Catalytic Behavior of NHC–Silver Complexes in the Carboxylation of Terminal Alkynes with CO2
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Characterization of Complexes
2.2. Catalytic Carboxylation of Alkynes with CO2
3. Materials and Methods
3.1. Synthesis of Catalysts 1–4a–c and 4a.1–4a.4
3.2. General Procedure for Carboxylation of Alkynes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, K.; Sun, C.-L.; Shi, Z.-J. Transition-Metal-Catalyzed C–C Bond Formation through the Fixation of Carbon Dioxide. Chem. Soc. Rev. 2011, 40, 2435. [Google Scholar] [CrossRef] [PubMed]
- Federsel, C.; Jackstell, R.; Beller, M. State-of-the-Art Catalysts for Hydrogenation of Carbon Dioxide. Angew. Chem. Int. Ed. 2010, 49, 6254–6257. [Google Scholar] [CrossRef] [PubMed]
- Maeda, C.; Miyazaki, Y.; Ema, T. Recent Progress in Catalytic Conversions of Carbon Dioxide. Catal. Sci. Technol. 2014, 4, 1482. [Google Scholar] [CrossRef]
- Decortes, A.; Castilla, A.M.; Kleij, A.W. Salen-Complex-Mediated Formation of Cyclic Carbonates by Cycloaddition of CO2 to Epoxides. Angew. Chem. Int. Ed. 2010, 49, 9822–9837. [Google Scholar] [CrossRef] [PubMed]
- Whiteoak, C.J.; Kielland, N.; Laserna, V.; Escudero-Adán, E.C.; Martin, E.; Kleij, A.W. A Powerful Aluminum Catalyst for the Synthesis of Highly Functional Organic Carbonates. J. Am. Chem. Soc. 2013, 135, 1228–1231. [Google Scholar] [CrossRef]
- Du, G.-F.; Guo, H.; Wang, Y.; Li, W.-J.; Shi, W.-J.; Dai, B. N-Heterocyclic Carbene Catalyzed Synthesis of Dimethyl Carbonate via Transesterification of Ethylene Carbonate with Methanol. J. Saudi Chem. Soc. 2015, 19, 112–115. [Google Scholar] [CrossRef]
- Lu, X.-B.; Darensbourg, D.J. Cobalt Catalysts for the Coupling of CO2 and Epoxides to Provide Polycarbonates and Cyclic Carbonates. Chem. Soc. Rev. 2012, 41, 1462–1484. [Google Scholar] [CrossRef]
- Darensbourg, D.J. Making Plastics from Carbon Dioxide: Salen Metal Complexes as Catalysts for the Production of Polycarbonates from Epoxides and CO2. Chem. Rev. 2007, 107, 2388–2410. [Google Scholar] [CrossRef]
- Bernskoetter, W.H.; Tyler, B.T. Kinetics and Mechanism of Molybdenum-Mediated Acrylate Formation from Carbon Dioxide and Ethylene. Organometallics 2011, 30, 520–527. [Google Scholar] [CrossRef]
- Zhang, Y.; Hanna, B.S.; Dineen, A.; Williard, P.G.; Bernskoetter, W.H. Functionalization of Carbon Dioxide with Ethylene at Molybdenum Hydride Complexes. Organometallics 2013, 32, 3969–3979. [Google Scholar] [CrossRef]
- Bruckmeier, C.; Lehenmeier, M.W.; Reichardt, R.; Vagin, S.; Rieger, B. Formation of Methyl Acrylate from CO2 and Ethylene via Methylation of Nickelalactones. Organometallics 2010, 29, 2199–2202. [Google Scholar] [CrossRef]
- Lee, S.Y.T.; Cokoja, M.; Drees, M.; Li, Y.; Mink, J.; Herrmann, W.A.; Kühn, F.E. Transformation of Nickelalactones to Methyl Acrylate: On the Way to a Catalytic Conversion of Carbon Dioxide. ChemSusChem 2011, 4, 1275–1279. [Google Scholar] [CrossRef]
