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Abstract: The molecular and supramolecular structures of some M(II) complexes (M = Co, Mn,
Cu, Ni, Zn) with a hydrazone-s-triazine ligand (BMPyTr) were discussed based on single crystal
X-ray diffraction (SCXRD), Hirshfeld and DFT analyses. A new Co(II) complex of the same ligand
was synthesized and its structure was confirmed to be [Co(BMPyTr)Cl2]·H2O based on FTIR and
UV–Vis spectra, elemental analysis and SCXRD. The geometry around Co(II) was a distorted square
pyramidal configuration (τ5 = 0.4), where Co(II) ion is coordinated to one NNN-tridentate ligand
(BMPyTr) and two Cl- ions. A Hirshfeld analysis indicated all potential contacts within the crystal
structure, where the percentages of O· · ·H, N· · ·H, C· · ·H, and H· · ·H contacts in one unit were
11.2, 9.3, 11.4, and 45.9%, respectively, while the respective values for the other complex unit were
10.3, 8.8, 10.6, and 48.0%. According to DFT calculations, the presence of strongly coordinating
anions, such as Cl-, in addition to the large metal ion size, were found to be the main reasons for
the small M-BMPyTr interaction energies in the cases of [Mn(BMPyTr)Cl2] (260.79 kcal/mol) and
[Co(BMPyTr)Cl2]·H2O (307.46 kcal/mol) complexes. Interestingly, the Co(II) complex had potential
activity against both Gram-positive (S. aureus and B. subtilis) and Gram-negative (E. coli and P. vulgaris)
bacterial strains with inhibition zone diameters of 13, 15, 16, and 18 mm, respectively. Also, the new
[Co(BMPyTr)Cl2]·H2O (IC50 = 131.2 ± 6.8 µM) complex had slightly better cytotoxic activity against
HCT-116 cell line compared to BMPyTr (145.3 ± 7.1 µM).

Keywords: hydrazone-s-triazine; penta-coordinated Co(II) complex; Hirshfeld; DFT; cytotoxic
activity; antimicrobial

1. Introduction

Heterocyclic rings play a crucial role as primary components in numerous compounds
found in both natural and synthetic drugs [1,2]. Consequently, the scientific investigation
of novel heterocyclic molecular systems has garnered significant attention from chemists
due to their diverse applications [3–5]. Specifically, s-triazine heterocycles have shown
interesting potential as energetic explosives and organic corrosion inhibitors [6]. Com-
pounds containing both pyrazole and s-triazine rings have demonstrated minimal toxicity
in terms of growth stimulation [7,8]. Furthermore, s-triazine derivatives displayed various
anticancer activities, depending on the specific groups attached to the s-triazine core [8].
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Additionally, s-triazines have a weak ligand field and can form stable high-spin metal com-
plexes, leading to extended molecular and supramolecular architectures [9–11]. Moreover,
s-triazine and its derivatives offer a diverse range of pharmacological benefits, including
antibacterial, antiviral, anti-malarial, anti-inflammatory, anticancer, anti-leukemia, and
anti-HIV activities, etc. [12–16]. Additionally, hydrazones with an azomethine -NHN=CH-
group are a significant class of molecules that produce new compounds with a range
of biological activities [17]. Also, they can be applied in dyes, nanoparticles, corrosion
inhibition, the analysis of metal ions, and water treatment [18]. Furthermore, morpholine
ring is already known as an active moiety in medicinal chemistry, either licensed or under
investigation due to its beneficial features in biological and metabolic processes [19].

On the other hand, cobalt is a physiologically relevant metal. It plays a crucial role
in numerous biological processes and exhibits significant biochemical activity as an es-
sential trace metal [20]. Cobalt exists in two prevalent oxidation states, which are Co(II)
and Co(III). The properties of the ligands are pivotal in determining the ultimate oxida-
tion state of cobalt in its complexes. Recently, there has been a surge in the synthesis of
cobalt complexes using multifunctional ligands [21–24]. Throughout the centuries, many
cobalt complexes have been synthesized using multifunction ligands, and they have been
employed to inhibit the growth of harmful microorganisms [21–26]. This has led to the
exploration and development of many new cobalt complexes, holding promise in the
design and production of antibacterial agents to combat antibiotic-resistant microorgan-
isms [27–29]. Cobalt complexes find extensive applications across diverse fields of human
interest, encompassing antibacterial, antiviral, antifungal, antioxidant, anti-inflammatory,
antischaemic, antiparasitic, antithrombolytic, and antitumor agents [27–38]. This broad
range of applications is attributed to the biological significance of cobalt and its synergistic
activity with other drugs. Moreover, s-triazine ligands, in combination with cobalt, have
been investigated for their potential as catalysts in chemical synthesis transformations and
medical applications [2,39–47].

