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Abstract: This structural study examines over 102 coordinate Cu(I) complexes with compositions such
as C-Cu-Y (Y=HL, OL, NL, SL, SiL, BL, PL, Cl, Br, I, AlL, or SnL), N-Cu-Y (Y=OL, Cl), S-Cu-Y (Y=Cl,
Br, I), P-Cu-Y (Y=Cl, I), and Se-Cu-Y (Y=Br, I). These complexes crystallize into three different crystal
classes: monoclinic (seventy-two instances), triclinic (twenty-eight instances), and orthorhombic
(eight instances). The Cu-L bond length increases with the covalent radius of the ligating atom. There
are two possible geometries for coordination number two: linear and bent. A total of 21 varieties
of inner coordination spheres exist, categorized into two hetero-types (C-Cu-Y, i.e., organometallic
compounds and X-Cu-Y, i.e., coordination compounds). The structural parameters of hetero Cu(I)
complexes were compared with trans-X-Cu (I)-X (homo) complexes and analyzed. The maximum
deviations from linearity (180.0◦) are, on average, 10.3◦ for Br-Cu(I)-Br, 16.6◦ for C-Cu(I)-Sn, and
35.5◦ for P-Cu(I)-I. These results indicate that ligand properties influence deviation from linearity,
increasing in the order of hard < borderline < soft.

Keywords: structural analysis; X-Cu(I)-Y complexes; monodentate ligands; trans-effect

1. Introduction

The chemistry of copper compounds has been widely studied, with a significant focus
on the relationship between their structure and reactivity, which plays a crucial role in
applications ranging from industrial catalysis to biomedical fields. Most X-ray studies
of transition metal compounds involve copper. While copper typically exists in the +2
oxidation state, other states, including +1, +3, and +4, are also known, with copper(I) being
the most common. Although copper(I) is prone to air oxidation and unstable in aqueous
solutions, many stable compounds have been synthesized using soft pi-acid ligands, and
others remain stable due to their very low solubility.

It is well-established that Cu(I) and Cu(II) complexes exhibit distinct intrinsic stere-
ochemical preferences [1]. Copper(II), with its d9 configuration, tends to adopt stere-
ochemistries that benefit from ligand field stabilization due to energetically favorable
d-orbital splitting. In contrast, copper(I), being d10, has its stereochemistry primarily influ-
enced by steric and charge effects alone. These differences in stereochemical preferences
have significant implications for copper’s role in biological redox chemistry. Blue copper
proteins exemplify this by adopting a donor ligand set and stereochemistry that strike a
balance between the inherent preferences of both copper(I) and copper(II) [2]. Studying
the reaction chemistry of coordinatively unsaturated copper(I) complexes is key to under-
standing the reaction mechanism by which dioxygen-activating copper proteins function.
Cuprous forms of these enzymes often exhibit two- or three-coordination [3]. Structural
comparisons between copper(I) and copper(II) redox pairs have been reported with ligands
like thioether [4–6], imidazole [7], and mixed pyridine thioether donors [8].

Inorganics 2024, 12, 279. https://doi.org/10.3390/inorganics12110279 https://www.mdpi.com/journal/inorganics

https://doi.org/10.3390/inorganics12110279
https://doi.org/10.3390/inorganics12110279
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/inorganics
https://www.mdpi.com
https://orcid.org/0009-0004-4379-5058
https://orcid.org/0000-0001-5755-9970
https://doi.org/10.3390/inorganics12110279
https://www.mdpi.com/journal/inorganics
https://www.mdpi.com/article/10.3390/inorganics12110279?type=check_update&version=1


Inorganics 2024, 12, 279 2 of 15

Structural studies of copper(I) compounds have been carried out and have been
sporadically summarized in annual reports [9–12]. The structural chemistry of single
halo (amine) copper(I) compounds has been reviewed [13]. A comprehensive overview of
copper(I) structures (almost one thousand) was published in 1995 [14]. Recently, structures
of mutually trans-X-Cu(I)-X (X=OL, NL, CL, PL, SL, Se L, Cl, or Br) were studied [15].
This manuscript aims to analyze the structural parameters of over one hundred X-Cu(I)-Y
complexes, enabling us to compare them with the previously analyzed group of X-Cu(I)-X
complexes. The structures are divided into two groups according to their coordination
atoms: C-Cu(I)-Y and X-Cu(I)-Y, respectively.

2. Structural Aspects of C-Cu(I)-Y (Y=HL, OL, NL, SL, Si L, BL, PL, Cl, Br, I, CAl, or CSn)
2.1. Structures of C-Cu(I)-Y (Y=HL, OL)

In the monoclinic 0.55 (C22H36N+) 0.55 (C18HBF15
−) 0.45 [Cu(C22H36N)(C18HBF15)]

(at 100 K) [16], two unidentate ligands, in the former via C- and in the latter via H-donor
atoms, form the C-Cu(I)-H type with Cu-L bond distances of 1.879 Å (L=C) and 1.769 Å
(L=H). The C-Cu(I)-H bond angle is 177.0◦. This is the only example of such a type.

There are 19 examples in which two unidentate ligands, via C- and O-donor atoms,
form the C-Cu(I)-O type. Such Cu(I) complexes are the monoclinics [Cu(C22H35N)(CHO2)]
(at 100 K) [16], [Cu(C18H20N2)(t-BuO)] (at 210 K) [17], [Cu(C28H40N2(t-BuO)] (at 150 K) [17],
[Cu(C27H37N2)(C27H36N2O2)] (at 150 K) [18], [Cu(C27H36N2)(C2H3O2]0.5(C6H6) (at 193 K) [19],
[Cu(C21H24N2)(C2H3O2)] (at 295 K) [20] [Cu(C27H38N2)(C2H3O2)]C6H6 (at 295 K) [20],
[Cu(C27H38N2)(C2H3O2)]C7H8 (at 200 K) [21], [Cu(C21H26N2)(CF3CO2)] (at 173 K) [22],
[Cu(C27H36N2)(PhCOO)] (at 100 K) [23], [Cu(C27H37N2)(C8H7O3)](C4H8O) (at 173 K) [24],
[Cu(C24H28N2O2)(Ph3SiO)] (at 150 K) [25], and [Cu(C27H38N2)(C5H3SO2)] (at 100 K) [26].

