Synthesis of Polystyrene@TiO2 Core–Shell Particles and Their Photocatalytic Activity for the Decomposition of Methylene Blue
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of PS@TiO2 Core–Shell Particles and TiO2 particles
3.2. Characterization
3.3. Photocatalytic Activity in MB Decomposition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bastakoti, B.P.; Kuila, D.; Salomon, C.; Konarova, M.; Eguchi, M.; Na, J.; Yamauchi, Y. Metal–incorporated mesoporous oxides: Synthesis and applications. J. Hazard. Mater. 2021, 401, 123348. [Google Scholar] [CrossRef]
- Olatidoye, O.; Thomas, D.; Bastakoti, B.P. Facile synthesis of a mesoporous TiO2 film templated by a block copolymer for photocatalytic applications. New J. Chem. 2021, 45, 15761. [Google Scholar] [CrossRef]
- Mahanta, U.; Khandelwal, M.; Deshpande, A.S. TiO2@SiO2 nanoparticles for methylene blue removal and photocatalytic degradation under natural sunlight and low–power UV light. Appl. Sur. Sci. 2022, 576, 151745. [Google Scholar] [CrossRef]
- Priya, R.; Stanly, S.; Kavitharani, K.; Mohammad, F.; Sagadevan, S. Highly effective photocatalytic degradation of methylene blue using PrO2–MgO nanocomposites under UV light. Optik 2020, 206, 164318. [Google Scholar]
- Din, M.I.; Khalid, R.; Najeeb, J.; Hussain, Z. Fundamentals and photocatalysis of methylene blue dye using various nanocatalytic assemblies—A critical review. J. Clean. Prod. 2021, 298, 126567. [Google Scholar] [CrossRef]
- Kumar, S.; Ahlawat, W.; Bhanjana, G.; Heydarifard, S.; Nazhad, M.M.; Dilbaghi, N. Nanotechnology–based water treatment strategies. J. Nanosci. Nanotechnol. 2014, 14, 1838–1858. [Google Scholar] [CrossRef] [PubMed]
- Gaya, U.I.; Abdullah, A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C Photochem. Rev. 2008, 9, 1–12. [Google Scholar] [CrossRef]
- Che Ramli, Z.A.; Asim, N.; Isahak, W.N.R.W.; Emdadi, Z.; Ahmad–Ludin, N.; Yarmo, M.A.; Sopian, K. Photocatalytic degradation of methylene blue under UV light irradiation on prepared carbonaceous TiO2. Sci. World J. 2014, 2014, 13–15. [Google Scholar] [CrossRef]
- Shen, R.; Hao, L.; Chen, Q.; Zheng, Q.; Zhang, P.; Li, X. P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2PCocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Phys.-Chim. Sin. 2022, 38, 2110014. [Google Scholar]
- Lei, Z.; Ma, X.; Hu, X.; Fan, J.; Liu, E. Enhancement of photocatalytic H2-evolution kinetics through the dual cocatalyst activity of Ni2P-NiS-decorated g-C3N4 heterojunctions. Acta Phys.-Chim. Sin. 2022, 38, 2110049. [Google Scholar]
- Lu, N.; Jing, X.; Xu, Y.; Lu, W.; Liu, K.; Zhang, Z. Effective cascade modulation of charge-carrier kinetics in the well-designed multi-component nanofiber system for highly-efficient photocatalytic hydrogen generation. Acta Phys.-Chim. Sin. 2023, 39, 2207045. [Google Scholar]
- Lu, N.; Jing, X.; Zhang, J.; Zhang, P.; Qiao, Q.; Zhang, Z. Photo-assisted self-assembly synthesis of all 2D-layered heterojunction photocatalysts with long-range spatial separation of charge-carriers toward photocatalytic redox reactions. Chem. Eng. J. 2022, 431, 134001. [Google Scholar] [CrossRef]
- Yan, X.; Wang, B.; Ji, M.; Jiang, Q.; Liu, G.; Liu, P.; Yin, S.; Li, H.; Xia, J. In-situ synthesis of CQDs/BiOBr material via mechanical ball milling with enhanced photocatalytic performances. Chin. J. Struct. Chem. 2022, 41, 2208044–2208051. [Google Scholar]
- Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys. 2005, 44, 8269. [Google Scholar] [CrossRef]
- Bahnemann, D. Photocatalytic water treatment: Solar energy applications. Sol. Energy 2004, 77, 445–459. [Google Scholar] [CrossRef]
- Ertuş, E.B.; Vakifahmetoglu, C.; Öztür, A. Enhanced methylene blue removal efficiency of TiO2 embedded porous glass. J. Eur. Ceram. Soc. 2021, 41, 1530–1536. [Google Scholar] [CrossRef]
- Legrand-Buscema, C.; Malibert, C.; Bach, S. Elaboration and characterization of thin films of TiO2 prepared by sol–gel process. Thin Solid Films 2002, 418, 79–84. [Google Scholar] [CrossRef]