As a continuation of the interesting structural and the promising biological properties
of s-triazine derivatives and their metal complexes, we presented here the synthesis and
characterization of a new heteroleptic cobalt(II) complex with 2,4-bis(morpholin-4-yl)-6-[(E)-
2-[1-(pyridin-2-yl)ethylidene]hydrazin-1-yl]-1,3,5-triazine as the ligand (BMPyTr; Figure 1).
Several characterization tools were utilized to study and confirm its structure, such as FTIR
and UV–Vis spectroscopic techniques, as well as elemental analysis and single crystal X-ray
diffraction (SCXRD). A comparative study for the molecular and supramolecular structure
aspects, as well as the biological activity (antibacterial and anticancer) of the new complex
with the structurally related complexes [48–50], is also presented. Theoretical DFT studies
on the M-BMPyTr affinity were performed to show the different factors which affect the
interaction energy between the ligand BMPyTr and different metal ions.
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2. Results and Discussion
2.1. Synthesis and Characterization

The reaction of BMPyTr and CoCl2·6H2O in ethanol afforded a new heteroleptic
complex [Co(BMPyTr)Cl2]·H2O (Scheme 1). The structure of the complex was confirmed
using elemental analysis, FTIR spectroscopy, and single crystal X-ray diffraction (SCXRD).
The FTIR spectrum of the Co(II) complex showed distinct spectral bands at 1600 and
1569 cm−1 due to the ν(C=N) vibrations (Figure S1). The ν(C=N) mode is observed in
the free ligand at 1584 cm−1 (Figure S2). The significant shifts in the ν(C=N) mode is a
consequence of the complexation between Co(II) and BMPyTr via the triazine, azomethine,
and pyridine nitrogen atoms. The ν(C=C) vibration was detected at 1500 and 1492 cm−1

in the FTIR spectrum of [Co(BMPyTr)Cl2]·H2O and BMPyTr, respectively, showing little
variation compared to the ν(C=N) mode.
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Scheme 1. Synthesis of [Co(BMPyTr)Cl2]·H2O.

The UV–Vis spectra of the Co(II) complex and its free ligand BMPyTr (2.5 × 10−4 M)
were measured in DMSO and ethanol as solvents (Figure 2). The spectral band observed in
ethanol at 305 nm for BMPyTr could be assigned to the n → π* transition. This band under-
goes a bathochromic shift to 325 nm in the case of the Co(II) complex. The corresponding
bands in DMSO are detected at 305 and 312 nm, respectively. In addition, the spectral
bands observed at 230 and 235 nm for BMPyTr and [Co(BMPyTr)Cl2]·H2O in ethanol could
be assigned to the π → π* transition. A new broad band appeared in the Co(II) complex at
415 and 405 nm in DMSO and ethanol, respectively. This band could be assigned to the d-d
transition of the high-spin Co(II) complex [51].
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2.2. X-ray Structure Description

The structure of the studied complex was confirmed using X-ray crystallography
to be [Co(BMPyTr)Cl2]·H2O (1; Figure 3). It crystallized in the triclinic crystal system
and P-1 space group. The unit cell parameters were a = 8.50463(10), b = 11.85531(14),
c = 22.1524(2) Å, α = 84.2782(9)◦, β = 87.3524(9)◦, and γ = 89.2680(10)◦. The number of
molecules in the unit cell was four, while the unit cell volume and crystal density were
2219.94(4) Å3 and 1.593 mg/m3, respectively (Table 1).
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Table 1. Crystal data for [Co(BMPyTr)Cl2]·H2O.

[Co(BMPyTr)Cl2]·H2O

CCDC 2,340,998
empirical formula C18H26Cl2CoN8O3

fw 532.30
temp (K) 120(2)

λ (Å) 1.54184
cryst syst Triclinic

space group P 1
a (Å) 8.50463(10)
b (Å) 11.85531(14)
c (Å) 22.1524(2)

α (deg) 84.2782(9)
β (deg) 87.3524(9)
γ (deg) 89.2680(10)
V (Å3) 2219.94(4)

Z 4
ρcalc (Mg/m3) 1.593

µ (Mo Kα) (mm−1) 8.615
No. reflns. 89,427

Unique reflns. 9559
Completeness to θ = 67.684◦ 100%

GOOF (F2) 1.093
Rint 0.0304

R1
a (I ≥ 2σ) 0.0270

wR2
b (I ≥ 2σ) 0.0724

a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = {Σ[w(Fo
2 − Fc

2)2]/Σ[w(Fo
2)2]}1/2.