The triclinics are [Cu(C23H30N2)(C4H9O)] (at 210 K) [17], [Cu(C21H26N2)(C4H9O)]0.5(C6H6)
(at 150 K) [17], and [Cu(C24H35N2)(C14H13O2)]0.5(C4H8O) (at 163 K) [27].

The structure of [Cu(C24H28N2O2)(Ph3SiO)] [25] is shown in Figure 1 as an example.
The total mean Cu-L bond distances in Cu(I) complexes with the C-Cu(I)-O type are 1.869 Å
(range 1.844–1.886 Å) (L=C) and 1.837 Å (range 1.769–1.914 Å) (L=O). The C-Cu(I)-O bond
angles range from 168.2◦ to 179.1◦ (mean 175.1◦).

Inorganics 2024, 12, x FOR PEER REVIEW 3 of 16 
 

 

 
Figure 1. Structure of [Cu(C24H28N2O2) (Ph3SiO)] [25]. 

2.2. Structures of C-Cu(I)-Y (Y=NL, SL, SiL) 
There are 21 Cu(I) complexes in which monodentate ligands, one via C atom and 

another one via N atom, create two-coordinate Cu(I) atoms of the C-Cu(I)-N type. Such 
complexes are the monoclinics [Cu(C27H36N2)(py)]BF4 (at 296 K) [28], [Cu(C27H36N2)(2-
CH3py)]BF4CHCl3 (at 140 K) [28], [Cu(C27H36N2)(2-Phpy)]BF4 (at 140 K) [28], 
[Cu(C27H38N2)(t-Bu3 P=N)]C6H14 (at 154 K) [29], [Cu(C27H36N2)(t-Bu3 P=N)]C5H12 (at 200 K) 
[29], [Cu(C23H35N)(C12H8N)] (at 100 K) [30], [Cu(C28H39N2)(C16H17PON)] (at 150 K) [31], 
[Cu(C31H38N2)(C12H8N)] (at 100 K) [32], [Cu(C27H36N2)(N3)] (at 173 K) [33], 
[Cu(C27H36N2)(C12H8N)] (at 180 K) [34], [Cu(C27H34N2)(C12D8N)] (at 180 K) [34], and 
[Cu(C19H20N2)(NCO)] (at 293 K) [35], the orthorhombics [Cu(C27H34N2)(p-to-
sylN4)]0.25(CH2Cl2) (at 173 K) [33], [Cu(C21H24N2)(C12H8N)] (at 180 K) [34], 
[Cu(C27H36N2)(NCO)] (at 123 K) [35], [Cu(C27H38N2)(NCO)] (at 123 K) [35], 
[Cu(C27H38N2)(NCS)] (at 123 K) [35], and [Cu(C21H24N2)(C11H10F4NO2)] (at 153 K) [36], and 
the triclinics [Cu(C27H9N2)(C8H7N4O)]C6H6 (at 173 K) [33], [Cu(C27H36N2)(C8H5N2O)] (at 
173 K) [33], and [Cu(C11H21N2)(C37H63AlN4Si2)]0.5(C6H14) (at 150 K) [37]. The structure of 
[Cu(C19H20N2)(NCO)] [35] is shown in Figure 2 as an example. The total mean values of 
the Cu-L bond distances are 1.875 Å (range 1.862–1.928 Å) (L=C) and 1.864 Å (range 1.810–
1.913 Å) (L=N) and the mean C-Cu(I)-N bond angle is 175.7° (range 166.8°–179.8°). The 
structure of [Cu(C23H35N)(C12H8N)] [30] is shown in Figure 3 as another illustrative exam-
ple. 

Figure 1. Structure of [Cu(C24H28N2O2) (Ph3SiO)] [25].

The [Cu(C11H20N2)(C4H9O)] (at 100 K) [27] complex crystallizes in two crystal classes,
monoclinic and orthorhombic. Each Cu(I) atom has two coordinates (C-Cu(I)-O). These
complexes also differ from the structural data. The Cu-L bond distances, monoclinic vs.
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orthorhombic, are 1.876 Å (L=C) and 1.803 Å (L=O) vs. 1.882 Å and 1.815 Å. The values of
the C-Cu(I)-O bond angles are 173.7◦ and 175.0◦, respectively.

