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Abstract: Various Keggin-type heteropolyoxometalate catalysts with structural defects and surface
acidity were synthesized by immobilizing 12-phosphotungstic acid (HPW) on mesoporous SBA−15,
to produce near-zero-sulfur diesel fuel. As the calcination temperature increased, the W=O and the
corner-shared W–O–W bonds in the Keggin unit partially broke, creating oxygen defects, as evidenced
by the Rietveld refinement and in situ FTIR characterization. All the catalysts contained Lewis (L)
and Brønsted (B) acid sites, with L acidity predominant. The relative intensity of the IR band (I980) of
W=O bond inversely correlated with the number of L acid sites as the calcination temperature varied,
suggesting that oxygen defects contributed to the Lewis acid sites formation. In the oxidation of
dibenzothiophene (DBT) in a model diesel within a biphasic system, DBT conversion exceeded 99%
under the optimal reaction conditions (reaction temperature 70 ◦C, reaction time 60 min, H2O2/sulfur
molar ratio 8, H2O2/formic acid molar ratio 1.5, catalyst concentration 2 mg/mL). The influence
of fuel composition and addition of indole and 4,6-DMDBT on DBT oxidation were also evaluated.
Indole and cyclohexene negatively impacted the DBT oxidative removal. Oxygen defects served
as active centers for competitive adsorption of sulfur compound and oxidant. Both L and B acid
sites were involved in transferring O atom from peroxophosphotungstate complex to sulfur in DBT,
resulting in DBTO2 sulfone, which was immediately extracted by polar acetonitrile. This study
confirms that structural defects and surface acidity are crucial in the deep oxidative desulfurization
(ODS) reaction, and in enabling the simultaneous oxidation and separation of refractory organosulfur
compounds in a highly efficient model diesel.

Keywords: near-zero-sulfur diesel; dibenzothiopene; deep oxidative desulfurization; oxygen defects;
heteropolyoxometalate

1. Introduction

A broad spectrum of organosulfur compounds, including mercaptans, sulfides, thio-
phenes, benzothiophene (BT), dibenzothiophene (DBT), and its derivatives in fossil fu-
els, are a significant source of sulfur-related air pollution [1,2]. These hazardous sulfur
compounds must be eliminated before fuel combustion to meet the increasingly strict
requirements of the new environmental regulations. Hydrodesulfurization (HDS) is a
commonly used technique to remove these sulfur compounds from crude oil before it is
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fed into the fluid catalytic cracking (FCC) unit [2–4]. However, HDS is a nonselective hy-
drogenation process that operates under moderate reaction temperatures (300–500 ◦C) and
high pressures (50–130 atm) and requires expensive hydrogen consumption. Furthermore,
HDS is not very effective for the deep removal of refractory sulfur compounds such as pol-
yaromatic DBT and its methyl-substituted derivatives like 4,6-dimethyl dibenzothiophene
(4,6-DMDBT) due to their steric hindrance and high resistance to hydrodesulfurization.
This is evidenced by the considerable concentration of such compounds in hydrotreated
fuels [5]. Economically, the HDS technique efficiently reduces sulfur concentration from a
low weight percentage to approximately hundreds of ppm at a reasonable cost. To further
reduce the sulfur concentration from a hundred ppm to an ultralow (<10 ppm) or near-zero
concentration, the HDS operation parameters must be modified by elevating the reaction
temperature and pressure and by increasing the H2/oil ratio and catalyst volume [6]. These
modifications undoubtedly increase the total operation cost, and harsh reaction conditions
may shorten the catalyst’s lifetime.

Alternative desulfurization techniques, such as biodesulfurization [7–9], extractive/
adsorptive desulfurization [10,11], and oxidative desulfurization [12–14], have been ex-
plored. Oxidative desulfurization (ODS) has several advantages over the HDS technique,
including milder reaction conditions (low reaction temperature and ambient pressure),
high selectivity for removal of sterically hindered aromatic sulfur compounds, and no
need for expensive hydrogen consumption [13,14]. Generally, ODS consists of two steps:
oxidation of aromatic sulfurs to the corresponding polar sulfones, and the removal of the
oxidized compounds through extraction and adsorption. Various oxidants have been used
for sulfur oxidation, including hydrogen peroxide [15], molecular oxygen [16], tert-butyl-
hydroperoxide [17], and solid oxidizing agent [18]. While molecular oxygen or air is the
most economical oxidant for ODS, it requires a high reaction temperature for the sulfur
oxidation reactions, and usually, the sulfur removal efficiency is relatively low. Eseva and
coworkers have reported the ODS results of dibenzothiophene using catalysts containing
an Anderson-type polyoxometalate. The CoMo/IL−SBA−15 catalyst synthesized using
functional-group-grafted mesoporous support material showed the best catalytic activity
and stability. Utilization of hot air as oxidant is attractive. However, the reaction tempera-
ture had to be increased to 120 ◦C [19]. Hydrogen peroxide (H2O2) is widely used in ODS
due to its high content of oxygen (47% oxygen), strong oxidation power, and environmen-
tally friendly nature. After ODS treatment, the polar products (sulfones) can be separated
by extraction from fuel using a non-miscible solvent, with acetonitrile commonly used as a
polar solvent in the ODS process. Although the use of oxidant and polar extracting agent
may increase the operation cost, the total cost of the ODS process is approximately 15–20%
lower than that of HDS for the same scale [20].

In the catalytic ODS process, an active catalyst is essential. The Lewis acidity of
transition metal oxide catalysts takes the decisive role in the sulfur oxidation. For example,
the 4,6-DMDBT conversion was reported to be almost proportional to the number of
Lewis acid sites in the MoO3/SBA−15 catalysts [21]. A similar relationship was also
established for the V2O5/Zr-SBA−15 [22] and mesoporous titania–silica–polyoxometalate
nanocomposite [23]. In these catalysts, oxygen defects correlate with the Lewis acid sites
and catalytic activities. Some other researchers have claimed that catalytic efficiency in
oxidative desulfurization is enhanced by B acid sites coupled with a small number of L
acid sites [24].

Heteropolyacids, such as phosphotungstic acid (H3PW12O40) and phosphomolybdic acid
(H3PMo12O40), dispersed on various solids, have been reported for ODS reactions [25–28]. It is
well known that 12-phosphotungstic acid is the strongest solid acid among the heteropolyacid
family, and it is often used as catalyst for acid−catalyzed reactions due to its high redox prop-
erties, tunable acidity, hydrolytic stability, and defective Keggin structure. H3PW12O40/SiO2
and H3PW12O40/TiO2 catalysts contain strong Brønsted acidity and are active in the ODS
of fuels [29,30]. Novel homogeneous catalysts, such as aqueous H8PV5Mo7O40, were also
applied for the oil ODS process under conditions of 120 ◦C temperature, 20 bar oxygen pres-
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sure, and 6 h reaction time with a volume water/oil ratio of 10 [31]. However, homogeneous
catalysts face difficulties of reuse and separation. Complete reviews of the heteropolyacid
family in the ODS reactions can be found in reference [24]. In the literature, the roles of
structural defects in Keggin structure and the B and L acid sites in the ODS reactions are not
clear yet and are rarely reported.

In the current work, we aim to design a novel catalyst for near-zero-sulfur fuel pro-
duction by simultaneously oxidizing and separating DBT in a biphasic system consisting
of a polar solvent (acetonitrile) and a nonpolar phase (n-hexadecane) containing 300 ppm
DBT. We applied a series of defective heteropolyoxometalate catalysts by immobilizing
phosphotungstic acid (HPW) on SBA−15. The crystalline structure, textural properties,
morphological features, W oxidation state, and chemical valence of the catalysts were
characterized by a variety of techniques including X-ray diffraction (XRD), N2 adsorption–
desorption isotherms, transmission electron microscopy (TEM), X−ray photoelectronic
spectroscopy (XPS), and in situ FTIR of pyridine adsorption. In situ, FTIR characterization
monitored the thermal stability and oxygen defects in the Keggin unit of the dispersed
phosphotungstic acid. Structural defect concentrations calcined at different temperatures
were determined by the Rietveld refinement method. Particular attention was paid to the
possible correlation of structural defects and surface acidity with the catalytic activity to
provide new insight into the ODS reaction mechanism.