The structure of this complex showed two [Co(BMPyTr)Cl2]·H2O molecules as an
asymmetric formula, which were slightly different in their geometric parameters (Table 2).
In this neutral complex, the Co(II) was penta-coordinated with two chloride ions and three
nitrogen atoms from the BMPyTr ligand. There were three different Co-N interactions
where the Co-N(hydrazone) bonds were the shortest. The respective Co1-N2 and Co1B-N2B
distances were determined to be 2.0360(13) and 2.0301(12) Å, respectively. The longest
Co-N interactions were related to the Co-N(s-triazine) where the corresponding Co1-N4 and
Co1B-N4B distances were 2.1762(13) and 2.1919(12) Å, respectively. Hence, the order of
the Co-N distances was Co-N(hydrazone) < Co-N(pyridine) < Co-N(s-triazine). In the structurally
related [Mn(BMPyTr)Cl2] (2) and [Cu(BMPyTr)Cl2]·H2O (3) complexes, the order of the
metal to nitrogen distances was the same [51]. For example, the Mn-N(hydrazone), Mn-
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N(pyridine), and Mn-N(s-triazine) distances were 2.183(1), 2.264(2), and 2.428(1) Å, respectively.
The bite angles of BMPyTr in 1 were 75.55(5)◦ (N2-Co1-N1) and 77.91(5)◦ (N2-Co1-N4)
for one unit, and 75.82(5)◦ (N2B-Co1B-N1B) and 77.71(5)◦ (N2B-Co1B-N4B) for the other
unit. In addition, there were two Co-Cl coordination interactions. In one unit, the Co1-Cl2
and Co1-Cl1 distances were 2.2909(4) and 2.3414(4) Å, respectively, while for the other
unit, the Co1B-Cl2B and Co1B-Cl1B distances were 2.2840(4) and 2.3221(4) Å, respectively.
The Cl-Co-Cl angles were 120.068(17) (Cl2-Co1-Cl1) and 122.675(17)◦ (Cl2B-Co1B-Cl1B).
Therefore, the structure of the CoN3Cl2 coordination sphere could be described as a highly
distorted penta-coordinated system. The Addison τ5 parameter was calculated to be 0.35
for one unit and 0.37 for the other unit, with letter B in atom numbering. As a result,
the structure could be described as a highly distorted penta-coordinated system which is
close to square pyramidal [52]. These results for [Co(BMPyTr)Cl2]·H2O (1) are found to
be in good agreement with those for the [Mn(BMPyTr)Cl2] (2) and [Cu(BMPyTr)Cl2]·H2O
(3) complexes, where the τ5 values were calculated to be 0.33 and 0.24, respectively [48].
Hence, the square pyramidal configuration showed the lowest distortion in case of 3. It is
worth noting that the X-ray structure of 1 indicated the presence of one hydration water
molecule in the outer sphere, which did not participate in the coordination with Co(II) but
significantly contributed in the supramolecular structure of complex 1.

Table 2. Selected bond lengths (Å) and angles (◦) for [Co(BMPyTr)Cl2]·H2O.

Bond Distances

Co(1)-N(2) 2.0360(13) Co(1B)-N(2B) 2.0301(12)
Co(1)-N(1) 2.1375(13) Co(1B)-N(1B) 2.1459(13)
Co(1)-N(4) 2.1762(13) Co(1B)-N(4B) 2.1919(12)
Co(1)-Cl(2) 2.2909(4) Co(1B)-Cl(2B) 2.2840(4)
Co(1)-Cl(1) 2.3414(4) Co(1B)-Cl(1B) 2.3221(4)

Bond angles

N(2)-Co(1)-N(1) 75.55(5) N(2B)-Co(1B)-N(1B) 75.82(5)
N(2)-Co(1)-N(4) 77.91(5) N(2B)-Co(1B)-N(4B) 77.71(5)
N(1)-Co(1)-N(4) 153.21(5) N(1B)-Co(1B)-N(4B) 152.95(5)
N(2)-Co(1)-Cl(2) 131.14(4) N(2B)-Co(1B)-Cl(2B) 131.95(4)
N(1)-Co(1)-Cl(2) 90.03(4) N(1B)-Co(1B)-Cl(2B) 90.80(4)
N(4)-Co(1)-Cl(2) 104.93(4) N(4B)-Co(1B)-Cl(2B) 102.87(3)
N(2)-Co(1)-Cl(1) 107.06(4) N(2B)-Co(1B)-Cl(1B) 104.10(4)
N(1)-Co(1)-Cl(1) 91.95(4) N(1B)-Co(1B)-Cl(1B) 92.45(4)
N(4)-Co(1)-Cl(1) 99.20(3) N(4B)-Co(1B)-Cl(1B) 99.31(4)
Cl(2)-Co(1)-Cl(1) 120.07(2) Cl(2B)-Co(1B)-Cl(1B) 122.68(2)

The supramolecular structure of 1 is controlled by two types of non-covalent interactions,
which are the N-H· · ·O and O-H· · ·Cl hydrogen bonds (Table 3). The presentation of these
hydrogen bond contacts is shown in Figure 4A. There are two significant N-H· · ·O hydrogen
bonds, which occurred between the N-H of the hydrazone linkage as a hydrogen-bond donor
and the freely un-coordinated O-atom from the crystal water molecule as hydrogen-bond
acceptor. The hydrogen to acceptor distances were 1.92(2) and 2.00(2) Å for N3-H3· · ·O3
and N3B-H3B· · ·O4, respectively, while the donor to acceptor distances were 2.7737(19)
and 2.8074(18) Å, respectively. Furthermore, there were four O-H· · ·Cl interactions, which
occurred between the crystal water hydrogen atoms as hydrogen-bond donor and the coor-
dinated chloride anion as hydrogen-bond acceptor. In this case, the hydrogen to acceptor
(Cl) distances ranged from 2.29(3) Å (O3-H3C· · ·Cl2) to 2.45(3) Å (O4-H4C· · ·Cl1B), while
the donor (O) to acceptor (Cl) distances ranged from 3.1605(15) to 3.2639(14) Å, respectively.
The resulting hydrogen packing scheme is shown in Figure 4B. Hence, the supramolecular
structure of complex 1 could be described as a hydrogen bonding network extended along
the a-direction.
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Table 3. Hydrogen bonds for [Co(BMPyTr)Cl2]·H2O (Å and ◦).