- Manjolinho, F.; Arndt, M.; Gooßen, K.; Gooßen, L.J. Catalytic C–H Carboxylation of Terminal Alkynes with Carbon Dioxide. ACS Catal. 2012, 2, 2014–2021. [Google Scholar] [CrossRef]
- Bonne, D.; Dekhane, M.; Zhu, J. Modulating the Reactivity of α-Isocyanoacetates: Multicomponent Synthesis of 5-Methoxyoxazoles and Furopyrrolones. Angew. Chem. 2007, 119, 2537–2540. [Google Scholar] [CrossRef]
- Maeda, K.; Goto, H.; Yashima, E. Stereospecific Polymerization of Propiolic Acid with Rhodium Complexes in the Presence of Bases and Helix Induction on the Polymer in Water. Macromolecules 2001, 34, 1160–1164. [Google Scholar] [CrossRef]
- D’Souza, D.M.; Kiel, A.; Herten, D.-P.; Rominger, F.; Müller, T.J.J. Synthesis, Structure and Emission Properties of Spirocyclic Benzofuranones and Dihydroindolones: A Domino Insertion–Coupling–Isomerization–Diels–Alder Approach to Rigid Fluorophores. Chem.-Eur. J. 2008, 14, 529–547. [Google Scholar] [CrossRef] [PubMed]
- Nurhanna Riduan, S.; Ying, J.Y.; Zhang, Y. Carbon Dioxide Mediated Stereoselective Copper-Catalyzed Reductive Coupling of Alkynes and Thiols. Org. Lett. 2012, 14, 1780–1783. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Jang, M.; Lee, S. Palladium-Catalyzed Decarboxylative Coupling of Alkynyl Carboxylic Acids and Aryl Halides. J. Org. Chem. 2009, 74, 1403–1406. [Google Scholar] [CrossRef]
- Trost, B.M.; Toste, F.D.; Greenman, K. Atom Economy. Palladium-Catalyzed Formation of Coumarins by Addition of Phenols and Alkynoates via a Net C−H Insertion. J. Am. Chem. Soc. 2003, 125, 4518–4526. [Google Scholar] [CrossRef]
- Jia, W.; Jiao, N. Cu-Catalyzed Oxidative Amidation of Propiolic Acids Under Air via Decarboxylative Coupling. Org. Lett. 2010, 12, 2000–2003. [Google Scholar] [CrossRef]
- Moon, J.; Jeong, M.; Nam, H.; Ju, J.; Moon, J.H.; Jung, H.M.; Lee, S. One-Pot Synthesis of Diarylalkynes Using Palladium-Catalyzed Sonogashira Reaction and Decarboxylative Coupling of Sp Carbon and Sp2 Carbon. Org. Lett. 2008, 10, 945–948. [Google Scholar] [CrossRef]
- Yeom, H.-S.; Koo, J.; Park, H.-S.; Wang, Y.; Liang, Y.; Yu, Z.-X.; Shin, S. Gold-Catalyzed Intermolecular Reactions of Propiolic Acids with Alkenes: [4 + 2] Annulation and Enyne Cross Metathesis. J. Am. Chem. Soc. 2012, 134, 208–211. [Google Scholar] [CrossRef]
- Tartaggia, S.; De Lucchi, O.; Gooßen, L.J. Practical Synthesis of Unsymmetrical Diarylacetylenes from Propiolic Acid and Two Different Aryl Bromides. Eur. J. Org. Chem. 2012, 2012, 1431–1438. [Google Scholar] [CrossRef]
- Bararjanian, M.; Balalaie, S.; Rominger, F.; Movassagh, B.; Bijanzadeh, H.R. Six-Component Reactions for the Stereoselective Synthesis of 3-Arylidene-2-Oxindoles via Sequential One-Pot Ugi/Heck Carbocyclization/Sonogashira/Nucleophilic Addition. J. Org. Chem. 2010, 75, 2806–2812. [Google Scholar] [CrossRef]
- Jacobsen, M.J.; Funder, E.D.; Cramer, J.R.; Gothelf, K.V. β-Olefination of 2-Alkynoates Leading to Trisubstituted 1,3-Dienes. Org. Lett. 2011, 13, 3418–3421. [Google Scholar] [CrossRef]
