Rico, S.A.; Costa, I.M.; Santos, A.C.P.; Szszudlowski, R.G.; Silva, D.O. Interaction of chitosan beads with a copper-naproxen metallodrug. RSC Adv. 2015, 5, 90184. [Google Scholar] [CrossRef]
- Abuhijleh, A.L. Mononuclear copper (II) salicylate complexes with 1,2-dimethylimidazole and 2-methylimidazole: Synthesis, spectroscopic and crystal structure characterization and their superoxide scavenging activities. J. Mol. Struct. 2010, 980, 201–207. [Google Scholar] [CrossRef]
- Sharma, J.; Singla, A.K.; Dhawan, S. Zinc–naproxen complex: Synthesis, physicochemical and biological evaluation. Int. J. Pharm. 2003, 260, 217–227. [Google Scholar] [CrossRef]
- Srivastava, P.; Mishra, R.; Verma, M.; Sivakumar, S.; Patra, A.K. Cytotoxic ruthenium(II) polypyridyl complexes with naproxen as NSAID: Synthesis, biological interactions and antioxidant activity. Polyhedron 2019, 172, 132–140. [Google Scholar] [CrossRef]
- Dendrinou-Samara, C.; Tsotsou, G.; Ekateriniadou, L.V.; Kortsaris, A.H.; Raptopoulou, C.P.; Terzis, A.; Kyriakidis, D.A.; Kessissoglou, D.P. Anti-inflammatory drugs interacting with Zn(II), Cd(II) and Pt(II) metal ions. J. Inorg. Biochem. 1998, 71, 171–179. [Google Scholar] [CrossRef]
- Srivastava, P.; Singh, K.; Verma, M.; Sivakumar, S.; Patra, A.K. Photoactive platinum(II) complexes of nonsteroidal anti-inflammatory drug naproxen: Interaction with biological targets, antioxidant activity and cytotoxicity. Eur. J. Med. Chem. 2018, 144, 243–254. [Google Scholar] [CrossRef]
- Terracina, A.; McHugh, L.N.; Todaro, M.; Agnello, S.; Wheatley, P.S.; Gelardi, F.M.; Morris, R.E.; Buscarino, G. Multitechnique Analysis of the Hydration in Three Different Copper Paddle-Wheel Metal-Organic Frameworks. J. Phys. Chem. C 2019, 123, 28219–28232. [Google Scholar] [CrossRef]
- Price, J.H.; Williamson, A.N.; Schramm, R.F.; Wayland, B.B. Palladium(II) and platinum(II) alkyl sulfoxides complexes. Examples of sulfur-bonded, mixed sulfur- and oxygen-bonded, and totally oxygen-bonded complexes. Inorg. Chem. 1972, 11, 1280–1284. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Sun, J. Synthesis, characterization and cytotoxicity of amine/ethylamine platinum(II) complexes with carboxylates. Eur. J. Med. Chem. 2009, 44, 2758–2762. [Google Scholar] [CrossRef] [PubMed]
- Zayed, M.A.; Hawash, M.F.; El-Desawy, M.; El-Gizouli, A.M.M. Investigation of naproxen drug using mass spectrometry, thermal analyses and semi-empirical molecular orbital calculation. Arab. J. Chem. 2017, 10, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Mikuriya, M.; Chihiro, Y.; Tanabe, K.; Nukita, R.; Amabe, Y.; Yoshioka, D.; Mitsuhashi, R.; Tatehata, R.; Tanaka, H.; Handa, M.; et al. Copper(II) Carboxylates with 2,3,4-Trimethoxybenzoate and 2,4,6-Trimethoxybenzoate: Dinuclear Cu(II) Cluster and µ-Aqua-Bridged Cu(II) Chain Molecule. Magnetochemistry 2021, 7, 35. [Google Scholar] [CrossRef]
- Wang, Z.; Rodewald, K.; Medishetty, R.; Rieger, B.; Fischer, R.A. Control of Water Content for Enhancing the Quality of Copper Paddle-Wheel-Based Metal-Organic Framework Thin Films Grown by Layer-by-Layer Liquid-Phase Epitaxy. Cryst. Growth Des. 2018, 18, 7451–7459. [Google Scholar] [CrossRef]