D-H· · ·A d(D-H) d(H· · ·A) d(D· · ·A) <(DHA) Symmetry Codes

N(3)-H(3)· · ·O(3) 0.85(2) 1.92(2) 2.7737(19) 175(2)
N(3B)-H(3B)· · ·O(4) 0.81(2) 2.00(2) 2.8074(18) 173(2)
O(3)-H(3D)· · ·Cl(1) 0.83(3) 2.43(3) 3.2414(15) 167(3) −x − 1, −y + 1, −z + 2
O(3)-H(3C)· · ·Cl(2) 0.88(3) 2.29(3) 3.1605(15) 176(3) −x, −y + 1, −z + 2

O(4)-H(4C)· · ·Cl(1B) 0.83(3) 2.45(3) 3.2639(14) 169(3) −x, −y + 1, −z + 1
O(4)-H(4A)· · ·Cl(2B) 0.87(3) 2.31(3) 3.1865(14) 177(3) −x + 1, −y + 1, −z + 1
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[Co(BMPyTr)Cl2]·H2O.

Interestingly, the X-ray structure analysis indicated the presence of some anion-π interactions
occurred between the coordinated chloride anion and the pyridine π-system. There were three
Cl· · ·C(pyridine) interactions which were different in their distances (Table 4). In one unit, the
Cl2· · ·C1(pyridine) distance was 3.420(2) Å, while for the other unit, the Cl2B· · ·C1B(pyridine) and
Cl2B· · ·C2B(pyridine) distances were 3.444(2) and 3.437(2) Å, respectively (Figure 5). In complex 3,
there was one short Cl· · ·C contact (3.427(2) Å) which was detected, while no anion-π interactions
were observed in case of 2.

Table 4. Anion-π stacking contacts for 1.

Contact Length (Å) Symm. Code

Cl(2)· · ·C(1) 3.420(2) −x, −y, 2 − z
Cl(2B)· · ·C(1B) 3.444(2) 1 − x, 2 − y, 1 − z
Cl(2B)· · ·C(2B) 3.437(2) 1 − x, 2 − y, 1 − z
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Figure 5. The anion-π stacking interactions that occurred in 1.

2.3. Hirshfeld Analysis

The stability of the crystal structure results from various forces that maintain the molecules in
a specific arrangement. Hirshfeld calculations could provide a complete picture about the forces
which are responsible for the supramolecular structure of organic and inorganic compounds [53–61].
The dnorm maps for complex 1 are shown in Figure 6. The curvedness and shape index surfaces
are shown in Figure S3.
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Figure 6. Full dnorm map for [Co(BMPyTr)Cl2]·H2O. The most important interactions are (A) O· · ·H,
(B) N· · ·H, (C) Cl· · ·H, (D) C· · ·C, (E) C· · ·H, and (F) H· · ·H.

With the aid of Hirshfeld calculations, all potential contacts within the crystal structure
are collected in Table S1. The results of the quantitative analysis for the different inter-
molecular interactions in complex 1 are shown in Figure 7. For one unit, the percentages of
Cl· · ·H, O· · ·H, N· · ·H, C· · ·H, and H· · ·H are 16.7, 11.2, 9.3, 11.4, and 45.9%, respectively.
The respective values for the unit with letter B in the atom numbering are 16.8, 10.3, 8.8,
10.6, and 48.0%, respectively. In case of complex 2, their percentages are 20.9, 8.9, 8.1, 7.1,
and 45.8%, respectively [48].
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The fingerprint plots shown in Figure 8 and Figure S4 revealed many strong intermolec-
ular contacts. The dnorm map provides a summary of all short contacts, represented by red
and white areas, signifying interaction distances shorter or equal to the van der Waals radii
sum of the interacting atoms, respectively. Conversely, contacts longer than the van der
Waals radii sum of the interacting atoms appear as blue-colored regions. The dnorm map
indicated the importance of Cl· · ·H, O· · ·H, N· · ·H, C· · ·C, C· · ·H, and H· · ·H interactions
in the molecular packing of 1. The shortest Cl· · ·H, O· · ·H, N· · ·H, and C· · ·H contacts are
Cl2· · ·H3C (2.180 Å), O3· · ·H3 (1.768 Å), N7· · ·H16C (2.534 Å), and C9· · ·H16C (2.608 Å),
respectively. For C· · ·C interactions, the C1· · ·C2 (3.329 Å) and C1B· · ·C2B (3.319 Å) are the
shortest (Table S1). In addition, there are short H· · ·H interactions which are the H3A· · ·H13C
(2.147 Å) and H14A· · ·H18C (2.154 Å). In 2, the shortest Cl· · ·H (2.532 Å) and O· · ·H (2.477 Å)
contacts are generally longer than those detected in 1 [48].