- Meng, L.-G.; Ge, N.-L.; Yang, M.-M.; Wang, L. Cyclization Reaction of 2-Azido-1-(2-Hydroxyphenyl)Ethanones with Terminal Alkynoates Catalyzed by 4-Dimethylaminopyridine (DMAP): Synthesis of 2-Aminobenzofuran-3(2H)-One Derivatives. Eur. J. Org. Chem. 2011, 2011, 3403–3406. [Google Scholar] [CrossRef]
- Feng, H.; Ermolat’ev, D.S.; Song, G.; Van Der Eycken, E.V. Synthesis of Symmetric 1,4-Diamino-2-Butynes via a Cu(I)-Catalyzed One-Pot A3-Coupling/Decarboxylative Coupling of a Propiolic Acid, an Aldehyde, and an Amine. J. Org. Chem. 2012, 77, 5149–5154. [Google Scholar] [CrossRef]
- Feng, H.; Ermolat’ev, D.S.; Song, G.; Van der Eycken, E.V. Synthesis of Oxazolidin-2-Ones via a Copper(I)-Catalyzed Tandem Decarboxylative/Carboxylative Cyclization of a Propiolic Acid, a Primary Amine and an Aldehyde. Adv. Synth. Catal. 2012, 354, 505–509. [Google Scholar] [CrossRef]
- Mohammadi-Khanaposhtani, M.; Jalalimanesh, N.; Saeedi, M.; Larijani, B.; Mahdavi, M. Synthesis of Highly Functionalized Organic Compounds through Ugi Post-Transformations Started from Propiolic Acids. Mol. Divers. 2020, 24, 855–887. [Google Scholar] [CrossRef] [PubMed]
- Idris, M.A.; Lee, S. Recent Advances in Decarboxylative Reactions of Alkynoic Acids. Synthesis 2020, 52, 2277–2298. [Google Scholar] [CrossRef]
- Chen, C.; Wu, J.; Yan, G.; Huang, D. Recent Advances of Propiolic Acids in Organic Reactions. Tetrahedron Lett. 2020, 61, 151415. [Google Scholar] [CrossRef]
- Du, X.; Yu, J.; Gong, J.; Zaman, M.; Pereshivko, O.P.; Peshkov, V.A. Gold-Catalyzed Post-Ugi Cascade Transformation for the Synthesis of 2-Pyridones: Gold-Catalyzed Post-Ugi Cascade Transformation for the Synthesis of 2-Pyridones. Eur. J. Org. Chem. 2019, 2019, 2502–2507. [Google Scholar] [CrossRef]
- Fraile, A.; Parra, A.; Tortosa, M.; Alemán, J. Organocatalytic Transformations of Alkynals, Alkynones, Propriolates, and Related Electron-Deficient Alkynes. Tetrahedron 2014, 70, 9145–9173. [Google Scholar] [CrossRef]
- Arndt, M.; Risto, E.; Krause, T.; Gooßen, L.J. C–H Carboxylation of Terminal Alkynes Catalyzed by Low Loadings of Silver(I)/DMSO at Ambient CO2 Pressure. ChemCatChem 2012, 4, 484–487. [Google Scholar] [CrossRef]
- Boogaerts, I.I.F.; Fortman, G.C.; Furst, M.R.L.; Cazin, C.S.J.; Nolan, S.P. Carboxylation of N–H/C–H Bonds Using N-Heterocyclic Carbene Copper(I) Complexes. Angew. Chem. Int. Ed. 2010, 49, 8674–8677. [Google Scholar] [CrossRef]
- Yu, D.; Zhang, Y. Copper- and Copper–N-Heterocyclic Carbene-Catalyzed C─H Activating Carboxylation of Terminal Alkynes with CO2 at Ambient Conditions. Proc. Natl. Acad. Sci. USA 2010, 107, 20184–20189. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, C.; Zeng, C.; Mousavi, B.; Chaemchuen, S.; Verpoort, F. Carboxylation of Terminal Alkynes with Carbon Dioxide Catalyzed by an In Situ Ag2O/N-Heterocyclic Carbene Precursor System. ChemCatChem 2017, 9, 882–887. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, K.H.; Hong, S.H. Carbon Dioxide Capture and Use: Organic Synthesis Using Carbon Dioxide from Exhaust Gas. Angew. Chem. Int. Ed. 2014, 53, 771–774. [Google Scholar] [CrossRef]