2. Results and Discussion
2.1. XRD Analysis and Rietveld Refinement

The XRD patterns of five catalysts (HPW/SBA−15) with different 12-phosphotungstic
acid (HPW) content calcined at 100, 200, and 400 ◦C are presented in Figure 1. For the
catalysts calcined at 100 ◦C, Figure 1A shows one broad peak between 15 and 35◦, which
corresponds to the amorphous silica SBA−15. With an HPW content 10 wt%, two very
weak peaks at 26.21 and 27.65◦ appear, corresponding to the reflection of (222) and (400)
planes of tungstophosphoric acid crystals. This indicates a small crystallite size and high
dispersion of the heteropolyacid nanoparticles. As the HPW content increases to 20 and
30 wt%, additional peaks emerge at two-theta angles of 10.5◦, 14.5◦, 17.5◦, 20.4◦, 22.5◦, 26.2◦,
29.0◦, 35.8◦, 37.4◦, 41.4◦, 46.40◦, 54.0◦, 59.8◦, and 62.10◦, corresponding to the reflections of
different planes with Miller index (110), (200), (211), (220), (310), (222), (400), (420), (510),
(611), (550), (650), and (660), respectively, in the tungstophosphoric acid crystals [32,33].
The peak at 8.49◦ indicates the existence of water molecules in the crystals. These XRD
peaks collectively confirm the crystalline structure of hydrated tungstophosphoric acid
with Keggin units.
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Figure 1. XRD patterns of HPW/SBA−15 catalysts calcined at different temperatures (A) 100°C, (B) 
200° and (C) 400°C. (a): 10 wt% H3PW12O40/SBA−15; (b): 20 wt% H3PW12O40/SBA−15; (c): 30 wt% 
H3PW12O40/SBA−15; (d): 40 wt% H3PW12O40/SBA−15; (e): 50 wt% H3PW12O40/SBA−15. 

Figure 1. XRD patterns of HPW/SBA−15 catalysts calcined at different temperatures (A) 100 ◦C,
(B) 200 ◦C and (C) 400 ◦C. (a): 10 wt% H3PW12O40/SBA−15; (b): 20 wt% H3PW12O40/SBA−15; (c):
30 wt% H3PW12O40/SBA−15; (d): 40 wt% H3PW12O40/SBA−15; (e): 50 wt% H3PW12O40/SBA−15.
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For the samples calcined at 200 ◦C, Figure 1B shows a strong reduction in the intensity
of the peak at 8.49◦, signifying the desorption of water from the heteropolyacid crystalline
structure. In samples with an HPW content lower than 30 wt%, only very weak peaks
appeared between 28◦ and 35◦, with no other diffraction peaks corresponding to the
crystalline phase of HPW. This suggests that after losing most of the crystal water molecules
at 200 ◦C, tungstophosphoric acid crystals have crystallite size smaller than 4 nm, which is
the lowest detectable limit of the X-ray diffractometer. These nanosized crystals are highly
dispersed on the surface of the mesoporous support. This observation may also suggest
that water molecules functioned as linkers for the Keggin units, facilitating the formation
of larger crystals. The removal of these water linkers from the heteropolyacid structure
resulted in the crystals breaking into smaller sizes.

Upon calcination at 400 ◦C, Figure 1C shows a further reduction in the intensity of the
peak at 8.49◦, indicating additional desorption of crystal water from the solid. The XRD
peaks corresponding to the planes of dehydrated heteropolyacid crystals exhibit sharper
reflections for samples with 40 and 50 wt% HPW, suggesting an increase in crystallite
size. Although structural defects were introduced at a calcination temperature of 400 ◦C,
the Keggin structure remained intact. The Rietveld refinement method was employed to
determine the structural defects in the heteropolyacid crystals. Figure 2 presents a Rietveld
plot for the 40 wt% HPW/SBA−15 sample calcined at 400 ◦C. The structural data, including
space group, symmetry, phase composition, lattice cell parameters, crystallite size, and
oxygen defects obtained from the Rietveld refinement, are summarized in Table 1.
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correspond to experimental data, and the red solid line corresponds to theorical data. The blue marks
correspond to crystalline structure of monoclinic H3PW12O40. The inset 2D multiplot indicates the
residual between the experimental and the calculated data. Rwp = 1.95%.



Inorganics 2024, 12, 274 5 of 24

Table 1. The structural data obtained from the Rietveld refinement *.

Sample Phase Space Group Symmetry
Crystallite
Size

Lattice Cell
Parameters (Å)

Oxygen
Defects Rwp

(nm) a b c (%) (%)

10A H3PW12O40·21H2O Pcca Orthorhombic 15.5 21.041 13.286 18.880 ND 1.45
H3PW12O40 Pn-3m Cubic 4.7 11.860 ND

10B H3PW12O40 Pn-3m Cubic 11.7 11.772 0.10 1.40
10C H3PW12O40 Pn-3 m Cubic 6.8 11.722 ND 1.12

20A H3PW12O40·21H2O Pcca Orthorhombic 14.4 21.040 13.286 18.879 ND 2.13
H3PW12O40 Pn-3m Cubic 5.4 11.874 ND

20B H3PW12O40 Pn-3m Cubic 6.6 12.141 0.1 2.31
20C H3PW12O40 Pn-3m Cubic 6.8 11.797 14.7 2.57

30A H3PW12O40·21H2O Pcca Orthorhombic 14.4 20.788 13.086 18.876 ND 2.36
H3PW12O40 Pn-3m Cubic 7.1 11.777 ND

30B H3PW12O40 Pn-3m Cubic 12.2 12.160 5.90 2.51
30C H3PW12O40 Pn-3m Cubic 6.9 11.730 22.40 1.28

40A H3PW12O40·21H2O Pcca Orthorhombic 17.8 20.788 13.086 18.879 ND 1.26
H3PW12O40 Pn-3m Cubic 6.0 12.191 ND

40B H3PW12O40 Pn-3m Cubic 12.2 12.183 9.10 3.69
40C H3PW12O40 Pn-3m Cubic 9.3 12.183 20.50 1.42

50A H3PW12O40·21H2O Pcca Orthorhombic 10.2 20.789 13.190 19.332 ND 3.36
H3PW12O40 Pn-3m Cubic 5.1 12.101 37.31 3.52

50B H3PW12O40 Pn-3m Cubic 12.3 12.181 34.70 4.45
50C H3PW12O40 Pn-3m Cubic 9.4 12.173 28.10 1.95

* The numbers 10, 20, 30, 40, and 50 indicate the heteropolyacid content (wt%); the letters A, B, and C cor-
respond to the sample calcination temperature 100, 200, and 400 ◦C, respectively. For example, 10A: 10 wt%
H3PW12O40/SBA−15 calcined at 100 ◦C; 10B: 10 wt% H3PW12O40/SBA−15 calcined at 200 ◦C, and 10C: 10 wt%
H3PW12O40/SBA−15 calcined at 400 ◦C. Rwp: weighted-profile R factors (%). Usually, an R value smaller than
10% indicates good structure simulation. ND: not determined.

As shown in Table 1, the 12−phosphotungstic acid dispersed on the catalysts and
calcined at 100 ◦C contained two phases, cubic and orthorhombic, with the orthorhom-
bic phase containing water molecules. After calcination at 200 ◦C, only the cubic phase
remained, signifying a phase transformation from orthorhombic to cubic due to the loss of
water. This transformation was accompanied by a change in crystallite size as a result of
dehydration and partial decomposition of the Keggin unit. Consequently, oxygen defects
emerged in the crystalline structure, the concentration of which varied with both the calci-
nation temperature and the content of heteropolyacid. Higher loading of heteropolyacid
and increased calcination temperature led to a greater number of oxygen defects.