Inorganics 2024, 12, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 8. The decomposed dnorm maps and fingerprint plots for significant contacts in 1. 

2.4. Enrichment Ratio 
The possibility of each atom pair in the crystal to make intermolecular interaction 

was investigated by calculating the enrichment ratio (EXY) [62]. The results of the enrich-
ment ratio are depicted in Table 5. Since the enrichment ratios for the Cl⋯H, O⋯H, N⋯C, 
and H⋯C are greater than the unity, each of these atom pairs have a high probability for 
carrying out intermolecular interactions in the crystal structure. The rest of the other con-
tacts with an enrichment ratio less than the unity have a low possibility of occurring. 

Table 5. Enrichment ratio calculations for 1. 

Contact %C a %R b EXY Atom %S c 

Cl⋯H 16.7 11.9 1.4 H 70.2 
O⋯C 0.8 1.0 0.8 O 6.05 
O⋯H 11.2 8.5 1.3 N 7.1 
N⋯C 1.8 1.1 1.6 C 8 
N⋯H 9.3 10.0 0.9 Cl 8.45 
H⋯C 11.4 11.2 1.0   
H⋯H 45.9 49.3 0.9   

Figure 8. The decomposed dnorm maps and fingerprint plots for significant contacts in 1.

2.4. Enrichment Ratio

The possibility of each atom pair in the crystal to make intermolecular interaction was
investigated by calculating the enrichment ratio (EXY) [62]. The results of the enrichment
ratio are depicted in Table 5. Since the enrichment ratios for the Cl· · ·H, O· · ·H, N· · ·C,
and H· · ·C are greater than the unity, each of these atom pairs have a high probability
for carrying out intermolecular interactions in the crystal structure. The rest of the other
contacts with an enrichment ratio less than the unity have a low possibility of occurring.
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Table 5. Enrichment ratio calculations for 1.

Contact %C a %R b EXY Atom %S c

Cl· · ·H 16.7 11.9 1.4 H 70.2
O· · ·C 0.8 1.0 0.8 O 6.05
O· · ·H 11.2 8.5 1.3 N 7.1
N· · ·C 1.8 1.1 1.6 C 8
N· · ·H 9.3 10.0 0.9 Cl 8.45
H· · ·C 11.4 11.2 1.0
H· · ·H 45.9 49.3 0.9
Cl· · ·N 0.2 1.2 0.2

a %contact b ratio of random contact c %contribution for a chemical species X.

2.5. Energy Framework Analysis

The energy framework is crucial for comprehending the various energy types that play
a role in the supramolecular assembly of molecules within crystals [63–74]. Table S2 pro-
vides an energy breakdown, including the contributions of different components (Eele, Epol,
Edis, Erep, and Etot). The results provide the total interaction energy (Etot) of −594.4 kJ/mol
involving the electrostatic (−233.351 kJ/mol), polarization (−152.334 kJ/mol), dispersion
(−427.525 kJ/mol), and repulsion (218.646 kJ/mol). It is obvious that, the Cl· · ·H in-
teraction between the central molecule and the −x, −y, −z symmetry water molecules
(turquoise and magenta) are the strongest among near neighbors, with a total energy of
−125.2 kJ/mol for each (Figure S5). The total energy diagram showed a strong resemblance
to the dispersion energy frameworks (Figure 9), suggesting their significant contribution to
the total forces in crystal packing.
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2.6. Comparative DFT Study

Density functional theory (DFT) calculations were conducted utilizing the X-ray
structure coordinates for energy computations of the [M-BMPyTr]2+ systems. A compara-
tive analysis of the ligand’s affinity towards various divalent metal ions was performed
for complexes 1–3, [Zn(BMPyTr)(NO3)2]; 4, [Zn(BMPyTr)(NCS)2]; 5 [Cu(BMPyTr)(NO3)2];
6, [Ni(BMPyTr)(H2O)3](NO3)2·3H2O; 7, and [Ni(BMPyTr)(H2O)3](NO3)2·H2O; 8 [48–50].
Then, the computed energies were used to calculate the M-BMPyTr interaction energies
as described in Table 6. The Co(II)-BMPyTr interaction energy (Eint) was computed to be
307.46 kcal/mol (average value). On the other hand, the M-BMPyTr interaction energies
were calculated to be 260.79, 366.09, −322.23, −314.89, 364.27, −356.37, and 361.57 kcal/mol
for complexes 2–8, respectively. Since, all the studied systems comprised a divalent metal
ion, there are two main factors affecting the M-BMPyTr interaction energies, which are
the metal ion size and the nature of other coordinating ligand. The small-size metal ion
has higher positive charge density, leading to higher interaction energy with BMPyTr. In
contrast, strongly coordinating anions such as Cl¯ significantly reduce the positive charge
density of the metal ion compared to either the weakly coordinating anion such as NO3¯
and SCN- or a neutral ligand such as H2O. In this regard, the least M-BMPyTr interaction
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energy was detected in case of complexes 1 and 2. The order of the M-BMPyTr interaction
energy is predicted to be 2 < 1 < 5 < 4 < 7 < 8 < 6 < 3.