- Liu, X.-H.; Ma, J.-G.; Niu, Z.; Yang, G.-M.; Cheng, P. An Efficient Nanoscale Heterogeneous Catalyst for the Capture and Conversion of Carbon Dioxide at Ambient Pressure. Angew. Chem. 2015, 127, 1002–1005. [Google Scholar] [CrossRef]
- Cheng, H.; Zhao, B.; Yao, Y.; Lu, C. Carboxylation of Terminal Alkynes with CO2 Catalyzed by Bis(Amidate) Rare-Earth Metal Amides. Green Chem. 2015, 17, 1675–1682. [Google Scholar] [CrossRef]
- Correa, A.; Martín, R. Metal-Catalyzed Carboxylation of Organometallic Reagents with Carbon Dioxide. Angew. Chem. Int. Ed. 2009, 48, 6201–6204. [Google Scholar] [CrossRef] [PubMed]
- Köster, F.; Dinjus, E.; Duñach, E. Electrochemical Selective Incorporation of CO2 into Terminal Alkynes and Diynes. Eur. J. Org. Chem. 2001, 2001, 2507–2511. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.; Shi, L.; Ren, X.; Lü, X. Sequential Ag-Catalyzed Carboxylative Coupling/Ru-Catalyzed Cross-Metathesis Reactions for the Synthesis of Functionalized 2-Alkynoates. Chin. J. Catal. 2013, 34, 1179–1186. [Google Scholar] [CrossRef]
- Yu, B.; Xie, J.-N.; Zhong, C.-L.; Li, W.; He, L.-N. Copper(I)@Carbon-Catalyzed Carboxylation of Terminal Alkynes with CO2 at Atmospheric Pressure. ACS Catal. 2015, 5, 3940–3944. [Google Scholar] [CrossRef]
- Xie, Y.; He, B.F.; Huang, N.Y.; Deng, W.Q. The Direct Carboxylation of Terminal Alkynes with Carbon Dioxide Using Copper-Conjugated Microporous Polymer as Catalyst. Adv. Mater. Res. 2013, 634–638, 612–615. [Google Scholar] [CrossRef]
- Wang, X.; Lim, Y.N.; Lee, C.; Jang, H.-Y.; Lee, B.Y. 1,5,7-Triazabicyclo[4.4.0]Dec-1-Ene-Mediated Acetylene Dicarboxylation and Alkyne Carboxylation Using Carbon Dioxide. Eur. J. Org. Chem. 2013, 2013, 1867–1871. [Google Scholar] [CrossRef]
- Bhanja, P.; Modak, A.; Bhaumik, A. Supported Porous Nanomaterials as Efficient Heterogeneous Catalysts for CO2 Fixation Reactions. Chem.-Eur. J. 2018, 24, 7278–7297. [Google Scholar] [CrossRef]
- Molla, R.A.; Ghosh, K.; Banerjee, B.; Iqubal, M.A.; Kundu, S.K.; Islam, S.M.; Bhaumik, A. Silver Nanoparticles Embedded over Porous Metal Organic Frameworks for Carbon Dioxide Fixation via Carboxylation of Terminal Alkynes at Ambient Pressure. J. Colloid Interface Sci. 2016, 477, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.-W.; Zhou, Z.-H.; He, L.-N. Efficient, Selective and Sustainable Catalysis of Carbon Dioxide. Green Chem. 2017, 19, 3707–3728. [Google Scholar] [CrossRef]
- Dingyi, Y.; Yugen, Z. The Direct Carboxylation of Terminal Alkynes with Carbon Dioxide. Green Chem. 2011, 13, 1275. [Google Scholar] [CrossRef]
- Inamoto, K.; Asano, N.; Kobayashi, K.; Yonemoto, M.; Kondo, Y. A Copper-Based Catalytic System for Carboxylation of Terminal Alkynes: Synthesis of Alkyl 2-Alkynoates. Org. Biomol. Chem. 2012, 10, 1514. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, Y.; Fujihara, T. Carbon Dioxide as a Carbon Source in Organic Transformation: Carbon–Carbon Bond Forming Reactions by Transition-Metal Catalysts. Chem. Commun. 2012, 48, 9956. [Google Scholar] [CrossRef] [PubMed]