- Lopez, T.; Sanchez, E.; Bosch, P.; Meas, Y.; Gomez, R. FTIR and UV-Vis (diffuse reflectance) spectroscopic characterization of TiO2 sol-gel. Mater. Chem. Phys. 1992, 32, 141–152. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahneman, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Kasanen, J.; Salstela, J.; Suvanto, M.; Pakkanen, T.T. Photocatalytic degradation of methylene blue in water solution by multilayer TiO2 coating on HDPE. Appl. Sur. Sci. 2011, 258, 1738–1743. [Google Scholar] [CrossRef]
- Abd El-Rehim, H.A.; Hegazy, E.-S.A.; Diaa, D.A. Photo-catalytic degradation of Metanil Yellow dye using TiO2 immobilized into polyvinyl alcohol/acrylic acid microgels prepared by ionizing radiation. React. Funct. Polym. 2012, 72, 823–831. [Google Scholar] [CrossRef]
- Bertram, J.R.; Nee, M.J. A buoyant, microstructured polymer substrate for photocatalytic degradation applications. Catalysis 2018, 10, 482. [Google Scholar] [CrossRef]
- Shigh, S.; Mahalingam, H.; Kumar Singh, P. Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review. Appl. Catal. A 2013, 462–463, 178–195. [Google Scholar]
- Mahshid, S.; Askari, M.; Sasani Ghamsari, M.; Afshar, M.; Lahuti, S. Mixed-phase TiO2 nanoparticles preparation using sol–gel method. J. Alloys Compd. 2009, 478, 586–589. [Google Scholar] [CrossRef]
- Luo, M.-L.; Tang, W.; Zhao, J.-Q.; Pu, C.-S. Hydrophilic modification of poly(ether sulfone) used TiO2 nanoparticles by a sol–gel process. J. Mater. Proc. Technol. 2006, 172, 431–436. [Google Scholar] [CrossRef]
- Wang, X.-J.; Li, F.-T.; Hao, Y.-J.; Liu, S.-J.; Yang, M.-L. TiO2/SBA–15 composites prepared using H2TiO3 by hydrothermal method and its photocatalytic activity. Mater. Lett. 2013, 99, 38–41. [Google Scholar] [CrossRef]
- Jiang, C.; Lee, K.Y.; Parlett, C.M.A.; Bayazit, M.K.; Lau, C.C.; Ruan, Q.; Moniz, S.J.A.; Lee, A.F.; Tang, J. Size–controlled TiO2 nanoparticles on porous hosts for enhanced photocatalytic hydrogen production. Appl. Catal. A 2016, 521, 113–139. [Google Scholar] [CrossRef]
- Wu, F.; Liu, W.; Qiu, J.; Li, J.; Zhou, W.; Fang, Y.; Zhang, S.; Li, X. Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphene–like bamboo charcoal. Appl. Sur. Sci. 2015, 358, 425–435. [Google Scholar] [CrossRef]
- Deng, Z.; Chen, M.; Zhou, S.; You, B.; Wu, L. A Novel Method for the Fabrication of Monodisperse Hollow Silica Spheres. Langmuir 2006, 22, 6403–6407. [Google Scholar] [CrossRef]
- Song, X.; Gao, L. Fabrication of Hollow Hybrid Microspheres Coated with Silica/Titania via Sol−Gel Process and Enhanced Photocatalytic Activities. J. Phys. Chem. C 2007, 111, 8180–8187. [Google Scholar] [CrossRef]
- Leng, W.; Chen, M.; Zhou, S.; Wu, L. Capillary Force Induced Formation of Monodisperse Polystyrene/Silica Organic−Inorganic Hybrid Hollow Spheres. Langmuir 2010, 26, 14271–14275. [Google Scholar] [CrossRef]
- Toyama, N.; Ohki, S.; Tansho, M.; Shimizu, T.; Umegaki, T.; Kojima, Y. Influence of alcohol solvents on morphology of hollow silica–alumina composite spheres and their activity for hydrolytic dehydrogenation of ammonia borane. J. Sol-Gel Sci. Technol. 2017, 82, 92–100. [Google Scholar] [CrossRef]
- Rao, K.S.; El–Hami, K.; Kodaki, T.; Matsushige, K.; Makino, K. A novel method for synthesis of silica nanoparticles. J. Colloid Inter. Sci. 2005, 289, 125–131. [Google Scholar] [CrossRef]
- Markowska–Szczupak, A.; Wang, K.; Rokicka, P.; Endo, M.; Wei, Z.; Ohtani, B.; Morawski, A.W.; Kowalska, E. The effect of anatase and rutile crystallites isolated from titania P25 photocatalyst on growth of selected mould fungi. J. Photochem. Photobiol. 2015, 151, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Gao, J.; Xie, F. Anamorphous TiO2 sol sensitized with H2O2 with the enhancement of photocatalytic activity. J. Alloys Compd. 2010, 497, 420–427. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, F.; Yang, Y.; Xue, B.; Cui, J.; Guan, N. Facile Postsynthesis of Visible-Light-Sensitive Titanium Dioxide/Mesoporous SBA-15. Chem. Mater. 2007, 19, 3286–3293. [Google Scholar] [CrossRef]