2.2. Structures of C-Cu(I)-Y (Y=NL, SL, SiL)

There are 21 Cu(I) complexes in which monodentate ligands, one via C atom and another
one via N atom, create two-coordinate Cu(I) atoms of the C-Cu(I)-N type. Such complexes are
the monoclinics [Cu(C27H36N2)(py)]BF4 (at 296 K) [28], [Cu(C27H36N2)(2-CH3py)]BF4CHCl3
(at 140 K) [28], [Cu(C27H36N2)(2-Phpy)]BF4 (at 140 K) [28], [Cu(C27H38N2)(t-Bu3 P=N)]C6H14
(at 154 K) [29], [Cu(C27H36N2)(t-Bu3 P=N)]C5H12 (at 200 K) [29], [Cu(C23H35N)(C12H8N)]
(at 100 K) [30], [Cu(C28H39N2)(C16H17PON)] (at 150 K) [31], [Cu(C31H38N2)(C12H8N)] (at
100 K) [32], [Cu(C27H36N2)(N3)] (at 173 K) [33], [Cu(C27H36N2)(C12H8N)] (at 180 K) [34],
[Cu(C27H34N2)(C12D8N)] (at 180 K) [34], and [Cu(C19H20N2)(NCO)] (at 293 K) [35], the or-
thorhombics [Cu(C27H34N2)(p-tosylN4)]0.25(CH2Cl2) (at 173 K) [33], [Cu(C21H24N2)(C12H8N)]
(at 180 K) [34], [Cu(C27H36N2)(NCO)] (at 123 K) [35], [Cu(C27H38N2)(NCO)] (at 123 K) [35],
[Cu(C27H38N2)(NCS)] (at 123 K) [35], and [Cu(C21H24N2)(C11H10F4NO2)] (at 153 K) [36],
and the triclinics [Cu(C27H9N2)(C8H7N4O)]C6H6 (at 173 K) [33], [Cu(C27H36N2)(C8H5N2O)]
(at 173 K) [33], and [Cu(C11H21N2)(C37H63AlN4Si2)]0.5(C6H14) (at 150 K) [37]. The structure
of [Cu(C19H20N2)(NCO)] [35] is shown in Figure 2 as an example. The total mean values
of the Cu-L bond distances are 1.875 Å (range 1.862–1.928 Å) (L=C) and 1.864 Å (range
1.810–1.913 Å) (L=N) and the mean C-Cu(I)-N bond angle is 175.7◦ (range 166.8◦–179.8◦). The
structure of [Cu(C23H35N)(C12H8N)] [30] is shown in Figure 3 as another illustrative example.
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Figure 2. Structure of [Cu(C19H20N2)(NCO)] [35].

There are two Cu(I) complexes, the monoclinic [Cu(C69H56N2)(SH)]CH2Cl2 (at 100 K) [38]
and the orthorhombic [Cu(C27H36N2)(SH)] (at 100 K) [38], in which there is an unidentate
ligand via a C-donor atom with an unidentate SH form of the C-Cu(I)-S type, with mean
Cu-L bond distances of 1.867 Å (L=C) and 2.104 Å (L=S). The mean C-Cu(I)-S bond angle
is 177.8◦.

In the monoclinics [Cu(C27H36N2)((MeO)3Si)] (at 100 K) [39], [Cu(C21H24N2)(C8H11Si)]
(at 100 K) [40], [Cu(C11H20N2)(C8H11Si)]0.5C7H8 (at 100 K) [40], [Cu(C27H36N2)(C21HN3Si3)]
SbF6 CH2Cl2 (at 100 K) [41], the orthorhombics [Cu(C21H24N2)(Ph3Si)] (at 100 K) [40]
and [Cu(C11H20N2)(C8H11Si)] (at 100 K) [40], and the triclinic [Cu(C27H36N2)(Ph3Si)] (at
100 K) [40], unidentate ligands via C- and Si-donor atoms form the C-Cu(I)-Si type. The
structure of [Cu(C27H36N2)((MeO)3Si)] [39] is shown in Figure 4 as an example. The total
mean values of the Cu-L bond distances are 1.935 Å (range 1.925–1.941 Å) (L=C) and 2.273
(range 2.267–2.241 Å) (L=Si). The mean value of the C-Cu(I)-Si bond angles is 173.7 (range
168.2–178.5◦).



Inorganics 2024, 12, 279 4 of 15

Inorganics 2024, 12, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 2. Structure of [Cu(C19H20N2)(NCO)] [35]. 

 
Figure 3. Structure of [Cu(C23H35N)(C12H8N)] [30]. 

There are two Cu(I) complexes, the monoclinic [Cu(C69H56N2)(SH)]CH2Cl2 (at 100 K) 
[38] and the orthorhombic [Cu(C27H36N2)(SH)] (at 100 K) [38], in which there is an uniden-
tate ligand via a C-donor atom with an unidentate SH form of the C-Cu(I)-S type, with 
mean Cu-L bond distances of 1.867 Å (L=C) and 2.104 Å (L=S). The mean C-Cu(I)-S bond 
angle is 177.8°. 

In the monoclinics [Cu(C27H36N2)((MeO)3Si)] (at 100 K) [39], [Cu(C21H24N2)(C8H11Si)] 
(at 100 K) [40], [Cu(C11H20N2)(C8H11Si)]0.5C7H8 (at 100 K) [40], [Cu(C27H36N2)(C21HN3Si3)] 
SbF6 CH2Cl2 (at 100 K) [41], the orthorhombics [Cu(C21H24N2)(Ph3Si)] (at 100 K) [40] and 
[Cu(C11H20N2)(C8H11Si)] (at 100 K) [40], and the triclinic [Cu(C27H36N2)(Ph3Si)] (at 100 K) 
[40], unidentate ligands via C- and Si-donor atoms form the C-Cu(I)-Si type. The structure 
of [Cu(C27H36N2)((MeO)3Si)] [39] is shown in Figure 4 as an example. The total mean values 
of the Cu-L bond distances are 1.935 Å (range 1.925–1.941 Å) (L=C) and 2.273 (range 2.267–
2.241 Å) (L=Si). The mean value of the C-Cu(I)-Si bond angles is 173.7 (range 168.2–178.5°). 

Figure 3. Structure of [Cu(C23H35N)(C12H8N)] [30].

Inorganics 2024, 12, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 4. Structure of [Cu(C27H36N2)((MeO)3Si)] [39]. 