- Li, F.-W.; Suo, Q.-L.; Hong, H.-L.; Zhu, N.; Wang, Y.-Q.; Han, L.-M. DBU and Copper(I) Mediated Carboxylation of Terminal Alkynes Using Supercritical CO2 as a Reactant and Solvent. Tetrahedron Lett. 2014, 55, 3878–3880. [Google Scholar] [CrossRef]
- Finashina, E.D.; Tkachenko, O.P.; Startseva, A.Y.; Krasovsky, V.G.; Kustov, L.M.; Beletskaya, I.P. Incorporation of Carbon Dioxide into Molecules of Acetylene Hydrocarbons on Heterogeneous Ag-Containing Catalysts. Russ. Chem. Bull. 2015, 64, 2796–2801. [Google Scholar] [CrossRef]
- Liu, C.; Luo, Y.; Zhang, W.; Qu, J.; Lu, X. DFT Studies on the Silver-Catalyzed Carboxylation of Terminal Alkynes with CO2: An Insight into the Catalytically Active Species. Organometallics 2014, 33, 2984–2989. [Google Scholar] [CrossRef]
- Jover, J.; Maseras, F. Computational Characterization of the Mechanism for Coinage-Metal-Catalyzed Carboxylation of Terminal Alkynes. J. Org. Chem. 2014, 79, 11981–11987. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, W.-Z.; Ren, X.; Zhang, L.-L.; Lu, X.-B. Ligand-Free Ag(I)-Catalyzed Carboxylation of Terminal Alkynes with CO2. Org. Lett. 2011, 13, 2402–2405. [Google Scholar] [CrossRef]
- Bakhoda, A.; Okoromoba, O.E.; Greene, C.; Boroujeni, M.R.; Bertke, J.A.; Warren, T.H. Three-Coordinate Copper(II) Alkynyl Complex in C–C Bond Formation: The Sesquicentennial of the Glaser Coupling. J. Am. Chem. Soc. 2020, 142, 18483–18490. [Google Scholar] [CrossRef]
- Moglie, Y.; Mascaró, E.; Gutierrez, V.; Alonso, F.; Radivoy, G. Base-Free Direct Synthesis of Alkynylphosphonates from Alkynes and H -Phosphonates Catalyzed by Cu2O. J. Org. Chem. 2016, 81, 1813–1818. [Google Scholar] [CrossRef]
- Kim, J.; Stahl, S.S. Cu-Catalyzed Aerobic Oxidative Three-Component Coupling Route to N-Sulfonyl Amidines via an Ynamine Intermediate. J. Org. Chem. 2015, 80, 2448–2454. [Google Scholar] [CrossRef]
- Mondal, S.; Yashmin, S.; Ali, R.; Soundaram, R.; Ghosh, S.S.; Khan, A.T. Synthesis of Biologically Active Fused 1,4-Oxathiin Derivatives from 4-Hydroxydithiocoumarins, Arylacetylenes and Dimethyl Sulfoxide by Cu(i)-Catalyzed C–H Functionalization and Cross-Dehydrogenative C–S Coupling Reactions. Org. Biomol. Chem. 2021, 19, 5818–5826. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Tan, M.X.; Zhang, Y. Carboxylation of Terminal Alkynes with Carbon Dioxide Catalyzed by Poly(N-Heterocyclic Carbene)-Supported Silver Nanoparticles. Adv. Synth. Catal. 2012, 354, 969–974. [Google Scholar] [CrossRef]
- Li, S.; Sun, J.; Zhang, Z.; Xie, R.; Fang, X.; Zhou, M. Carboxylation of Terminal Alkynes with CO2 Using Novel Silver N-Heterocyclic Carbene Complexes. Dalton Trans 2016, 45, 10577–10584. [Google Scholar] [CrossRef]
- Díaz Velázquez, H.; Wu, Z.-X.; Vandichel, M.; Verpoort, F. Inserting CO2 into Terminal Alkynes via Bis-(NHC)-Metal Complexes. Catal. Lett. 2017, 147, 463–471. [Google Scholar] [CrossRef]