2.2. Textural Properties of H3PW12O40/SBA−15

Figure 3 shows the hysteresis loops of N2 adsorption–desorption isotherms and the
pore diameter distributions of the catalysts. Textural data including surface area, average
pore size, and pore volume of SBA−15 and HPW/SBA−15 catalysts are summarized in
Table 2. As seen in Figure 3A, all catalysts displayed type IV isotherms with H1 hysteresis
loops, indicative of mesoporous materials with cylindrical pore channels, consistent with
the classification of the International Union of Pure and Applied Chemistry (IUPAC) [34].
The pore size, derived from the BJH model applied to the N2 desorption branch data,
ranged from 6.0 to 8.0 nm, with a maximum of 7.6 nm. The Brunauer–Emmett–Teller (BET)
surface areas varied between 640 and 440 m2/g, influenced by the heteropolyacid content
(Figure 3B). A higher HPW loading corresponded to a reduced surface area. The pore
volume diminished from 1.16 cm3/g to 0.65 cm3/g as the HPW content increased from 10
to 50 wt%, attributed to the partial obstruction of the mesopores by HPW nanoparticles.
Notably, the shapes of the N2 adsorption–desorption isotherms and the pore diameter
distribution profiles were consistent across all catalysts.
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Figure 3. N2 adsorption–desorption isotherms loops (A) and pore size distribution profiles (B) of
the HPW/SBA−15 catalysts. (a): SBA−15; (b): 10 wt% H3PW12O40/SBA−15; (c): 20 wt%
H3PW12O40/SBA−15; (d): 30 wt% H3PW12O40/SBA−15; (e): 40 wt% H3PW12O40/SBA−15; (f):
50 wt% H3PW12O40/SBA−15.

Table 2. Textural properties, elements of P and W nominal content, and W/S molar ratio in the ODS
reaction.

Catalysts Surface Area
(m2/g)

Average Pore Size
(nm)

Pore Volume
(cm3/g)

P
(mmol)

W
(mmol) W/S Ratio *

SBA−15 715 6.5 1.15 0 0 0
10 wt%HPW/SBA−15 629 7.17 1.07 0.00069 0.0083 0.59
20 wt%HPW/SBA−15 563 7.22 0.90 0.00139 0.0167 1.18
30 wt%HPW/SBA−15 503 7.11 0.86 0.00208 0.0252 1.77
40 wt%HPW/SBA−15 464 7.21 0.81 0.00278 0.0333 2.36
50 wt%HPW/SBA−15 411 7.15 0.78 0.00347 0.0416 2.94

* W/S values were calculated from 20 mg catalyst sample and 10 mL of 300 ppm DBT in n-hexadecane.

2.3. Morphological Features

The morphological characteristics of SBA−15 and HPW/SBA−15 samples were ex-
amined using transmission electron microscopy (TEM, JEM-ARM200 CF, JEOL Ltd., Tokyo,
Japan). The SBA−15 support exhibited a well-ordered hexagonal mesoporous structure
(Figure 4A), with a pore diameter of approximately 7.5 nm and a pore wall thickness
of about 2–3 nm. After impregnation with heteropolyacid, the mesoporous structure of
SBA−15 remained largely intact, indicating minimal disruption to the support structure.
The heteropolyacid was well-dispersed across the surface of the SBA−15 solid (Figure 4B,C).
Additionally, some small particles with a diameter of around 5 nm were observed, some of
which were located within the pores. The majority of the HPW particles were aligned along
the pore channels (Figure 4D). The energy-dispersive X-ray spectroscopy (EDS) spectrum
from a selected area in the TEM micrograph (Figure 4E) revealed the presence of oxygen
(O), phosphorus (P), and tungsten (W), confirming that these particles corresponded to
H3PW12O40 crystals, which were too small to be detected by XRD analysis. Figure 4F
displays a WL profile obtained from Figure 4D along the marked path, further validating
the distribution of tungsten (W) in H3PW12O40 on the SBA−15 surface.
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Figure 4. TEM micrographs and EDS spectra of SBA−15 and H3PW12O40/SBA−15 calcined at
200 ◦C. (A) SBA−15 support; (B) 20 wt% H3PW12O40/SBA−15 calcined at 200 ◦C; (C) 30 wt%
H3PW12O40/SBA−15 calcined at 200 ◦C; (D) 40 wt% H3PW12O40/SBA−15 calcined at 200 ◦C;
(E) EDS profile of the selected area in (C); (F) EDS profile of the selected area in (D).

2.4. In Situ FTIR Characterization

The dispersed Keggin units of the H3PW12O40/SBA−15 catalysts contain a variety of
surface species, including adsorbed water, hydroxyl groups, and various tungsten–oxygen
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bonds (W=Ot, W–O–W, and W–O–P). In situ, FTIR characterization was performed to
assess their thermal stability and changes with temperature. Figure 5 presents five sets
of in situ FTIR spectra recorded at temperatures ranging from 50 to 450 ◦C. Across all
catalysts, a band at 1640 cm−1 was observed, attributed to the stretching vibration of OH
species in surface-adsorbed water. The intensity of this band diminished and vanished
by 200 ◦C, signifying the desorption of surface-adsorbed water. At 100 ◦C, all samples
exhibited characteristic IR bands of the Keggin structure of [PW12O40]3−, present at 1080,
980, 893, and 803 cm−1, respectively [35–37]. The band at 1080 cm−1 is indicative of the
P–O stretching vibration in the central PO4 unit, while the 980 cm−1 band corresponds
to the stretching vibration of the terminal W=Ot bond. The bands at 893 and 803 cm−1

are associated with the stretching motions of two types of W–O–W bridged bonds: the
W–Oc–W stretching mode (inter-bridges between corner-sharing octahedra) at 893 cm−1

and the W–Oe–W stretching mode (intra-bridges between edge-sharing octahedra) at
822 cm−1 [37–40]. These findings confirm the intact Keggin structure post-dispersion on
SBA−15, showcasing chemical stability at 100 ◦C.
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(D) 40 wt% H3PW12O40/SBA−15; (E) 50 wt% H3PW12O40/SBA−15.
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With the temperature increase to 200 ◦C, a decline in the intensity of the terminal
W=Ot double bond was observed, and it completely disappeared by 300 ◦C, indicating
the creation of oxygen defects. Similarly, the W–Oc–W stretching mode diminished after
thermal treatment above 300 ◦C. Notably, a broad band at 1200–1000 cm−1 appeared,
corresponding to the asymmetric stretching of the Si–O–Si bond in SBA−15 silica. This
band partially overlaps with the W–O–P stretching vibration, though the latter remains
distinct and sharper. The bands around 809 and 455 cm−1 were assigned to the stretching
and bending vibrations of Si–O–Si in the SBA−15 framework [38,39], causing overlap with
the W–Oe–W band at 803 cm−1.

Catalysts with higher HPW content (40 and 50 wt%) displayed more excellent ther-
mal stability, maintaining their Keggin fingerprint IR bands even at 400 ◦C. In contrast,
catalysts with lower HPW content exhibited higher dispersion and stronger interaction
with the SBA−15 support, leading to more pronounced deformation of the Keggin unit.
This interaction resulted in easier cleavage of W=Ot and W–Oc–W bonds and removal
of oxygen species at elevated temperatures. The υas(W–Oc–W) mode is susceptible to
hydration effects due to hydrogen bonding, weakening W–O bond strength and forming
a lacunary heteropoly anion with a defective Keggin unit. This behavior is evidenced by
the concurrent disappearance of the band at 1620 cm−1, correlating with the degree of
dehydration. Overall, the in situ FTIR characterization suggests that oxygen defects in the
Keggin structure emerge at around 200 ◦C. While the Keggin framework withstands up to
400 ◦C with an increase in structural defects, it undergoes thermal decomposition into WO3
above 600 ◦C [40].