2.3. Structures of C-Cu(I)-Y (Y=BL, PL) 
There are four complexes: the monoclinics [Cu(C11H20N2)(C8H10N2B)] (at 100 K) [42] 

and [Cu(C27H36N2)(C5H10O2B)](C4H8O) (at 100 K) [43], the orthorhombic 
[Cu(C69H56N2)(C5H10O2B)] (at 100 K) [43], and the triclinic [Cu(C27H36N2)(C5H10O2B)]C7H8 
(at 100 K) [43], in which unidentate ligands via C- and B-donor atoms form a C-Cu(I)-B 
type. The total mean values of the Cu-L bond distances are 1.939 (range 1.931–1.953 Å) 
(L=C) and 2.005 (range 1.993–2.020 Å) (L=B). The mean value of the C-Cu(I)-B bond angles 
is 173.5° (range 171.4–175.5°). 

The two unidentate ligands, one via C- and another one via P-donor atom, create 
two-coordinate Cu(I) atoms (C-Cu(I)-Cl). There are seven complexes with such a type: the 
monoclinics [Cu(C27H36N2)(C6H18Si2P)]C7H8 (at 100 K) [44], [Cu(C27H40N)(C22H39N4OP)] (at 
100 K) [45], [Cu(C27H36N2)(C8H23N2BP)]Et2O (at 130 K) [46], [Cu(C60H84AlN4O)(t-
Bu3P)]C6H6 (at 150 K) [47], triclinic [Cu(C28H40N2)(Ph2P)] (at 150 K) [31], and 
[Cu(C27H36N2)(Ph2P)] (at 150 K) [31], and the orthorhombic [Cu(C24H26N2O2)(C21H24P)] (at 
150 K) [47]. The structure of [Cu(C24H26N2O2)(C21H24P)] [48] is shown in Figure 5 as an 
example. 

 
Figure 5. Structure of [Cu(C24H26N2O2)(C21H24P)] [48]. 
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2.3. Structures of C-Cu(I)-Y (Y=BL, PL)

There are four complexes: the monoclinics [Cu(C11H20N2)(C8H10N2B)] (at 100 K) [42]
and [Cu(C27H36N2)(C5H10O2B)](C4H8O) (at 100 K) [43], the orthorhombic [Cu(C69H56N2)
(C5H10O2B)] (at 100 K) [43], and the triclinic [Cu(C27H36N2)(C5H10O2B)]C7H8 (at 100 K) [43],
in which unidentate ligands via C- and B-donor atoms form a C-Cu(I)-B type. The total
mean values of the Cu-L bond distances are 1.939 (range 1.931–1.953 Å) (L=C) and 2.005
(range 1.993–2.020 Å) (L=B). The mean value of the C-Cu(I)-B bond angles is 173.5◦ (range
171.4–175.5◦).

The two unidentate ligands, one via C- and another one via P-donor atom, create two-
coordinate Cu(I) atoms (C-Cu(I)-Cl). There are seven complexes with such a type: the mon-
oclinics [Cu(C27H36N2)(C6H18Si2P)]C7H8 (at 100 K) [44], [Cu(C27H40N)(C22H39N4OP)] (at
100 K) [45], [Cu(C27H36N2)(C8H23N2BP)]Et2O (at 130 K) [46], [Cu(C60H84AlN4O)(t-Bu3P)]C6H6
(at 150 K) [47], triclinic [Cu(C28H40N2)(Ph2P)] (at 150 K) [31], and [Cu(C27H36N2)(Ph2P)] (at
150 K) [31], and the orthorhombic [Cu(C24H26N2O2)(C21H24P)] (at 150 K) [47]. The structure
of [Cu(C24H26N2O2)(C21H24P)] [48] is shown in Figure 5 as an example.
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2.4. Structures of C-Cu(I)-Y (Y=Cl, Br, I, AlL, or SnL)

There are 16 Cu(I) complexes in which inner coordination spheres are built up
by unidentate ligands via a C-donor atom with chloride (C-Cu(I)-Cl). These com-
plexes crystalize in three crystal classes: monoclinic, orthorhombic, and triclinic. The
monoclinics are [Cu(C9H16N2)(Cl)] (at 100 K) [49], [Cu(C30H42N6)(Cl)] (at 123 K) [50],
[Cu(C22H33N)(Cl)] (at 100 K) [51], [Cu(C45H40N2)(Cl)] (at 123 K) [52], [Cu(C45H42N2)(Cl)]
(at 193 K) [53], [Cu(C19H20N2)(Cl)] (at 293 K) [54], [Cu(C20H24N2S)(Cl)]0.5CH2Cl2 (at
100 K) [55], [Cu(C20H31N)(Cl)] (at 140 K) [56], [Cu(C21H32N4)(Cl)] (at 173 K) [57], [Cu(C30H56
B11N3)(Cl)] (at 296 K) [58], [Cu(C27H43N)(Cl)] (at 100 K) [59], [Cu(C27H43N)(Cl)] (at
100 K) [60], and [Cu(C27H39N)(Cl)] (at 140 K) [60]; the orthorhombics are [Cu(C41H38N2O2)
(Cl)] (at 296 K) [61] and [Cu(C27H30N2)(Cl)] (at 150 K) [62]; and the triclinics are [Cu(C55H44N2)
(Cl)] CH2Cl2(at 100 K) [63], [Cu(C21H26N2O2) (Cl)] 0.25 (C4H8O) (at 150 K) [64], and
[Cu(C32H31N)(Cl)] (at 100 K) [65].

The structure of [Cu(C20H24N2S)(Cl)] [55] is shown in Figure 6 as an example. The
total mean values of the Cu-L bond distances are 1.883 (range 1.869–1.892 Å) (L=C) and
2.100 (range 2.088–2.177 Å) (L=Cl). The total mean value of the C-Cu(I)-P bond angle is
175.9 (range 173.3–179.4◦). The structure of [Cu(C27H39N)(Cl)] (at 140 K) [60] is shown in
Figure 7 as another illustrative example.
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There are four monoclinic Cu(I) complexes, namely [Cu(C21H16N2)(Br)] (at 190 K) [66],
[Cu(C40H4N2ClP)(Br)](CF3SO3)2(CH3CN) (at 173 K) [67], [Cu(C22H21F5N2)(Br)] (at 100 K) [68],
and [Cu(C31H32N2)(Br)] (at 295 K) [69], and one triclinic, namely [Cu(C32H31N)(Br)] (at
100 K) [70], in which unidentate ligands via a C-donor atom with bromide build by two-
coordinate inner spheres of C-Cu(I)-Br. The total mean values of the Cu-L bond distances
are 1.892 (range 1.880–1.898 Å) (L=C) and 2.262 (range 2.216–2.268 Å) (L=Br). The total
mean C-Cu(I)-Br bond angle is 174.8 (range 170.9–177.8◦).