Table 6. The calculated M(II)− BMPyTr interaction energies using ωB97XD method.

No. Complex M(II) BMPyTr M(II)+ BMPyTr [M(II)− BMPyTr]2+ Eint
a (kcal/mol)

1A [Co(BMPyTr)Cl2]·H2O −1381.84 −1288.52 −2670.36 −2670.85 −311.54
1B [Co(BMPyTr)Cl2]·H2O b −1381.84 −1288.54 −2670.38 −2670.86 −303.38
2 [Mn(BMPyTr)Cl2] −1150.15 −1288.57 −2438.72 −2439.13 −260.79
3 [Cu(BMPyTr)Cl2]·H2O −1639.50 −1288.56 −2928.06 −2928.64 −366.09
4 [Zn(BMPyTr)(NO3)2] −1778.45 −1288.49 −3066.95 −3067.47 −322.23
5 [Zn(BMPyTr)(NCS)2] −1778.45 −1288.48 −3066.94 −3067.44 −314.89
6 [Cu(BMPyTr)(NO3)2] −1639.50 −1364.96 −3004.46 −3005.04 −364.27
7 [Ni(BMPyTr)(H2O)3](NO3)2·3H2O −1507.30 −1288.55 −2795.85 −2796.42 −356.37
8 [Ni(BMPyTr)(H2O)3](NO3)2·H2O −1507.30 −1288.55 −2795.85 −2796.42 −361.57

a Eint = Ecomplex − (Emetal+ Eligand) and b unit with letter B in atom numbering.

2.7. Biological Studies
2.7.1. Antimicrobial Assay

The efficiency of [Co(BMPyTr)Cl2]·H2O as an antimicrobial agent against selected
harmful microbes was tested and the results are compared with other reported metal com-
plexes [48,50] (Table 7). Complex 1 showed no activity against the studied fungal species as
no zones for inhibitions were detected in the cases of A. fumigatus and C. albicans. In contrast,
this complex showed good activity against both Gram-positive and Gram-negative bacte-
rial strains. Regarding the Gram-positive bacteria, S. aureus and B. subtilis, the inhibition
zones were 13 and 15 mm, respectively, while for the Gram-negative bacteria, E. coli and P.
vulgaris, the inhibition zones were 16 and 18 mm, respectively. The initial assessment of
the antimicrobial activity indicated the better action of the [Co(BMPyTr)Cl2]·H2O complex
against the Gram-negative bacteria compared to the Gram-positive bacteria.

Table 7. Antimicrobial activities of BMPyTr and its complexes a.

Microorganism BMPyTr 1 2 f 3 f 4 g 5 g Control

S. aureus NA b (ND) c 13(1250) 11(2500) 18(625) 14(625) 15(625) 24(78) d

B. subtilis NA b (ND) c 15(625) 19(312) 20(312) 15(625) 16(312) 26(39) d

E.coli NA b (ND) c 16(156) 10(2500) NA(ND) NA b (ND) c NA b (ND) c 30(10) d

P.vulgaris NA b (ND) c 18(78) 12(1250) 14(1250) 18(156) 20(78) 25(5) d

A. fumigatus NA b (ND) c - NA b (ND) c NA b (ND) c 10(625) NA b (ND) c 17(5) e

C. albicans NA b (ND) c - 8(5000) NA b (ND) c 9(625) 10(312) 20(5) e

a Inhibition zone diameter; mm (MIC;µg/mL) b NA: No activity; c ND: Not determined; d Gentamicin; e Ketoconazole;
f [48]; and g [50].

On the other hand, the minimum inhibitory concentrations (MICs) for the
[Co(BMPyTr)Cl2]·H2O complex against the studied bacteria are given in Table 7. The
MIC values for this complex against S. aureus and B. subtilis were 1250 and 625 µg/mL,
respectively. For E. coli and P. vulgaris, the MIC values were 156 and 78 µg/mL, respectively.
Accordingly, the [Co(BMPyTr)Cl2]·H2O complex showed better activity against P. vulgaris,
while it showed moderate activity compared with gentamicin as a positive control. It is
worth noting that the free ligand showed no antibacterial activity under the same experi-
mental conditions. Also, the results of the antimicrobial activities of the studied complex
were compared with the structurally related [Mn(BMPyTr)Cl2]; 2, [Cu(BMPyTr)Cl2]·H2O;
3, [Zn(BMPyTr)(NO3)2]; 4, and [Zn(BMPyTr)(NCS)2]; 5 complexes. In this regard, the new
Co(II) complex showed better activity against S. aureus, E. coli, and P. vulgaris compared
to the [Mn(BMPyTr)Cl2] complex. The latter has inhibition zones of 11, 10, and, 12 mm,
respectively, while the MIC values were 2500, 2500, and 1250 µg/mL, respectively. Also,
1 showed better activity against the Gram-negative bacteria (E. coli) compared to the
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[Cu(BMPyTr)Cl2]·H2O, [Zn(BMPyTr)(NO3)2], and [Zn(BMPyTr)(NCS)2] analogs (Table 7).
Furthermore, 1 had better activity towards the Gram-negative bacteria (P. vulgaris) in
comparison to the [Cu(BMPyTr)Cl2]·H2O complex.