2.5. Surface Acidity

Figure 6 displays the in situ FTIR spectra of pyridine adsorption on the catalysts, demon-
strating the presence of both Lewis (L) and Brønsted (B) acid sites across all samples. The
Lewis acid sites are characterized by IR absorption bands at 1445, 1579, and 1594 cm−1, while
the Brønsted acid sites are identified by bands at 1542 and 1687 cm−1 [41–43]. Additionally, a
band observed at approximately 1489 cm−1 corresponds to the pyridine molecule’s vibration
associated with both L and B acid sites. The concentrations of these acid sites, as analyzed
in Table 3, show that Lewis acidity predominates on the catalyst surfaces. As the HPW
content increases from 10 to 30 wt%, there is a corresponding rise in both L and B acid site
concentrations. However, this trend reverses with further increases in HPW content, leading
to a decrease in acid site concentrations in samples with 40 and 50 wt% HPW.
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Figure 6. In situ FTIR spectra of pyridine adsorption on the catalysts. (a) 10 wt% H3PW12O40/SBA−15;
(b) 20 wt% H3PW12O40/SBA−15; (c) 30 wt% H3PW12O40/SBA−15; (d) 40 wt% H3PW12O40/SBA−15;
(e) 50 wt% H3PW12O40/SBA−15.
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Table 3. Surface acidity data of the different catalysts calcined at different temperatures and obtained
from the FTIR spectra of pyridine adsorption recorded at 100 ◦C in IR cell.

Catalysts Calcination Temp.
(◦C)

Lewis Acidity
(µmol/g)

Brønsted Acidity
(µmol/g)

Total Acidity
(µmol/g)

10 wt%HPW/SBA−15 100 687 56 743
20 wt%HPW/SBA−15 100 730 76 806
30 wt%HPW/SBA−15 100 823 162 985
40 wt%HPW/SBA−15 100 496 46 542
50 wt%HPW/SBA−15 100 389 28 417

10 wt%HPW/SBA−15 200 894 62 956
20 wt%HPW/SBA−15 200 1216 160 1376
30 wt%HPW/SBA−15 200 1207 367 1574
40 wt%HPW/SBA−15 200 1055 267 1322
50 wt%HPW/SBA−15 200 861 133 994

10 wt%HPW/SBA−15 400 933 80 1013
20 wt%HPW/SBA−15 400 1277 135 1412
30 wt%HPW/SBA−15 400 1280 238 1518
40 wt%HPW/SBA−15 400 826 113 939
50 wt%HPW/SBA−15 400 737 139 876

The molar ratio of B/L sites, which is indicative of the relative prevalence of Brønsted
over Lewis acidity, varies with the tungstophosphoric acid content and the calcination
temperature. Specifically, at 100 ◦C, the B/L ratio increases from 0.082 to 0.092 and 0.197 as
the HPW content rises from 10 wt% to 20 and 30 wt%, respectively. Beyond 30 wt% HPW,
this ratio decreases. A similar trend is observed in samples calcined at 200 and 400 ◦C. The
samples containing 20 and 30 wt% HPW consistently exhibit the highest surface acidity
and the most significant B/L ratios, highlighting their enhanced catalytic potential.

2.6. XPS Analysis

Figure 7 shows the survey XPS spectra for the samples calcined at 100, 200, and 400 ◦C,
revealing peaks corresponding to the elements O, P, W, and Si. The signal for phosphorus
(P) is notably weak, likely due to its central position within the Keggin structure, which
reduces its surface exposure. Figure 8 provides the deconvolution of the O1s and W 4f
core-level spectra. The broad O1s peaks observed in the H3PW12O40/SBA−15 samples,
calcined at different temperatures, are indicative of the various oxygen environments in the
material. The symmetry in the O1s core-level peaks is attributed to the fully symmetrical
Keggin unit. Upon deconvolution, the O1s spectra reveal four distinct components with
binding energies at 531.4, 532.4, 533.5, and 534.7 eV. These correspond to oxygen atoms in
W–O–P, W–O–W, and W=O bonds, and adsorbed water, respectively [44].
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HPW/SBA−15 calcined at different temperature.

The W 4f spectra feature two prominent peaks at 36.1 eV and 38.2 eV, corresponding
to the W 4f5/2 and W 4f7/2 spin-orbit components, respectively [45]. The deconvolution
of these W peaks further reveals the coexistence of W6+ and W5+ oxidation states. For
example, in the 20 wt% HPW/SBA−15 catalyst, the W5+/(W5+ + W6+) ratio increases
from 16.8% to 18.6% and 33.2% as the calcination temperature rises from 100 ◦C to 200 ◦C
and 400 ◦C, respectively. The presence of W5+ species confirms the occurrence of oxygen
vacancies within the Keggin structure. These oxygen defects lead to a decrease in electron
cloud density around the tungsten atoms, creating an excess of positive charge on W6+ ions.
To maintain overall charge neutrality, a portion of W6+ is reduced to W5+. The simultaneous
presence of W6+ and W5+ in the Keggin structure indicates the formation of lattice oxygen
defects within the heteropolyacid cluster.

2.7. Catalytic Evaluation Results
2.7.1. Optimization of Reaction Parameters

The catalytic activity of the HPW/SBA−15 catalysts was assessed for the oxidative
desulfurization (ODS) of dibenzothiophene (DBT) in a model diesel under various con-
ditions. A control experiment, conducted without a catalyst and under conditions of
an H2O2/DBT molar ratio of 2, a reaction temperature of 60 ◦C, and a reaction time of
60 min, resulted in a DBT conversion of just 15.5%. With the addition of formic acid at an
H2O2/HCOOH molar ratio of 1.5, the conversion increased to 50.2%. However, achieving
complete oxidation of sulfur compounds in fuel with H2O2 alone remains challenging,
even with formic acid as a promoter. This study optimized the key reaction parameters,
including the O/S molar ratio, reaction temperature, reaction time, and catalyst dosage
for DBT oxidation. Although the theoretical stoichiometric O/S ratio for complete DBT
oxidation is 2, practical applications often require a higher ratio due to limitations in ad-
sorption efficiency and surface reaction kinetics. The optimal O/S ratio was determined
experimentally by varying it from 2 to 10, while maintaining constant conditions (60 ◦C
temperature, 60 min reaction time, and 1.5 mg/mL catalyst concentration). As shown in
Figure 9A, at an O/S molar ratio of 2, the best-performing catalysts, 20 wt% and 30 wt%
HPW/SBA−15, achieved maximum DBT conversions of 75.3% and 75.7%, respectively,
after 60 min. Increasing the O/S ratio to 4, 6, and 8 resulted in enhanced DBT conversions
of 89.2%, 94.3%, and 94.7%, respectively, for the 30 wt% HPW/SBA−15 catalyst. However,
when the O/S ratio exceeded 8, a slight decrease in DBT conversion was observed. This
decline is likely due to the introduction of excess water from the aqueous hydrogen perox-
ide solution (30 wt% in H2O2) and water produced during the oxidation reaction. These
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water molecules can adsorb on the catalyst’s active sites, impeding the interaction between
the oxidant and DBT, thereby suppressing ODS efficiency. Although increasing the H2O2
dosage generates more hydroxyl radicals (•OH), which accelerate the reaction, it can also
lead to the formation of perhydroxyl radicals (•HO2) through the following reaction:

H2O2 + •OH → H2O + •HO2 (1)

Since perhydroxyl radicals have a lower redox potential than hydroxyl radicals [46,47], the
optimal O/S ratio of 8 was selected for further experiments, balancing operational costs
and ODS efficiency.
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Figure 9. Effect of different reaction parameters on DBT conversion. (A) Effect of O/S molar ratio;
(B) effect of reaction temperature; (C) effect of 20 wt% HPW/SBA−15 catalyst concentration; (D) effect
of formic acid addition with 20 wt% HPW/SBA−15 catalyst.