In the triclinics [Cu(C27H39N)(I)]0.5CH2Cl2 (at 140 K) [60], [Cu(C27H48N2O3Si)(I)]
(at 100 K) [71], the monoclinic [Cu(C8H4N2)(I)] (at 298 K) [72], and the orthorhombic
[Cu(C35H36N2)(I)] (at 133 K) [73], each unidentate ligand coordinated via a C-donor atom
with iodine builds up an almost linear C-Cu(I)-I angle with a mean value of 178.9 (range
177.2–180◦).

The total mean Cu-L bond distances are 1.915 (range 1.902–1.924 Å) (L=C) and 2.422
(range 2.416–2.42Å) (L=I).

There are two Cu(I) complexes, the monoclinic [Cu(C11H21N2)(C30H50N2Si2Al)](C7H14)
(at 150 K) [37] and the orthorhombic [Cu(C20H31N)(C30H50N2Si2Al)] (at 150 K) [37], in
which two unidentate ligands, one via C- and another one via Al-donor atoms, build up
almost linear C-Cu(I)-Al with bond angles of 175.9 (±25)◦. The Cu-L bond distances are
1.958 (±5) Å (L=C) and 2.374 (±29) Å (L=Al).

The monoclinic [Cu(C27H36N2)(CH3)3 Sn)] (at 100 K) [40] is the only example of the
C-Cu(I)-Sn type. The Cu-L bond distances are 1.925 Å (L=C) and 2.474 Å (L=Sn) and the
C-Cu(I)-Sn bond angle is 163.4◦.

3. Structural Aspects of X-Cu(I)-Y (X, Y = Variable Combination of Donor Atoms)

In the monoclinic [Cu(C30H42N4)(CH3COO)] (at 213 K) [74] and triclinic [Cu(C40H58N4)
(CH3COO)] (at 213 K) [74], unidentate ligands create bent geometry via N- and O-donor
atoms with a mean value of the N-Cu(I)-O angles of 162.8 (±5)◦. The mean values of the
Cu-L bond distances are 1.852 (±2) Å (L=N) and 1.842 (±2) Å (L=O).

The monoclinic [Cu(C13H19N3O2)(Cl)] (at 130 K) [75] is the only example of the N-
Cu(I)-Cl type. The N-Cu(I)-Cl bond angle is 170.6◦and the Cu-L values are 1.885 Å (L=N)
and 2.095 Å (L=Cl).

In two monoclinic Cu(I) complexes, [Cu(C21H24N2S)(Cl)] (at 298 K) [76] and [Cu(C27H36
N2S)(Cl)] (at 100 K) [66], the united ligands via S-donor atom with chloride form a bent
geometry about each Cu(I) atom (S-Cu(I)-Cl) with a value of 165.0 (±9)◦. The mean values
of the Cu-L bond distances are 2.139 (±9) Å (L=S) and 2.108 (±10) Å (L=Cl).

In three monoclinic Cu(I) complexes, [Cu(C21H24N2S)(Br)] (at 298 K) [76], [Cu(C27H36N2S)
(Cl)] (at 100 K) [77], and [Cu(C69H56N2S)(Br)]C7H8 (at 100 K) [78], the unidentate ligands
via S-donor atom with Br about each Cu(I) form a bent geometry of the S-Cu(I)-Br type. The
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mean values of the Cu-L bond distances are 2.134 (±18) Å (L=S) and 2.234 (±8) Å (L=Br).
The monoclinic [Cu(C21H24N2S)(I)] (at 298 K) [76] is the only example of the S-Cu(I)-I type.
The Cu-L bond distances are 2.142 Å (L=S) and 2.385 Å (L=I). The S-Cu(I)-I bond angle
is 160.7◦.

There are two monoclinic Cu(I) complexes [Cu(C21H24N2Se)(Br)] (at 298 K) [76] and
[Cu(C69H56N2Se)(Br)](C7H8) (at 100 K) [78] with an inner coordination sphere of the Se-
Cu(I)Br type. The mean value of the Se-Cu(I)-Br angle is 164.2 (±9)◦. The mean values of
the Cu-L bond distances are 2.248 (±3) Å (L=Se) and 2.230 (±4) Å (L=Br).

The monoclinic [Cu(C21H24N2Se)(I)] (at 298 K) [76] is the only example with an inner
coordination sphere of Se-Cu(I)-I. The structure is shown in Figure 8. The bent geometry
respects the value of 159.6◦. The Cu-L bond distances are 2.252 Å (L=Se) and 2.309 Å (L=I).

Inorganics 2024, 12, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 8. Structure of [Cu(C21H24N2Se)(I)] [76]. 

The monoclinic [Cu(C40H47N2P)(Cl)]0.5(C7H8) (at 173K) has an inner coordination 
sphere of the P-Cu(I)-Cl type [79]. The structure of the complex is shown in Figure 9. 

 
Figure 9. Structure of [Cu(C40H47N2P)(Cl)] 0.5 (C7H8) [79]. 