- Abuhijleh, A.L.; Khalaf, J. Copper (II) complexes of the anti-inflammatory drug naproxen and 3-pyridylmethanol as auxiliary ligand. Characterization, superoxide dismutase and catecholase-mimetic activities. Eur. J. Med. Chem. 2010, 45, 3811–3817. [Google Scholar] [CrossRef] [PubMed]
- Vaz, R.H.; Silva, R.M.; Reibenspies, J.H.; Serra, O.A. Synthesis and X-ray Crystal Structure of a Stable cis-1,2-bis(diphenylphosphino)ethene Monodentate Thiolate Platinum Complex and TGA Studies of its Precursors. J. Braz. Chem. Soc. 2002, 13, 82–87. [Google Scholar] [CrossRef]
- Pereira, A.K.S.; Manzano, C.M.; Nakahata, D.H.; Clavijo, J.C.T.; Pereira, D.H.; Lustri, W.R.; Corbi, P.P. Synthesis, crystal structures, DFT studies, antibacterial assays and interaction assessments with biomolecules of new platinum(II) complexes with adamantane derivatives. New J. Chem. 2020, 44, 11546–11556. [Google Scholar] [CrossRef]
- Vincent, M.; Duval, R.E.; Hartemann, P.; Engels-Deutsch, M. Contact killing and antimicrobial properties of copper. J. Appl. Microbiol. 2018, 124, 1032–1046. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, J.H.; Ferraro, M.J. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2009, 49, 1749–1755. [Google Scholar] [CrossRef]
- Xue, Q.; Kang, R.; Klionsky, D.J.; Tang, D.; Liu, J.; Chen, X. Copper metabolism in cell death and autophagy. Autophagy 2023, 19, 2175–2195. [Google Scholar] [CrossRef] [PubMed]
- Han, M.İ.; Küçükgüzel, Ş.G. Anticancer and Antimicrobial Activities of Naproxen and Naproxen Derivatives. Mini Rev. Med. Chem. 2020, 20, 1300–1310. [Google Scholar] [CrossRef]
- Muller, P.Y.; Milton, M.N. The determination and interpretation of the therapeutic index in drug development. Nat. Rev. Drug Discov. 2012, 11, 751–761. [Google Scholar] [CrossRef]
- Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Res. 2006, 178, 42–55. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022. [Google Scholar]
- Sobreiro, M.A.; Della Torre, A.; de Araújo, M.E.M.B.; Canella, P.R.B.C.; de Carvalho, J.E.; Carvalho, P.O.; Ruiz, A.L.T.G. Enzymatic hydrolysis of rutin: Evaluation of kinetic parameters and anti-proliferative, mutagenic and anti-mutagenic effects. Life 2023, 13, 549. [Google Scholar] [CrossRef]
- Da Silva, G.G.; Della Torre, A.; Braga, L.E.O.; Bachiega, P.; Tinti, S.V.; de Carvalho, J.E.; Dionísio, A.P.; Ruiz, A.L.T.G. Yellow-colored extract from cashew byproduct—Nonclinical safety assessment. Regul. Toxicol Pharmacol. 2020, 115, 104699. [Google Scholar] [CrossRef]
- Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. JNCI J. Natl. Cancer Inst. 1991, 83, 757–766. [Google Scholar] [CrossRef]
- Frisch, J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian09, Revision D.1; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Dennington, R.; Keith, T.; Millam, J. Gauss View, Version 5; Shawnee Mission. (n.d.); Semichem Inc.: Shawnee, KS, USA, 2009. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Ditchfield, R.; Hehre, W.J.; People, J.A. Self-consistent molecular-orbital methods IX: An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-consistent molecular orbital methods XII: Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab-initio effective core potentials for molecular calculations: Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283. [Google Scholar] [CrossRef]