- D’Amato, A.; Sirignano, M.; Russo, S.; Troiano, R.; Mariconda, A.; Longo, P. Recent Advances in N-Heterocyclic Carbene Coinage Metal Complexes in A3-Coupling and Carboxylation Reaction. Catalysts 2023, 13, 811. [Google Scholar] [CrossRef]
- Napoli, M.; Saturnino, C.; Cianciulli, E.I.; Varcamonti, M.; Zanfardino, A.; Tommonaro, G.; Longo, P. Silver(I) N-Heterocyclic Carbene Complexes: Synthesis, Characterization and Antibacterial Activity. J. Organomet. Chem. 2013, 725, 46–53. [Google Scholar] [CrossRef]
- Mariconda, A.; Sirignano, M.; Costabile, C.; Longo, P. New NHC- Silver and Gold Complexes Active in A3-Coupling (Aldehyde-Alkyne-Amine) Reaction. Mol. Catal. 2020, 480, 110570. [Google Scholar] [CrossRef]
- Sirignano, M.; D’Amato, A.; Costabile, C.; Mariconda, A.; Crispini, A.; Scarpelli, F.; Longo, P. Hydroamination of Alkynes Catalyzed by NHC-Gold(I) Complexes: The Non-Monotonic Effect of Substituted Arylamines on the Catalyst Activity. Front. Chem. 2023, 11, 1260726. [Google Scholar] [CrossRef]
- Meng, G.; Kakalis, L.; Nolan, S.P.; Szostak, M. A Simple 1H NMR Method for Determining the σ-Donor Properties of N-Heterocyclic Carbenes. Tetrahedron Lett. 2019, 60, 378–381. [Google Scholar] [CrossRef]
- Teng, Q.; Vinh Huynh, H. A Unified Ligand Electronic Parameter Based on 13C NMR Spectroscopy of N-Heterocyclic Carbene Complexes. Dalton Trans. 2017, 46, 614–627. [Google Scholar] [CrossRef]
- Lummiss, J.A.; Higman, C.S.; Fyson, D.L.; McDonald, R.; Fogg, D.E. The Divergent Effects of Strong NHC Donation in Catalysis. Chem. Sci. 2015, 6, 6739–6746. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, H.; Correa, A.; Poater, A.; Costabile, C.; Cavallo, L. Understanding the M(NHC) (NHC = N-Heterocyclic Carbene) Bond. Coord. Chem. Rev. 2009, 253, 687–703. [Google Scholar] [CrossRef]
- Sirignano, M.; Costabile, C.; Mariconda, A.; Longo, P. Effect of Counterion on the Catalytic Activity of NHC-Gold(I) in A3 Coupling Reactions. Results Chem. 2023, 6, 101198. [Google Scholar] [CrossRef]
- Lin, I.J.B.; Vasam, C.S. Preparation and Application of N-Heterocyclic Carbene Complexes of Ag(I). Coord. Chem. Rev. 2007, 251, 642–670. [Google Scholar] [CrossRef]
- Hintermair, U.; Englert, U.; Leitner, W. Distinct Reactivity of Mono- and Bis-NHC Silver Complexes: Carbene Donors versus Carbene–Halide Exchange Reagents. Organometallics 2011, 30, 3726–3731. [Google Scholar] [CrossRef]
- Garrison, J.C.; Youngs, W.J. Ag(I) N-Heterocyclic Carbene Complexes: Synthesis, Structure, and Application. Chem. Rev. 2005, 105, 3978–4008. [Google Scholar] [CrossRef]
- Mariconda, A.; Grisi, F.; Costabile, C.; Falcone, S.; Bertolasi, V.; Longo, P. Synthesis, Characterization and Catalytic Behaviour of a Palladium Complex Bearing a Hydroxy-Functionalized N-Heterocyclic Carbene Ligand. New J Chem 2014, 38, 762–769. [Google Scholar] [CrossRef]
- Zhang, Z.-Z.; Mi, R.-J.; Guo, F.-J.; Sun, J.; Zhou, M.-D.; Fang, X.-C. 1,3-Bis(4-Methylbenzyl)Imidazol-2-Ylidene Silver(I) Chloride Catalyzed Carboxylative Coupling of Terminal Alkynes, Butyl Iodide and Carbon Dioxide. J. Saudi Chem. Soc. 2017, 21, 685–690. [Google Scholar] [CrossRef]