The effect of reaction temperature on DBT oxidation was examined with an O/S ratio
of 8, a reaction time of 60 min, and a catalyst concentration of 1.5 mg/mL (Figure 9B). As the
temperature increased from 50 ◦C to 70 ◦C, the DBT conversion reached a 96.7% maximum
using the best 20 wt% HPW/SBA−15 catalyst. However, at 80 ◦C, the conversion slightly
decreased to 92.1%, likely due to partial decomposition of the oxidant and evaporation
of the acetonitrile extraction agent (boiling point approximately 81.1 ◦C). These factors
negatively impacted DBT oxidative removal, making 70 ◦C the optimal temperature for
this reaction.

The influence of catalyst concentration on DBT oxidation was also evaluated (Figure 9C),
with the highest conversion observed at a catalyst concentration of 2 mg/mL. The heteropoly-
acid content in the catalysts significantly influenced DBT oxidation, with optimal phospho-
tungstic acid loadings between 20 and 30 wt%. Higher loadings may result in poor dispersion
and lower surface area (Table 2), both of which are detrimental to the ODS reaction. In the
presence of formic acid, the DBT conversion using the 20 wt% HPW/SBA−15 catalyst sig-
nificantly increased to 98.0% (Figure 9D). This enhancement is attributed to the formation of
active species such as peroxometallics and superoxometallics. Experimental results confirmed
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that in the presence of formic acid and H2O2, formic acid is oxidized to peroxyformic acid
(HC=OOOH) by H2O2 [48,49]:

HCOOH + H2O2 → HCOOOH + H2O (2)

The in situ generated peroxyformic acid coordinates with the defective W6+ ions on
the catalyst surface, forming a surface peroxophosphotungstate complex (W6+–O–O–CHO).
The released proton (H+) may integrate to the Brønsted acid sites, enhancing the catalytic
activity. This peroxophosphotungstate complex is more active than the symmetrical H–O–
O–H species, facilitating the transfer of oxygen atoms to the sulfur atom in DBT, thereby
promoting the ODS reaction [50]. Bertleff and coworkers reported that, using O2 as oxi-
dant and homogeneous H8PV5Mo7O40 as catalyst under moderate pressure (20 atm) and
acidic condition (pH = 0.8–2) during the DBT oxidative removal procedure, in situ formed
carboxylic acid, such as formic acid, showed a negative effect on DBT oxidation [51]. The
authors proposed that the presence of formic acid in the aqueous catalyst phase stabilized
the V-substituted species in the V5+ oxidation state prior to the desulfurization reaction,
which resulted in an inhibition of the desulfurization reaction. In our experiments, such
an inhibition effect was not observed, and formic acid did not exist as its initial state but
principally in peroxophosphotungstate complex. These results indicate that the formic
acid addition (this work) or formation during the reaction [51] may serve as promotor or
inhibitor in the organosulfur oxidation reactions, depending on the reaction conditions
(oxidant, reaction temperature, pressure) and catalysts.

2.7.2. Effect of Fuel Composition on DBT Removal

The composition of diesel fuel significantly impacts the oxidative desulfurization
of dibenzothiophene (DBT). Nitrogen-containing compounds, such as indole, exhibit a
stronger basic character and higher electron density compared to DBT, leading to competi-
tive adsorption on the catalyst’s active sites, particularly the Lewis acid sites and oxygen
defects. Indole, with its pyridinyl nitrogen atom, can compete for these sites, potentially
reducing the availability of active sites for DBT adsorption. If the catalyst has a sufficient
number of active sites to accommodate both DBT and indole, the presence of indole may
not significantly affect DBT removal. However, when the catalyst mass is limited, the com-
petition between DBT and indole becomes more pronounced, resulting in a reduction of
DBT conversion by approximately 7% within a 60 min reaction time (Figure 10). Our results
are in good agreement with the observation reported by Rajendran A. et al. [52]. To the
contrary, the other investigators claimed that by adding a proper amount of 1-methylindole,
the DBT oxidation was promoted, which was explained by the formation of highly cat-
alytically active species in the vanadium-substituted heteropolyacids catalyst, because
1-methylindole acts as a reducing agent [53]. This may be true when molecular oxygen is
used as oxidant and the ODS reactions are carried out at higher pressure. However, under
the same condition, addition of 2- and 3-methylindole exhibited a negative effect on DBT
oxidation. These opposite observations are not fully understood yet.

When a model fuel containing 150 ppm of 4,6-dimethyldibenzothiophene (4,6-DMDBT)
and 150 ppm of DBT was tested, the DBT conversion was only slightly affected, contrary
to what might be expected based on competitive adsorption theory. Despite 4,6-DMDBT
having a higher electron density (5.760) compared to DBT (5.758) [54], which theoretically
should favor its adsorption, the conversion of DBT was not significantly diminished. The
higher electron density in 4,6-DMDBT is attributed to the electron-donating methyl groups
attached to the aromatic ring. However, Otsuki et al. reported that 4,6-DMDBT exhibits
higher oxidation reactivity with hydrogen peroxide and formic acid than DBT, with a
reaction-rate constant ratio of 1.7:1 [54]. This seemingly paradoxical result can be explained
by steric hindrance from the methyl groups at the 4 and 6 positions on the aromatic rings
of 4,6-DMDBT, which restricts the access of the sulfur atom to the catalyst’s active sites.
Specifically, in HPW/SBA−15 catalysts, these methyl groups can hinder the adsorption
of 4,6-DMDBT, despite its higher electron density. Moreover, the larger molecular size of
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4,6-DMDBT (179.6 ± 3.0 cm3) compared to DBT (147 ± 3.0 cm3) [55] further exacerbates
this steric hindrance, leading to a slight reduction in DBT conversion when 4,6-DMDBT
is present.
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Figure 10. Effect of addition of indole and 4,6-DMDBT on the DBT oxidation using the 20 wt%
HPW/SBA−15 catalyst (temperature 70 ◦C; catalyst concentration 2 mg/mL; R = 8; and H2O2/formic
acid molar ratio = 1.5).

The effect of fuel composition on DBT removal was further investigated using cyclo-
hexene and p-xylene as representatives of olefins and aromatic compounds, respectively.
Experiments were conducted using (i) 95 vol% n-hexadecane with 5 vol% p-xylene and
(ii) 95 vol% n-hexadecane with 5 vol% cyclohexene. As shown in Figure 11, the addition of
5 vol% p-xylene had a negligible impact on ODS activity, with DBT conversion remaining
high at 98.8%. In contrast, the addition of 5 vol% cyclohexene significantly reduced DBT
conversion to 91.7%, indicating that cyclohexene has a more pronounced inhibitory effect
on the ODS reaction compared to p-xylene. This inhibition can be attributed to the compet-
itive reactions between DBT and olefins, which are more susceptible to oxidation under
strong oxidizing conditions, thereby hindering the ODS process.

Inorganics 2024, 12, x FOR PEER REVIEW 15 of 25 
 

 

sulfur atom to the catalyst’s active sites. Specifically, in HPW/SBA−15 catalysts, these 
methyl groups can hinder the adsorption of 4,6−DMDBT, despite its higher electron 
density. Moreover, the larger molecular size of 4,6−DMDBT (179.6 ± 3.0 cm3) compared to 
DBT (147 ± 3.0 cm3) [55] further exacerbates this steric hindrance, leading to a slight 
reduction in DBT conversion when 4,6−DMDBT is present. 