2.7.2. Cytotoxicity Assessments

The in vitro cytotoxic activities of the free ligand and the [Co(BMPyTr)Cl2]·H2O
complex against human colon HCT-116 and lung A-549 cancer cell lines using MTT
assay were determined and compared with the structurally related [Mn(BMPyTr)Cl2],
[Cu(BMPyTr)Cl2]·H2O, [Zn(BMPyTr)(NO3)2], and [Zn(BMPyTr)(NCS)2] complexes [48,50].
The %viability is drawn against the concentration in µM in order to determine the IC50 of
the synthesized complexes (Figure 10). The results clearly revealed the good cytotoxicity of
the ligand (BMPyTr) and their metal complexes 1–5 against both cell lines.
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Figure 10. The viability assay for the free ligand (BMPyTr), [Co(BMPyTr)Cl2]·H2O
(1), [Mn(BMPyTr)Cl2] (2), [Cu(BMPyTr)Cl2]·H2O (3), [Zn(BMPyTr)(NO3)2] (4), and
[Zn(BMPyTr)(NCS)2] (5). All experiments were carried out in triplicate and the detailed
results of the cell viability are given in Tables S4–S15.

In addition, the IC50 values of the free ligand and its metal(II) complexes are compared
with the standard drug cis-platin as a reference drug (Table 8 and Figure 11). The free
ligand has the highest IC50 value of 145.3 ± 7.1 µM against the colon carcinoma HCT-116
cell line, while for the complexes 1–5, the IC50 values are 131.2 ± 6.8, 118.8 ± 6.0, 40.3 ± 2.3,
51.46 ± 2.16, and 62.81 ± 2.82 µM. On the other hand, the IC50 values for these complexes
against lung carcinoma A-549 cell line are 224.0 ± 10.3, 61.0 ± 2.5, 27.7 ± 1.1, 71.88 ± 5.07,
and 97.26 ± 5.07 µM, respectively, while the free ligand has an IC50 value of 155.7 ± 7.6 µM.
For cis-platin, the IC50 values are 17.8 ± 1.6 and 24.9 ± 1.7 µM, respectively. Hence, the
Cu(II) complex showed the highest potency against both cell lines [48,50] compared to
the Co(II), Zn(II) and Mn(II) complexes, while the [Co(BMPyTr)Cl2]·H2O complex had the
lowest efficiency as an anticancer agent against both cell lines. It is worth noting that the
cytotoxicity activity of all complexes was improved (except complex 1 against the HCT-116
cell line) compared to the free ligand for both cell lines. Examining the cytotoxic effect
of CoCl2 against the A-549 cancer cell line indicated no activity for the metal salt [75]
(Table S15). As a result, the enhanced cytotoxic effect of 1 could be attributed to the complex
rather than the free BMPyTr or CoCl2. Interestingly, complexes 1–3, which had the same
coordination sphere but differed in the metal ion, were found to have different activities, as
shown in Table 8. In this regard, the variation in the metal ion had a significant impact on
the cytotoxic effects of the studied complexes.
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Table 8. The IC50 (µM) for BMPyTr and complexes 1–5 against HCT-116 and A-549 cell lines.

Cell Line HCT-116 A-549
BMPyTr 155.7 ± 7.6 145.3 ± 7.1

1 224.0 ± 10.3 131.2 ± 6.8
2 61.0 ± 2.5 118.8 ± 6.0
3 27.7 ± 1.1 40.3 ± 2.3
4 51.46 ± 2.16 71.88 ± 5.07
5 62.81 ± 2.82 97.26 ± 5.07

cis-platin 17.8 ± 1.6 24.9 ± 1.7
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3. Materials and Methods
3.1. Materials and Physical Characterizations

A description of the materials and instrumentation used in this work are summarized
in the Supplementary Data.

3.2. Synthesis of BMPyTr

The ligand (BMPyTr) was prepared according to the method mentioned by our research
group [48,49] (Method S1).

3.3. Synthesis of [Co(BMPyTr)Cl2]·H2O

The metal complex was synthesized by mixing 10 mL ethanolic solution of CoCl2·6H2O
(47.6 mg, 0.2 mmol) with a 10 mL ethanolic solution of BMPyTr (77.0 mg, 0.2 mmol). This
mixture was filtered and allowed to evaporate slowly at RT. After approximately three
days, dark purple crystals formed, which were then collected by filtration.