The value of the P-Cu(I)-Cl angle is 156.8°, and this indicates a bent geometry. The 
Cu-L bond distances are 2.120 Å (L=Cl) and 2.172 Å (L=P). The structure of the triclinic 
[Cu(C40H42N2P)(I)](C7H8) (at 173 K) [79] is similar to the chloride complex. The P-Cu-I an-
gle is 144.5°and the Cu-L bond distances are 2.319 Å (L=I) and 2.202 Å (L=P). 

Figure 8. Structure of [Cu(C21H24N2Se)(I)] [76].

The monoclinic [Cu(C40H47N2P)(Cl)]0.5(C7H8) (at 173K) has an inner coordination
sphere of the P-Cu(I)-Cl type [79]. The structure of the complex is shown in Figure 9.
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The value of the P-Cu(I)-Cl angle is 156.8◦, and this indicates a bent geometry. The
Cu-L bond distances are 2.120 Å (L=Cl) and 2.172 Å (L=P). The structure of the triclinic
[Cu(C40H42N2P)(I)](C7H8) (at 173 K) [79] is similar to the chloride complex. The P-Cu-I
angle is 144.5◦and the Cu-L bond distances are 2.319 Å (L=I) and 2.202 Å (L=P).

The structures of [Cu(C30H42N4)(CH3COO)] (at 213 K) [74] and [Cu(C69H56N2S)(Br)]
C7H8 (at 100 K) [78] are shown in Figures 10 and 11, respectively, as other illustrative exam-
ples of X-Cu(I)-Y complexes possessing X, Y with variable combinations of donor atoms.
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4. Conclusions

This structural study, employing Cambridge Crystallographic Database (CCDB) [80]
for the analyzed structures and program Diamond [81] for creating chemical structure
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vizualizations, classified over one hundredtwo-coordinate copper(I) complexes. It is known
that there are two geometric possibilities for coordination number two, linear and bent,
respectively. The former prevails in the structure of copper(I) compounds. In general, there
are two preparative procedures: (i) direct reaction of the ligand and the copper(I) atom,
and (ii) electrochemistry. Most syntheses have involved direct reaction between a copper(I)
halide and the appropriate ligand in a non-aqueous solvent (such as acetonitrile) under
an inert atmosphere. Over 80% of the X-rays measured were made at 100 K. It is noted
that copper(I) complex cations can be isolated in salts with larger anions, both organic and
inorganic: ClO4, PF4, SbF6, BF4, CF3SO3, and others.

The complexes crystallized in three crystal classes: monoclinic dominates with seventy-
two examples, followed by triclinic (twenty-eight examples), and orthorhombic (eight
examples). In the chemistry of “soft” copper(I), a wide variety of unidentate ligating atoms
form two-coordinate Cu(I) complexes.

Over all, the mean Cu(I)-L distance is observed to increase with an increasing covalent
radius of the ligating atom in the sequence 1.769 Å (H, 0.31 Å) < 1.838 Å (O, 0.6 Å) < 1.863 Å
(N, 0.71 Å) < 1.904 Å (C, 0.76 Å) < 2.005 Å (B, 0.86 Å) < 2.101 Å (Cl, 1.00 Å) < 2.217 Å (S,
1.02 Å) < 2.219 Å (P, 1.06 Å) < 2.254 Å (Br, 1.14 Å) < 2.273 Å (Si, 1.17 Å) < 2.374 Å (Al, 1.21 Å)
< 2.386 Å (I, 1.33 Å) < 2.474 Å (Sn, 1.40 Å).

A summary of the mean Cu(I)-L bond distances from the view of trans-effect is given
in Table 1 and a summary of the mean X-Cu(I)-Y angles is given in Table 2.

Table 1. A summary of the mean Cu(I)-L bond distances [Å].

(X) a Trans to (Y) b [Å] (X) Trans to (X) < [Å] (X) a Trans to (Y) b [Å]

1.832 (C) < 1.848 (N)< (O), 1.849, (O)
1.852 (O) < 1.855 (Cl) < 1.864 (C)< (N), 1.886, (N)

2.095 (N) < 2.100 (C)< (Cl), 2.104, (Cl)< 2.108 (S) < 2.120 (P)
2.104 (C) < 2.134 (Br)< (S), 2.137, (S)< 2.139 (Cl) < 2.142 (I)

2.172 (Cl) < 2.202 (I) < 2.219 (C)< (P), 2.236, (P)
2.248 (Br) < 2.252 (I)< (Se), 2.260, (Se)

1.867 (S) < 1.869 (O) < 1.875 (N)< (C), 1.900, (C)< 1.915 (I) < 1.917 (P) < 1.925 (Sn)<
1.879 (H) < 1.883 (Cl) < 1.892 (Br) <1.935 (Si) < 1.939 (B) < 1.958 (Al)

a ligand affected defined in the central column [4]. b trans-effect ligand shown in parentheses.

Table 2. A summary of the mean X-Cu(I)-Y angles.

Organometalic Compounds C-Cu(I)-Y Coordination Compounds X-Cu(I)-Y

178.9◦(Y=I) > 177.8◦(S) > 177.0◦(H) > 175.9◦(Al) >
175.8◦(Cl) > 175.7◦(N) > 175.1◦(O) > 174.8◦(Br) >

174.1◦(P) > 173.7◦(Si) > 173.5◦(B) > 163.4◦(Sn)

170.6◦(X=N; Y=Cl) > 166.2◦(S, Br) > 165.8◦(S, Cl) >
164.2◦(Se, Br) > 162.2◦(N, O) > 160.7◦(S, I) > 159.6◦(Se,

I) > 156.8◦(P, Cl) > 144.5◦(P, I)

The trans-effect on Cu(I) distances (trans to Y) can be divided into two categories. The
first, left side of Table 1, is where a hetero-donor atom Y shortens the trans-Cu (I)-X bond,
and the second, right side of Table 1, in which the Y-donor atom increases the length or
weakness of the trans bond. These results suggest that in the former case, there is lower
transfer of donor electrons from Y to Cu(I) than in the latter case. The “soft” atoms or
ligands show a larger trans-effect than the borderline or “hard” ones. There are twenty-one
varieties of inner coordination spheres about the copper(I) atoms.