The effect of fuel composition on DBT removal was further investigated using 
cyclohexene and p-xylene as representatives of olefins and aromatic compounds, 
respectively. Experiments were conducted using (i) 95 vol% n-hexadecane with 5 vol% p-
xylene and (ii) 95 vol% n-hexadecane with 5 vol% cyclohexene. As shown in Figure 11, the 
addition of 5 vol% p-xylene had a negligible impact on ODS activity, with DBT conversion 
remaining high at 98.8%. In contrast, the addition of 5 vol% cyclohexene significantly 
reduced DBT conversion to 91.7%, indicating that cyclohexene has a more pronounced 
inhibitory effect on the ODS reaction compared to p-xylene. This inhibition can be attributed 
to the competitive reactions between DBT and olefins, which are more susceptible to 
oxidation under strong oxidizing conditions, thereby hindering the ODS process. 

I II III
0

20

40

60

80

100

D
BT

 c
on

ve
rs

io
n 

(%
)

Oil composition
 

Figure 11. Effect of oil composition on DBT conversion under optimal reaction condition 
(temperature 70 °C; catalyst concentration 2 mg/mL; R = 6; and H2O2/formic acid molar ratio = 1.5). 
(I) 300 ppm DBT in n-hexadecane; (II) 300 ppm DBT in 95 vol% n-hexadecane + 5 vol% p-xylene; 
(III) 300 ppm DBT in 95 vol% n-hexadecane + 5 vol% cyclohexene. 

2.7.3. Correlation of Oxygen Defects and Surface Acidity with Catalytic Activity 
Characterization through in situ FTIR spectroscopy of pyridine adsorption reveals 

that HPW/SBA–15 catalysts are predominantly characterized by Lewis acid sites. DBT 
molecules, which contain sulfur atoms with two pairs of unshared electrons, can act as 
Lewis bases by donating electrons to these Lewis acid sites on the catalyst. During the 
oxidative desulfurization reaction, DBT preferentially adsorbs onto these sites via acid–base 
interactions, where the sulfur atom in DBT donates its electron pairs to the catalyst’s Lewis 
acid sites. This observation aligns with previous studies on supported transition metal 
oxides, such as MoO3/SBA−15 [21] and V2O5/SBA−15 [22], which exhibit similar behavior. 
The Keggin structure within the HPW/SBA–15 catalyst shows structural defects, as 
confirmed by in situ FTIR and Rietveld structure refinement analyses. These defects are 
primarily due to the rupture of W‒Oc‒W and W=Ot bonds, which occur during calcination-
induced surface dehydroxylation. The resulting oxygen deficiencies decrease the electron 
density around the tungsten (W) ions, making these ion electron acceptors maintain charge 
neutrality. W6⁺ electron configurations with unoccupied 3d orbitals also serve as electron 
acceptors. Therefore, tungsten ions with oxygen defects or coordinately unsaturated W6⁺ 
species in the HPW/SBA−15 catalysts are a significant source of Lewis acid sites. 

Oxidants such as H2O2 or peroxyformic acid (HCOOOH), which possess unpaired 
electrons, can adsorb onto W6⁺ ions with oxygen defects or Lewis acid sites, forming active 

Figure 11. Effect of oil composition on DBT conversion under optimal reaction condition (temperature
70 ◦C; catalyst concentration 2 mg/mL; R = 6; and H2O2/formic acid molar ratio = 1.5). (I) 300 ppm
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2.7.3. Correlation of Oxygen Defects and Surface Acidity with Catalytic Activity

Characterization through in situ FTIR spectroscopy of pyridine adsorption reveals
that HPW/SBA−15 catalysts are predominantly characterized by Lewis acid sites. DBT
molecules, which contain sulfur atoms with two pairs of unshared electrons, can act as
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Lewis bases by donating electrons to these Lewis acid sites on the catalyst. During the
oxidative desulfurization reaction, DBT preferentially adsorbs onto these sites via acid–
base interactions, where the sulfur atom in DBT donates its electron pairs to the catalyst’s
Lewis acid sites. This observation aligns with previous studies on supported transition
metal oxides, such as MoO3/SBA−15 [21] and V2O5/SBA−15 [22], which exhibit similar
behavior. The Keggin structure within the HPW/SBA−15 catalyst shows structural defects,
as confirmed by in situ FTIR and Rietveld structure refinement analyses. These defects are
primarily due to the rupture of W–Oc–W and W=Ot bonds, which occur during calcination-
induced surface dehydroxylation. The resulting oxygen deficiencies decrease the electron
density around the tungsten (W) ions, making these ion electron acceptors maintain charge
neutrality. W6+ electron configurations with unoccupied 3d orbitals also serve as electron
acceptors. Therefore, tungsten ions with oxygen defects or coordinately unsaturated W6+

species in the HPW/SBA−15 catalysts are a significant source of Lewis acid sites.
Oxidants such as H2O2 or peroxyformic acid (HCOOOH), which possess unpaired

electrons, can adsorb onto W6+ ions with oxygen defects or Lewis acid sites, forming
active species like peroxometallics and superoxometallics. Both DBT and these oxidants
preferentially adsorb onto these sites, leading to competition that enhances the transfer of
oxygen from the peroxometallic and superoxometallic species to the sulfur atom in DBT,
ultimately promoting the formation of DBTO2 sulfone. Figure 12 illustrates the relationship
between the relative intensity of the W=O band (I980) and the number of Lewis acid sites in
the 10–30 wt% HPW/SBA−15 catalysts as a function of temperature. The decrease in W=O
band intensity with increasing temperature indicates a greater number of oxygen defects
within the Keggin structure. Conversely, the number of Lewis acid sites increases with
higher calcination temperatures, suggesting that the formation of oxygen defects from the
rupture of W=O and corner-sharing W–Oc–W bonds at elevated temperatures contributes
to the generation of additional Lewis acid sites. The relationship between DBT conversion
and surface acidity is further explored in Figure 13, which presents plots of Lewis acid
sites, Brønsted acid sites, total acidity, and DBT conversion against the heteropolyacid
loading of the catalysts. Under optimal reaction conditions, DBT conversion shows a strong
correlation with the number of Lewis acid sites and the total acidity. However, higher
heteropolyacid content introduces more oxygen defects into the Keggin structure, potentially
enhancing DBT adsorption. This effect is counterbalanced by a reduction in surface area,
poorer heteropolyacid dispersion, and partial pore blockage within the SBA−15 framework,
which results in fewer exposed acid sites and decreased DBT oxidation efficiency. These
findings suggest that surface Lewis acidity and total acidity are critical factors in DBT
oxidation. A synergistic interaction between Brønsted and Lewis acid sites likely facilitates
the transfer of oxygen between peroxometallic and superoxometallic species and DBT,
which will be further elaborated upon in the proposed reaction mechanisms.
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Figure 12. The relative intensity of the IR band at 980 cm−1 and Lewis acidity of the
H3PW12O40/SBA−15 catalyst were plotted as a function of treatment temperature. (A) 10 wt%
H3PW12O40/SBA−15; (B) 20 wt% H3PW12O40/SBA−15; (C) 30 wt% H3PW12O40/SBA−15.
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Figure 13. Variation of acidity and DBT conversion with the H3PW12O40 content in
H3PW12O40/SBA−15 catalysts calcined at 200 ◦C. The acidity data were obtained from FTIR of
pyridine adsorption at 100 ◦C. The DBT conversion was obtained in the presence of formic acid
under the reaction conditions: temperature 70 ◦C; O/S molar ratio 8; reaction time 60 min; catalyst
concentration 2 mg/mL.