- Sirignano, M.; Mariconda, A.; Vigliotta, G.; Ceramella, J.; Iacopetta, D.; Sinicropi, M.S.; Longo, P. Catalytic and Biological Activity of Silver and Gold Complexes Stabilized by NHC with Hydroxy Derivatives on Nitrogen Atoms. Catalysts 2021, 12, 18. [Google Scholar] [CrossRef]
- Mariconda, A.; Iacopetta, D.; Sirignano, M.; Ceramella, J.; Costabile, C.; Pellegrino, M.; Rosano, C.; Catalano, A.; Saturnino, C.; El-Kashef, H.; et al. N-Heterocyclic Carbene (NHC) Silver Complexes as Versatile Chemotherapeutic Agents Targeting Human Topoisomerases and Actin. ChemMedChem 2022, 17, e202200345. [Google Scholar] [CrossRef]
- Atif, M.; Bhatti, H.N.; Haque, R.A.; Iqbal, M.A.; Ahamed Khadeer, M.B.; Majid, A.M.S.A. Synthesis, Structure, and Anticancer Activity of Symmetrical and Non-Symmetrical Silver(I)-N-Heterocyclic Carbene Complexes. Appl. Biochem. Biotechnol. 2020, 191, 1171–1189. [Google Scholar] [CrossRef] [PubMed]
Complex | X | δC (DMSO-d6) Ag-C (ppm) |
---|---|---|
4a | I− | 191.1 |
4a.1 | AcO− | 188.4 |
4a.2 | NO3− | 189.9 |
4a.3 | PF6− | 191.4–188.3 |
4a.4 | Cl− | 184.6 |
Run [a] | Catalyst | Solvent | Conversion (%) [b] | TOF (h−1) |
---|---|---|---|---|
1 | 1a | DMSO | 75 | 469 |
2 | 2a | DMSO | 54 | 338 |
3 | 3a | DMSO | 82 | 513 |
4 | 4a | DMSO | 87 | 544 |
5 | 2a | DMF | 75 | 469 |
6 | 4a | DMF | 92 | 575 |
7 | 4a | CH3CN | 30 | 188 |
8 | 4a | THF | - | - |
9 | 4a | Dioxane | 7 | 44 |
10 | 4a | CH2Cl2 | 15 | 94 |
11 | 4a | Ethylacetate | 40 | 250 |
12 | 4b | DMF | 52 | 325 |
13 | 4c | DMF | 63 | 394 |
14 | 4a.1 | DMF | 75 | 469 |
15 | 4a.2 | DMF | 40 | 250 |
16 | 4a.3 | DMF | 37 | 231 |
17 | 4a.4 | DMF | 25 | 156 |
18 | S4a | DMF | - | - |
Run [a] | R | Conversion (%) [b] |
---|---|---|
1 | n-C4H9 | 99 |
2 | t-C4H9 | 90 |
3 | CH2Ph | 70 |
4 | 70 | |
5 | 70 | |
6 | 68 | |
7 | 65 | |
8 | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amato, A.; Sirignano, M.; Viceconte, F.; Longo, P.; Mariconda, A. Catalytic Behavior of NHC–Silver Complexes in the Carboxylation of Terminal Alkynes with CO2. Inorganics 2024, 12, 283. https://doi.org/10.3390/inorganics12110283
D’Amato A, Sirignano M, Viceconte F, Longo P, Mariconda A. Catalytic Behavior of NHC–Silver Complexes in the Carboxylation of Terminal Alkynes with CO2. Inorganics. 2024; 12(11):283. https://doi.org/10.3390/inorganics12110283
Chicago/Turabian StyleD’Amato, Assunta, Marco Sirignano, Francesco Viceconte, Pasquale Longo, and Annaluisa Mariconda. 2024. "Catalytic Behavior of NHC–Silver Complexes in the Carboxylation of Terminal Alkynes with CO2" Inorganics 12, no. 11: 283. https://doi.org/10.3390/inorganics12110283
APA StyleD’Amato, A., Sirignano, M., Viceconte, F., Longo, P., & Mariconda, A. (2024). Catalytic Behavior of NHC–Silver Complexes in the Carboxylation of Terminal Alkynes with CO2. Inorganics, 12(11), 283. https://doi.org/10.3390/inorganics12110283