Temperature | gx | gy | gz | Ax | Ay | Az |
---|---|---|---|---|---|---|
Solid at room temperature | 1.9072 | 2.0430 | 2.5026 | 187 G | 17 G | 200 G |
Solid at 77 K | giso 2.1780 | Aiso 16 G | ||||
In DMSO solution at 77 K | g┴ = 2.0355 | g// = 2.3479 | A//= 137 G |
Compounds | MW | Mass | Inhibition Zone (mm) | |||
---|---|---|---|---|---|---|
S. aureus | B. cereus | E. coli | P. aeruginosa | |||
CuCl2·2H2O | 170.48 | 1.549 | 11.0 (±0.5) | 14.0 (±1.0) | 11.0 (±0.3) | NI |
NaNap | 252.24 | 1.088 | NI | NI | NI | NI |
cis[PtCl2(DMSO)2] | 422.25 | 1.353 | NI | NI | NI | NI |
Cu–Nap * | 1080.12 | 0.965 | NI | NI | NI | NI |
Pt–Nap | 809.85 | 1.042 | NI | NI | NI | NI |
Cell Line | NaNap | CuCl2·2H2O | Cu–Nap | [PtCl2(DMSO)2] | Pt–Nap | Doxorubicin |
---|---|---|---|---|---|---|
U251 | >150 | 15 * | 15 * | >150 | >150 | 0.05 ± 0.03 |
NCI/ADR-RES | >150 | 15 * | 44.3 ± 62.7 | >150 | >150 | 0.8 ± 0.3 |
786-0 | >150 | 15 * | >150 | >150 | >150 | >15 |
PC-3 | >150 | 15 * | 147.2 ± 0.1 | >150 | >150 | 0.25 ± 0.01 |
HT29 | >150 | 15 * | 127.6 ± 0.1 | >150 | >150 | 0.4 ± 0.1 |
HaCaT | >150 | 42.3 ± 14.2 | 86.0 ± 37.8 | >150 | >150 | 0.092 ± 0.006 |
Bond | Distance (Å) | Bond | Distance (Å) |
---|---|---|---|
Cu1-O1 | 2.295 | Cu2-O2 | 1.875 |
Cu1-O3 | 2.124 | Cu2-O4 | 1.888 |
Cu1-O6 | 2.134 | Cu2-O5 | 1.895 |
Cu1-O8 | 2.556 | Cu2-O7 | 1.872 |
Cu1-Ow1 | 2.158 | Cu2-Ow2 | 2.343 |
Cu1-Cu2 | 2.870 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.A.; Frajácomo, S.C.L.; Cruz, Á.B.; Buglio, K.E.; Affonso, D.D.; Portes, M.C.; Ruiz, A.L.T.G.; de Carvalho, J.E.; Lustri, W.R.; Pereira, D.H.; et al. Copper(II) and Platinum(II) Naproxenates: Insights on Synthesis, Characterization and Evaluation of Their Antiproliferative Activities. Inorganics 2023, 11, 331. https://doi.org/10.3390/inorganics11080331
Silva AA, Frajácomo SCL, Cruz ÁB, Buglio KE, Affonso DD, Portes MC, Ruiz ALTG, de Carvalho JE, Lustri WR, Pereira DH, et al. Copper(II) and Platinum(II) Naproxenates: Insights on Synthesis, Characterization and Evaluation of Their Antiproliferative Activities. Inorganics. 2023; 11(8):331. https://doi.org/10.3390/inorganics11080331
Chicago/Turabian StyleSilva, Amanda A., Silmara C. L. Frajácomo, Állefe B. Cruz, Kaio Eduardo Buglio, Daniele Daiane Affonso, Marcelo Cecconi Portes, Ana Lúcia T. G. Ruiz, João Ernesto de Carvalho, Wilton R. Lustri, Douglas H. Pereira, and et al. 2023. "Copper(II) and Platinum(II) Naproxenates: Insights on Synthesis, Characterization and Evaluation of Their Antiproliferative Activities" Inorganics 11, no. 8: 331. https://doi.org/10.3390/inorganics11080331
APA StyleSilva, A. A., Frajácomo, S. C. L., Cruz, Á. B., Buglio, K. E., Affonso, D. D., Portes, M. C., Ruiz, A. L. T. G., de Carvalho, J. E., Lustri, W. R., Pereira, D. H., da Costa Ferreira, A. M., & Corbi, P. P. (2023). Copper(II) and Platinum(II) Naproxenates: Insights on Synthesis, Characterization and Evaluation of Their Antiproliferative Activities. Inorganics, 11(8), 331. https://doi.org/10.3390/inorganics11080331