2.7.4. Catalytic Mechanisms

Building upon the results and discussions presented, we propose a detailed mechanism
for the oxidative desulfurization (ODS) reaction involving the formation of peroxotungstate
species, the nucleophilic attack by the sulfur atom in DBT, and the critical role of surface
acidity. For the most effective catalysts, namely, 20–30 wt% HPW/SBA−15 calcined at 100
and 200 ◦C, oxygen defects do not appear to be the primary factor driving DBT adsorption
and oxidation. Therefore, the proposed mechanism for these catalysts, illustrated in
Scheme 1, excludes the influence of oxygen defects. In this mechanism, the oxidant (H2O2)
adsorbs onto the catalyst’s surface, oxidizing the exposed W=O bonds to form a surface
peroxophosphotungstate complex (W–O–O–W). Concurrently, DBT in the fuel adsorbs
onto the catalyst’s Lewis acid sites, where it facilitates the transfer of an oxygen atom from
the peroxophosphotungstate complex to the sulfur atom in DBT, resulting in the formation
of sulfone (DBTO2). Alternatively, DBT can directly interact with the O–O bond in the
complex, achieving the same oxidation outcome.

For the sample calcined at 400 ◦C, more oxygen defects are created in the Keggin
structure. In such a situation, in the presence of formic acid, the in situ formed peroxyformic
acid could not only coordinate with the oxygen defects, but also attack the W=O bond
in the Keggin structure to generate a surface peroxophosphotungstate complex (W6+–O–
O–CHO), as demonstrated in Scheme 2. The H+ proton in the peroxophosphotungstate
complex interacts with B acid sites to enhance the electron cloud deformation around the
O–O bond, favoring the O atom transfer from W–O–O–CHO by O–O bond cleavage. As
a result, one [HCOO]− species and sulfoxide or sulfone were formed; B acid sites may
donate an H+ to [HCOO]− species to form a formic acid molecule. Thus, the ODS reaction
cycle was complete. In this procedure, both L and B acid participated in the ODS reaction;
however, they took different roles: L acid served as active sites for DBT adsorption and
peroxophosphotungstate complex formation, while B acid sites assisted in the O atom and
H+ transfer between the adsorbed DBT and peroxophosphotungstate complex.
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peroxophosphotungstate complex.
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2.7.5. Catalyst Reusability

The reusability of the 30 wt% HPW/SBA−15 catalyst was evaluated by measuring
the conversion of DBT across six successive reaction cycles, with the catalyst’s stability
assessed by monitoring potential metal leaching into the oil and solvent phases after
each cycle. The metal concentrations in these phases were determined using inductively
coupled plasma mass spectrometry (ICP-MS), with precise measurements conducted using
a PerkinElmer/Sciex ELAN Dynamic Reaction Cell (DRCPlus) coupled with a PerkinElmer
AS-93 Plus Autosampler. Considering that some catalyst mass loss might occur during the
separation process, potentially affecting DBT oxidation, consistent ratios of oil volume to
catalyst mass were maintained throughout the tests. The results, illustrated in Figure 14,
show that DBT conversion remained nearly constant during the first three reaction cycles.
However, a gradual decline in catalytic activity was observed from the fourth to the fifth
cycles, with DBT conversion decreasing to 96.4% and 95.1%, respectively.
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molar ratio = 1.5).

ICP-MS analysis revealed no detectable leaching of W6+ into either the oil or extracted
phases after five reaction cycles, indicating that the catalyst structure remained largely intact.
To regenerate the catalyst, the spent samples were thoroughly washed with acetonitrile
and then dried before being tested in the sixth reaction cycle. Remarkably, the DBT
conversion in this sixth cycle rebounded to 99%, matching the performance of the fresh
catalyst. These findings suggest that the decline in catalytic activity observed after repeated
cycles is likely due to the occupation of active sites on the catalyst surface by adsorbed
DBT or sulfone products. However, this loss of activity can be effectively restored by
washing the used catalyst with acetonitrile, which removes these adsorbed species and
rejuvenates the catalyst’s performance. This highlights the robustness and recyclability of
the HPW/SBA−15 catalyst in oxidative desulfurization processes.

3. Experimental
3.1. SBA−15 and H3PMo12O40/SBA−15 Synthesis

The SBA−15 was synthesized using the hydrothermal method as described in the
literature [19]. In this process, tetraethyl orthosilicate (TEOS, Sigma-Aldrich, St. Louis,
MO, USA) was employed as the silicon precursor, and a [(polyethylene oxide)–block-
(polypropylene oxide)–block-(polyethylene oxide)] triblock copolymer (Pluronic P123,
Sigma-Aldrich, St. Louis, MO, US) was used as a template. The H3PW12O40/SBA−15
catalysts were prepared via the incipient wetness impregnation method. Specifically, 5 g
of SBA−15 was impregnated with 100 mL of methanol (Fermont, MTY, MX), maintaining
a methanol-to-SBA−15 ratio of 20 mL/g. The methanol solution contained a calculated
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amount of H3PW12O40 (Sigma-Aldrich, St. Louis, MO, US) to achieve the desired loading,
varying from 10 to 50 wt% of H3PW12O40 on the SBA−15 support. The resulting suspension
was transferred to a rotary evaporator and placed inside a water bath at 50 ◦C to evaporate
the methanol completely. The dried solid obtained from this process was then divided
into three portions: one third was dried at 100 ◦C, another third was calcined at 200 ◦C
for 2 h, and the final third was calcined at 400 ◦C for 2 h. The prepared samples were
labeled as xHPW/SBA−15, where “x” denotes the H3PW12O40 content, and HPW refers to
H3PW12O40.

3.2. Characterization

X-ray diffraction (XRD) patterns were recorded using a diffractometer (D500 diffrac-
tometer, Siemens, Fort Worth, TX, USA), scanning across a 2θ range of 10 to 70◦ with a step
size of 0.02◦ and a scanning speed of 2.4◦/min. The textural properties of the samples were
determined using nitrogen (N2) adsorption–desorption isotherms at −196 ◦C, measured
with a Nova 4200e Series instrument (Quantachrom Instruments, Boynton Beac, FL, USA)
Prior to analysis, each sample was subjected to thermal treatment at 200 ◦C for 12 h under
vacuum. The specific surface area was calculated using the Brunauer–Emmett–Teller (BET)
model, while pore size distribution was determined using the Barrett–Joyner–Halenda
(BJH) model. Morphological features and particle size distribution of the catalysts were ex-
amined by transmission electron microscopy (TEM) using a microscope (JEM-ARM200 CF,
JEOL Ltd., Tokyo, Japan) operated at an accelerating voltage of 200 kV. Selected areas in the
TEM images were analyzed by energy-dispersive X-ray spectroscopy (EDS) to determine
the elemental composition of the nanoparticles.

X-ray photoelectron spectroscopy (XPS) analyses were conducted using a spectrometer
(K-Alpha, Thermo Fisher Scientific Inc., Waltham, MA, USA) equipped with a monochro-
matic Al Kα source (1478 eV). The analysis area was 400 µm2, and a charge neutralizer was
employed. The sample powders were dispersed on a carbon film and affixed to the sample
holder using double-sided copper tape. The structure and stability of the HPW/SBA−15
catalysts were investigated using in situ Fourier-transform infrared (FTIR) spectroscopy.
Measurements were performed with a PerkinElmer Model 170-SX FTIR spectrometer
(Waltham, MA, USA). A solid wafer (1 cm in diameter, approximately 10–20 mg in mass)
was placed on a glass support within an IR cell. The temperature was increased at a rate
of 5 ◦C/min under vacuum conditions (10−5 torr). IR spectra were recorded at various
temperatures: 25, 50, 100, 150, 200, 250, 300, 350, 400, and 450 ◦C.