[Co(BMPyTr)Cl2]·H2O; m.p > 350◦C; Yield 89%: Anal. Calc. for C18H26Cl2CoN8O3: C,
40.62; H, 4.92; N, 21.05; Co, 11.07%. Found: C, 40.39; H, 4.84; N, 20.91; Co, 10.98 %. IR (KBr,
cm−1): 3403 ν(O–H)water, 3222 ν(N–H), 2964, 2919, 2858 ν(C–H), 1600, 1569 ν(C=N), 1501ν(C=C),
1258 ν(C–N), 1391 ν(N–O). The FTIR spectra of the complex and the free ligand are shown in
Figures S1 and S2, respectively.
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3.4. Crystal Structure Determination

The crystal structure of [Co(BMPyTr)Cl2]·H2O was measured following the procedures
described in Method S2 [76–79].

3.5. Hirshfeld Analysis

The Crystal Explorer Ver. 17 program was used to perform Hirshfeld analysis [80,81]. Details
for the protocol used to perform the energy framework analysis are found in Method S3 [63–74].

3.6. Computational Details

The calculations were conducted using the X-ray structure coordinates, employing
the ωB97XD method [82] with the aid of Gaussian 09 program [83,84]. The TZVP basis
sets were employed for all atoms. The calculations were performed for the free M(II) and
BMPyTr as well as their complex species [M-BMPyTr]2+.

3.7. Biological Studies

The anticancer [85] and antimicrobial [86] activities were assessed using the protocols
outlined in Methods S4 and S5.

4. Conclusions

The heteroleptic [Co(BMPyTr)Cl2]·H2O complex was synthesized and its structure was
confirmed with the aid of elemental analysis, FTIR, UV–Vis spectra, and X-ray crystallog-
raphy. The Co(II) had a penta-coordination environment with a highly distorted square
pyramidal configuration. Using Hirshfeld surface analysis, the most dominant interaction
was that of the hydrogenic H· · ·H contacts (45.9–48%). Additionally, the presence of short
Cl· · ·C contacts indicated the existence of anion–π stacking interactions. DFT calcula-
tions explored the effect of metal ion size and the nature of coordinating ligands on the
M(II)-BMPyTr interaction energies, where the Mn(II)-BMPyTr and Co(II)-BMPyTr interaction
energies were the lowest. The free ligand (BMPyTr) and its [Co(BMPyTr)Cl2]·H2O complex
were tested for their cytotoxicity against the HCT-116 and A-549 cancer cell lines using
the MTT assay, and the results were compared with the structurally related complexes.
All complexes showed improved activity (except 1 versus HCT-116 cells) compared to
BMPyTr. The improvement of the activity confirmed the important role of metal ions on the
biological activity of the studied metal-BMPyTr complexes. Despite the free ligand (BMPyTr)
having no antimicrobial activity, its metal(II) complexes showed diverse activities against
the studied microbes. The [Co(BMPyTr)Cl2]·H2O complex demonstrated good activity
against both Gram-positive (S. aureus and B. subtilis) and Gram-negative bacteria (E. coli
and P. vulgaris).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics12100268/s1, Figure S1: The FTIR spectra of the
[Co(BMPyTr)Cl2]·H2O; Figure S2: The FTIR spectra of the free ligand (BMPyTr); Figure S3: The
curvedness and shape index surfaces for the [Co(BMPyTr)Cl2]·H2O complex; Figure S4: The fin-
gerprint plots for the unit with letter B in the atom numbering for [Co(BMPyTr)Cl2]·H2O complex;
Figure S5: Visualization of molecular interactions within a cluster with a radius of 3.8 Å between
the central molecule under investigation and its neighboring molecules, viewed along the a-axis;
Figure S6: 1H NMR of the ligand in CDCl3; Figure S7: 13C NMR of the ligand in CDCl3; Table S1:
The short intermolecular interactions in the [Co(BMPyTr)Cl2]·H2O; Table S2: Different interaction
energies of the molecular pairs in kJ/mol; Table S3: Evaluation of anticancer activity against HCT-
116 cell line for BMPyTr; Table S4: Evaluation of anticancer activity against HCT-116 cell line for 1;
Table S5: Evaluation of anticancer activity against HCT-116 cell line for 2; Table S6: Evaluation of
anticancer activity against HCT-116 cell line for 3; Table S7: Evaluation of anticancer activity against
HCT-116 cell line for 4; Table S8: Evaluation of anticancer activity against HCT-116 cell line for 5;
Table S9: Evaluation of anticancer activity against A-549 cell line for BMPyTr; Table S10: Evaluation of
anticancer activity against A-549 cell line for 1; Table S11: Evaluation of anticancer activity against
A-549 cell line for 2; Table S12: Evaluation of anticancer activity against A-549 cell line for 3; Table S13:

https://www.mdpi.com/article/10.3390/inorganics12100268/s1
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Evaluation of anticancer activity against A-549 cell line for 4; Table S14: Evaluation of anticancer
activity against A-549 cell line for 5; Table S15: Evaluation of anticancer activity against A-549 cell
line for CoCl2; Method S1: Synthesis of ligand (BMPyTr); Method S2: Crystal structure determination;
Method S3: Energy framework analysis protocol; Method S4: Evaluation of anticancer activity;
Method S5: Evaluation of antimicrobial activity.
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