- Liaoa, M.-H.; Hsu, C.-H.; Chen, D.-H. Preparation and properties of amorphous titania-coated zinc oxide nanoparticles. J. Solid State Chem. 2006, 179, 2020–2026. [Google Scholar] [CrossRef]
- Yang, J.-H.; Han, Y.-S.; Choy, J.-H. TiO2 thin-films on polymer substrates and their photocatalytic activity. Thin Solid Films 2006, 495, 266–271. [Google Scholar] [CrossRef]
- Metanawin, T.; Panutumrong, P.; Metanawin, S. Synthesis of polyurethane/TiO2 hybrid with high encapsulation efficiency using one-step miniemulsion polymerization for methylene blue degradation and its antibacterial applications. ChemistrySelect 2023, 8, e202204522. [Google Scholar] [CrossRef]
- Salehi Taleghani, M.; Salman Tabrizi, N.; Sangpour, P. Enhanced visible-light photocatalytic activity of titanium dioxide doped CNT-C aerogel. Chem. Eng. Res. Design 2022, 179, 162–174. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, L.; Wang, H.; Wang, W.; Zhang, L. TiO2/graphene porous composite and its photocatalytic degradation of methylene blue. Mater. Design 2016, 108, 632–639. [Google Scholar] [CrossRef]
- Li, X.; Lin, H.; Chen, X.; Niu, H.; Zhang, T.; Liu, J. Fabrication of TiO2/porous carbon nanofibers with superior visible photocatalytic activity. New J. Chem. 2015, 39, 7863–7872. [Google Scholar] [CrossRef]
- Kaur, K.; Singh, C.V. Amorphous TiO2 as a photocatalyst for hydrogen production: A DFT study of structural and electronic properties. Energy Procedia 2012, 29, 291–299. [Google Scholar] [CrossRef]
- Zhao, J.; Hidaka, H.; Takamura, A.; Pelizzetti, E.; Serpone, N. Photodegradation of surfactants. 11. zeta.–Potential measurements in the photocatalytic oxidation of surfactants in aqueous titania dispersions. Langmuir 1993, 9, 1646–1650. [Google Scholar] [CrossRef]
- Imhof, A. Preparation and characterization of titania–coated polystyrene spheres and hollow titania shells. Langmuir 2001, 17, 3579–3585. [Google Scholar] [CrossRef]
- Jang, I.B.; Sung, J.H.; Choi, H.J.; Chin, I. Synthesis and characterization of titania coated polystyrene core–shell spheres for electronic ink. Synth. Met. 2005, 152, 9–12. [Google Scholar] [CrossRef]
- Toyama, N.; Umegaki, T.; Kojima, Y. Fabrication of hollow silica–alumina composite spheres and their activity for hydrolytic dehydrogenation of ammonia borane. Int. J. Hydrogen Energy 2014, 39, 17136–17143. [Google Scholar] [CrossRef]
Samples | Light Source | MB Concentration | Dosage/mg | Degradation Rate/% min−1 | References |
---|---|---|---|---|---|
PS@TiO2 core–shell particles | UV lamp (150 mW cm−2) | 7 ppm (1.9 × 10−5 M) | 10 | 3.67 | This study |
TiO2 firm/ABS | Xenon lamp (300 W) | 1.0 × 10−6 M | No data (3 × 3 cm) | 0.67 | 38 |
PU/aTiO2 Hybrid (10 wt%) | UV-A irradiation | 10 ppm | No data | 3.19 | 39 |
CAT-1 *1 | Xenon lamp (300 W) | 50 ppm | 20 | 0.29 | 40 |
TiO2/graphene porous composite | Xenon lamp (50 W) | 10 ppm | 1 | 0.64 | 41 |
TiO2/porous carbon nanofibers | Xenon lamp (800 W) | 10 ppm | 50 | 1.88 | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toyama, N.; Takahashi, T.; Terui, N.; Furukawa, S. Synthesis of Polystyrene@TiO2 Core–Shell Particles and Their Photocatalytic Activity for the Decomposition of Methylene Blue. Inorganics 2023, 11, 343. https://doi.org/10.3390/inorganics11080343
Toyama N, Takahashi T, Terui N, Furukawa S. Synthesis of Polystyrene@TiO2 Core–Shell Particles and Their Photocatalytic Activity for the Decomposition of Methylene Blue. Inorganics. 2023; 11(8):343. https://doi.org/10.3390/inorganics11080343
Chicago/Turabian StyleToyama, Naoki, Tatsuya Takahashi, Norifumi Terui, and Shigeki Furukawa. 2023. "Synthesis of Polystyrene@TiO2 Core–Shell Particles and Their Photocatalytic Activity for the Decomposition of Methylene Blue" Inorganics 11, no. 8: 343. https://doi.org/10.3390/inorganics11080343
APA StyleToyama, N., Takahashi, T., Terui, N., & Furukawa, S. (2023). Synthesis of Polystyrene@TiO2 Core–Shell Particles and Their Photocatalytic Activity for the Decomposition of Methylene Blue. Inorganics, 11(8), 343. https://doi.org/10.3390/inorganics11080343