These varieties can be divided into C-Cu(I)-Y and X-Cu(I)-Y. When the value of the
C-Cu(I)-Y angle decreases, the deviation from the linearity increases in the sequence (mean
values) given in Table 2. For X-Cu(I)-Y types, the sequence (mean values) is also given in
Table 2.

For the comparison, in the series of mutually trans-X-Cu (I)-X complexes [15], the
sequence is (mean values): 180.0◦(X=Se) > 178.2◦(S) > 175.5◦(O) >175.9◦(Cl) > 174.5◦(N) >
174.0◦(C) > 172.3◦(P) > 169.7◦(Br).
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The maximum deviations from the linearity (180.0◦) are (mean values) 10.3◦(Br-Cu(I)-
Br) > 16.6◦(C-Cu(I)-Sn) < 35.50 (P-Cu(I)-I). As can be seen, the property of the ligand’s
increasing influence on deviation from linearity is in the order hard < borderline < soft.
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Abbreviations

2-CH3py 2-methyl pyridine
2-Phpy 2-phenyl pyridine
C2H3O2 acetate
C4H8O tetrahydrofuran
C5H10O2B (5,5-dimethyl-1,3,2-dioxyborinan-2-yl)
C5H3SO2 (thiophene-2-carboxylate)
C6H18Si2P bis(trimethylsilyl)phosphine
C6H23N2BP bis(diethylamino)phosphanido-borane)
C7H8 toluene
C8H10N2B (1,3-dimethyl-1,3,2-benzodiazaborol-2-yl)
C8H11Si dimethyl(phenyl)silyl
C8H4N2 (1,4-diisocyanobenzene)
C8H5N2O (benzoyliminomethylene amino)
C8H7N4O ((4-methylphenyl)sulfonyl)carbamic azido)
C8H7O3 4-methoxybenzoate
C9H16N2 (1,3-bis(propan-2-yl)-imidazol-2-ylidene)
C11H10F4NO2 (t-butyl(2,3,5,6-tetrafluorophenyl)carbamatato)
C11H20N2 (1,3-di-t-butyl-imidazol-2-ylidene)
C11H21N2 (4,5-dimethyl-1,3-bis(propan-2-yl)-2,3-dihydro-1H-imidazol-2-ylidene)

C11H21N2
(u-N,N-dipropan-2-ylmethylimidamide)-(4.5-dimethyl-1,3-bis(propan-2-yl)-2,3-
dihydro-1H-imidazol-3-ylidene)

C12D8N
(perdeutero-9H-carbazol-9-yl)(1,3-bis(2,4,6-trimethylpephonyl)imidazol-
2-ylidene)

C12H8N (9H-carbazol-9-yl)
C13H19N3O2 (methyl-2-((bis((dimethylamino)methylidene)amino)benzoate)
C14H13O2 (4-(4-methoxyphenyl)butanoate
C16H17PON (1,1-diphenyl-N-(propan-2-yl)phosphanecarboxamidate)
C18H20N2 (1,3-bis(2-methylphenyl)tetrahydropyrimiden-2-(1H)-ylidene
C18HBF15 hydrido(tris(pentafluorophenyl)borate
C19H20N2 (1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene)
C20H24N2S (5-(4-(methylsulfanyl)phenyl)-1,3-di-isopropylbezimidazol-2-ylidene)
C20H31N (1-(2,6-di-isopropylphenyl)-3,3′,5,5′-tetramethyl-pyrrolidin-2-ylidene)
C20H31N 4,5-dimethyl-1,3-bis(propan-2-yl)-2,3-dihydro-1H-imidazol-2-ylidene)
C21H16N2 (1,3-bis(3-phenylprop-2-yn-1-yl)2,3-dihydro-1H-imidazol-2-ylidene)
C21H24N2 (1,3-bis(mesityl)imidazol-2-ylidene)
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C21H24N2S (1,3-bis(2,4,6-trimethylphenyl)1,3-dihydro-2H-imidazol-2-thione)
C21H24N2Se (1,3-bis(2,6-(2,4,6-trimethylphenyl)1,3-dihydro-2H-imidazole-2-selone)
C21H24P (tris(4-methylyphenylphosphine)
C21H26N2 (1,3-dimesitylimidazolidin-2-ylidene)

C21H32N4
(1-(2-(dimethylamino)ethyl)-3-(N-(2,6-bis(propan-2-yl)phenyl)ethaniminodoyl)-
2,3dihydro-1H-imidazil-2-ylidene)

C22H21F5N2 (1-(2,6-di-isopropylphenyl)-3-((pentafluorophenylmethyl)imidazol-2-ylidene)
C22H33N (2-(2,6-di-isopropylphenyl)-1,4,5-trimethyl-2-azabiyclo [2.2.2]octan-3-ylidene
C22H35N (1-(2,6-di-isopropylphenyl)-3,3-diethyl-5,5-dimethylpyrolidin-2-ylidene)
C22H36N ((1-(2,6-di-isopropyl)-4,4-diethyl-2,2-dimethyl-3,4-dihydro-2H-pyrrol-1-ium
C22H39N4OP (1,3-dicyclohexyl-4,6-bis(cycohexylimino)-2-oxo-1,3,5-diazaphophinan-5-yl)
C23H35N (9H-carbazol-9-yl)-2-(2,6-di-isopropylphenyl)-3,3-dimethyl-2-araspirio
C24H26N2O2 (1,3-dimesilyl-5,5-dimethyl-4,6-doxohexahydropyrimidin-2-yl)
C24H28N2O2 (1,3-dimesityl-5,5-dimethyl-4,6-dioxotetrahydropyrimidin-2(1H)-ylidene)