3.3. Surface Acidity Measurements

The surface acidity of the samples was determined using an in situ Fourier-transform
infrared (FTIR) spectroscope (170-SX, PerkinElmer, Waltham, MA, USA) with the pyridine
adsorption method. Before pyridine exposure, the sample wafer was activated by heating
at 200 ◦C for 1 h under vacuum (10−5 torr) to remove any adsorbed surface species. After
cooling to room temperature, approximately 10 µL of liquid pyridine was introduced
into the IR cell containing the solid wafer. The pyridine was allowed to adsorb onto
the sample surface for 15 min at the set temperature, after which excess pyridine was
removed by vacuum. IR spectra were recorded over a temperature range of 50 to 400 ◦C
to monitor the interactions between the adsorbed pyridine molecules and the surface
acid sites of the catalysts. Characteristic IR bands in the 1300–1700 cm−1 region were
analyzed to distinguish between Brønsted and Lewis acid sites. The presence of pyridinium
ions adsorbed on Brønsted acid sites was indicated by an IR band at 1545 cm−1, while
coordinated pyridine on Lewis acid sites was identified by an IR band at approximately
1455 cm−1. The concentration of surface acidity was calculated using the Beer–Lambert law:

C = (AS/εm) × 1000, (3)

where C is the acid sites concentration (µmol/gcat), A is the IR band’s area (absorption
cm−1), S is the wafer surface (cm2), m corresponds to the wafer mass (mg), and ε is the molar
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extinction coefficient (cm.µmol−1). The extinction coefficients, EB = 1.0086 mmol/cm2 for
Brønsted acid sites and EL = 0.9374 mmol/cm2 for Lewis acid sites, were used for the acidity
data calculation. The extinction coefficient is a measure of how strongly a chemical species
attenuates light at a given wavelength, which is described in the Supplementary Materials.

3.4. Structure Refinement with Rietveld Method

The crystalline structures of the catalysts were refined using the Rietveld method,
employing the JAVA-based software Version 2.998 Materials Analysis Using Diffraction
(MAUD) [56]. The concentration of oxygen defects in the dispersed H3PW12O40 crystals
was determined by refining the occupancy of oxygen atoms within the Keggin structure.
The oxygen defect concentration was calculated using the following equa, tion:

Oxygen defect (%) = (Otn − Orn)/Otn, (4)

where Otn is the theoretical occupancy number of oxygen atoms in the unit lattice cell of
ideal H3PW12O40 crystal, and Orn is the real occupancy number of oxygen atoms in the unit
lattice cell in the dispersed H3PW12O40 crystals on the SBA−15 support. For the structural
refinement, the H, O, P, and W atomic fractional coordinates, crystal space group, structure
symmetry, and theoretical occupancy number in the orthorhombic and cubicstructures
of H3PW12O40 are reported in SM Tables S1 and S2 in the Supplementary Materials. The
weighted-profile R factors (Rwp) are not estimates of the probable errors in the analysis as a
whole, but only of minimum possible errors based on normal distribution.

For the structural refinement, the atomic fractional coordinates for hydrogen (H),
oxygen (O), phosphorus (P), and tungsten (W), as well as the crystal space group, struc-
tural symmetry, and theoretical occupancy numbers for the orthorhombic structure of
H3PW12O40, were referenced as reported in Table S1 of the Supplementary Materials. The
weighted-profile R factors (Rwp) were used as indicators of the refinement quality; these
factors are not estimates of the overall errors but represent the minimum possible errors
based on a normal distribution.

3.5. Catalytic Evaluation

The catalytic activity of the catalysts was assessed using the oxidation of dibenzothio-
phene (DBT) as a model reaction. The reaction mixture consisted of 300 ppm DBT dissolved
in n-hexadecane, representing model diesel fuel. To investigate the impact of fuel com-
position on oxidative desulfurization (ODS) efficiency, cyclohexene and p-xylene were
selected as representative olefins and aromatic compounds commonly found in real diesel
fuel. These compounds were mixed with n-hexadecane to create three different model
diesel mixtures: (i) 95 vol% n-hexadecane and 5 vol% p-xylene, (ii) 95 vol% n-hexadecane
and 5 vol% cyclohexene, and (iii) 90 vol% n-hexadecane, 5 vol% cyclohexene, and 5 vol%
p-xylene. To further explore the influence of other fuel components on ODS efficiency and
potential reaction competition, some experiments included alkylated DBT derivatives, such
as 4,6-dimethyldibenzothiophene (4,6-DMDBT), and nitrogen-containing compounds like
indole mixed with DBT in the reaction mixture.

The oxidation reactions were carried out under atmospheric pressure at varying
temperatures of 50, 60, 70, and 80 ◦C, with a reaction time of 60 min and an agitation
speed of 750 rpm. Hydrogen peroxide (H2O2) was used as the oxidant, with a molar ratio
of H2O2/DBT ranging from 2 to 10. In certain experiments, formic acid (HCOOH) was
added to the H2O2 to enhance its stability and oxidation power. The H2O2/HCOOH molar
ratio was maintained at 1.5, and the mixture was added to the reaction system in three
portions to prevent rapid heat release—one third at the beginning, another third after
20 min, and the final third after 40 min of reaction. The effect of catalyst concentration on
the ODS reaction was evaluated by varying the catalyst amount from 0.5 to 3 mg/mL. DBT
concentration in the n-hexadecane phase was analyzed using UV–Vis spectrophotometry.
The absorption band at 240 nm was monitored to track changes in DBT concentration,
while the absorption bands at approximately 212 nm and 235 nm were used to detect
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the formation of sulfoxide and sulfone, respectively. The conversion of DBT (X_DB) was
calculated using the following equation:

XDBT (%) = (C0 − Ct)/C0, (5)

where XDBT is the DBT conversion or oxidative removal, C0 is the DBT concentration in
the oil phase at time zero, and Ct is the DBT concentration in the oil phase at time t. The
volume of the reaction mixture was assumed to be constant, as only a very small liquid
sample was withdrawn from the reaction mixture for analysis.

4. Conclusions

This study successfully demonstrated an effective strategy for the simultaneous oxida-
tion and separation of refractory organosulfur compounds, such as dibenzothiophene (DBT)
and 4,6-dimethyldibenzothiophene (4,6-DMDBT), from model diesel fuel. Using a biphasic
system with hydrogen peroxide as the oxidant and defective heteropolyoxometalate cata-
lysts, the approach shows significant potential for achieving ultra-clean diesel fuel with
near-zero sulfur content. The investigation provided an in-depth analysis of oxygen defects
within the Keggin structure of the dispersed HPW/SBA−15 catalysts, using techniques
such as Rietveld structural refinement, in situ FTIR characterization, and XPS analysis. The
results revealed that these oxygen defects are influenced by calcination temperature and
heteropolyacid content. The presence of Lewis acid sites in the catalysts was found to be
critical, serving a dual function: accepting the lone electron pairs of sulfur atoms in DBT
molecules and acting as active centers for the formation of surface peroxometallic species.
Additionally, Brønsted acid sites facilitated the transfer of oxygen between the oxidant and
peroxometallic species, thereby promoting the conversion of sulfur compounds to sulfones.

The HPW/SBA−15 catalysts exhibited outstanding catalytic activity for DBT oxi-
dation, particularly in the presence of H2O2 and formic acid. Under optimal reaction
conditions (70 ◦C, 60 min reaction time, O/S molar ratio of 6–8, H2O2/formic acid molar
ratio of 1.5, and catalyst concentration of 2 mg/mL), more than 99% of DBT was effectively
oxidized and separated from the oil phase. However, the presence of compounds such as
cyclohexene and indole in the model diesel negatively impacted DBT oxidation, leading
to a reduction in DBT conversion. The best catalytic performance was observed in the
20–30 wt% HPW/SBA−15 catalysts. This superior performance can be attributed to their
higher concentration of Lewis and Brønsted acid sites, greater dispersion, and more pro-
nounced defects within the Keggin-type heteropolyoxometalate structure. These findings
underscore the importance of optimizing the structural and compositional parameters of
the catalysts to maximize their effectiveness in oxidative desulfurization processes, paving
the way for cleaner diesel production.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/inorganics12110274/s1, Table S1: Atomic fractional coordinates in the
orthorhombic structures of H3PW12O40; Table S2: Atomic fractional coordinates in the cubic structure of
H3PW12O40.
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