C27H30N2
(1-(2,6-bis(propan-2-yl)phenyl)-3-(1-naphalen-1-yl)ethyl)2,3-dihydro-1H-
imidazol-2-yl)

C27H36N2 (1,3-bis(2,6-di-isopropylphenyl)imidazol-2-ylidene)
C27H36N2O2 (2,3-bis(2,6-diisopropylphenyl)amino)acrylate)
C27H36N2S (1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-thione)
C27H37N2 (1,3-bis(2,6-disopropylphenyl)imidazol-2-ylidene)
C27H38N2 (1,3-bis(2,6-di-isopropylphenyl)-4,5-dihydroimidazol-2-ylidene)

C27H39N
(1-(2,6-di-isopropylphenyl)-5,5-dimethyl-2H-spirolpyrolidine-3,2-tricyclo
[3.3.1.1.3,7]decan(2-ylidene)

C27H40N (1-(2,6-diisopropylphenyl)-3,3-diethyl-5,5-dimethylpyrolidin-2-ylidene

C27H43N
(2-(2,6-bis(propan-2-yl)phenyl)-3,3,9-trimethyl-6-propan-2-yl)-2-azaspiro(4,5)
decan-1-ylidene

C27H46N2O3Si (1-(2,6-diisopropylphenyl)-3-(3-(trisopropoxysilyl)propyl)imidazol-2-ylidene)
C28H39N2 (1,3-bis[2,6-bis(propan-2-yl)phenyl)-1,3-diazinan-2-ylidene)
C28H40N2 (1,3-bis[2,6-bis(propan-2-yl)phenyl]tetrahydro-pyrimidin-2(1H)-ylidene)

C30H42N4
(2-(N,N-bis(2,6-diisopropylphenyl))carbammidoyl)-1,3-dimethyl-1H-imidazol-
3-iumato)

C30H42N6
(4-((2-azidoethyl)(methyl)amino)-1,3-bis(2,6-di-isopropylphenyl)-2,3-dihydro-
1H-imidazol-2-ilydene)

C30H49N2Si2Al
((ethane-1,2-diyl)bis(N-[2,6-bis(propan-2-yl)phenyl))-1,1-dimethylsilanamino))
aluminium

C30H50N2Si2Al
((ethane-1,2-diyl)bis(N-[2,6-bis(popan-2-yl)phenyl)1,1-dimethylsilanamino))
aluminium)

C30H56B11N3
(2-(3-t-butyl-2-(2,6-di-isopropylphenyl)-1-(1,3-di-isopropyl-4,5-
dimethylimidazol-2-ylidene)-2,1-azaborinyl)1,2-dicarbo-closo-dodecaboran-2-yl)

C31H32N2 (2,4-dimesityl-1,2,4,5-tetrahydro-3H-naphtho[1,8-ef] [1,3]diazoein-3-ylidene)
C31H38N2 (1,3-bis(2,6-bis(propan-2-yl)phenyl-2,3-dihydro-1H-benzimidazol-2-ylidene)
C32H31N (2-(2,6-bis(propan-2-yl)phenyl)-3,3-diphenyl-2,3-dihydro-1H-isoindol-1-ylidene)
C35H36N2 (2,3-bis(bis(1-phenylethyl)amino)cycloprop-2-en-1-ylidene)

C37H63AlN4Si2
(ethane-1,2-diyl)bis(N-[2,6-bis(propan-2-yl)phenyl]-1,1-dimethyl-silanamino)-
aluminium)

C40H47N2Cl
(4-chloro-1,3-bis(2,6-di-isopropylphenyl)-5-methyl(diphenylphosphono)-
imidazol-2-ylidene)

C40H47N2P
(2-((diphenylphosphanyl)-1,3-bis(2,6-bis(propan-2-yl)phenyl)2,3-dihydro-
1H-imidazole)

C40H58N4
(2-N,N-bis(2,6-diisopropylphenyl)(carbamimidoyl)-1,3-dicyclohexyl)-1H-
imidazol-3-iumato)

C41H38N2O2
(R,R)-(1,3-bis(8-(4-methocyphenyl)-1,2,3,4-tetrahydronaphthalen-1-yl)
benzimidazol-2-ylidene)

C45H40N2 (1,3-bis(2-(diphenylmethyl)-4,6-dimethyl-phenyl)-imidazol-2-ylidene)
C45H42N2 (1,3-bis(2-(diphenylmethyl-4,6-dimethylphenyl)imidazolidin-2-ylidene)

C55H44N2
(7,9-bis(4-(diphenylmethyl)-2,6-dimethylphenyl)-8,9-dihydro-7H-acenaphlo
[1,2-d]imidazol-8-ylidene)
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C60H84AlN4O
(u-N-(cyclohexyl)((cyclohexyl)amino)methanidamido)-(2,7-di-t-butyl-N4,N5-
bis(2,6-bis(propan-2-yl)phenyl)-9,9-dimethyl-9H-xanthene-4,5-bis(amido)
aluminium)

C69H56N2 (1,3-bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene)

C69H56N2S
(1,3-bis(2,6-bis(diphenylmethyl)-4-methylphenyl)-1,3-dihydro-2H-imidazol-
2-thione

C69H56N2Se
(1,3-bis(2,6-bis(diphenylmethyl)-4-methylphenyl)-1,3-dihydro-2H-imidazole-
2-selone

CHO2 formate
Ph2P diphenylphophido
Ph3Si triphenylsilyl
Ph3SiO triphenylsilanolate
PhCOO benzoate
py pyridine
t-Bu3 P=N (tri-t-butylphosphanylidene)azanide
t-Bu3P tri-t-bitylphosphine
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