A New Bromo-Mn(II) Complex with 1,3,5-Triazine Derivative: Synthesis, Crystal Structure, DFT and Biological Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Crystal Structure Description
2.3. Hirshfeld Surface Analysis
2.4. Metal Affinity Study
2.5. Antioxidant Activity
2.6. Antimicrobial Assay
2.7. Safety Assay
2.8. Cytotoxicity Assay
3. Materials and Methods
3.1. Materials and Physical Characterization
3.2. Synthesis
Synthesis of the [Mn(MBPT)(H2O)2Br]ClO4 Complex
3.3. Crystal Structure Determination
3.4. Biological Studies
3.5. Computational Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cieslik, P.; Comba, P.; Dittmar, B.; Ndiaye, D.; Tóth, É.; Velmurugan, G.; Wadepohl, H. Exceptional manganese (II) stability and manganese (II)/zinc (II) selectivity with rigid polydentate ligands. Angew. Chem. 2022, 134, e202115580. [Google Scholar] [CrossRef]
- Sigel, A.; Sigel, R.K.; Sigel, H. Metal Ions in Life Sciences; Wiley: Chichester, UK, 2006; Volume 1. [Google Scholar]
- Metzler-Nolte, N.; Kraatz, H. Concepts and Models in Bioinorganic Chemistry; Wiley-VCH: Chichester, UK, 2006. [Google Scholar]
- Aschner, J.L.; Aschner, M. Nutritional aspects of manganese homeostasis. Mol. Asp. Med. 2005, 26, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Kalaiselvan, C.R.; Laha, S.S.; Somvanshi, S.B.; Tabish, T.A.; Thorat, N.D.; Sahu, N.K. Manganese ferrite (MnFe2O4) nanostructures for cancer theranostics. Coord. Chem. Rev. 2022, 473, 214809. [Google Scholar] [CrossRef]
- Ding, B.; Shao, S.; Jiang, F.; Dang, P.; Sun, C.; Huang, S.; Ma, P.a.; Jin, D.; Kheraif, A.A.A.; Lin, J. MnO2-disguised upconversion hybrid nanocomposite: An ideal architecture for tumor microenvironment-triggered UCL/MR bioimaging and enhanced chemodynamic therapy. Chem. Mat. 2019, 31, 2651–2660. [Google Scholar] [CrossRef]
- Drahoš, B.; Lukeš, I.; Tóth, É. Manganese (II) complexes as potential contrast agents for MRI. Eur. J. Inorg. Chem. 2012, 2012, 1975–1986. [Google Scholar] [CrossRef]
- Gupta, A.; Caravan, P.; Price, W.S.; Platas-Iglesias, C.; Gale, E.M. Applications for transition-metal chemistry in contrast-enhanced magnetic resonance imaging. Inorg. Chem. 2020, 59, 6648–6678. [Google Scholar] [CrossRef]
- Roy, S.; Gu, J.; Xia, W.; Mi, C.; Guo, B. Advancements in manganese complex-based MRI agents: Innovations, design strategies, and future directions. Drug Discov. Today 2024, 29, 104101. [Google Scholar] [CrossRef]
- Deng, Q.; Liu, J.; Li, Q.; Chen, K.; Liu, Z.; Shen, Y.; Niu, P.; Yang, Y.; Zou, Y.; Yang, X. Interaction of occupational manganese exposure and alcohol drinking aggravates the increase of liver enzyme concentrations from a cross-sectional study in China. Environ. Health 2013, 12, 30. [Google Scholar] [CrossRef]
- Barnese, K.; Gralla, E.B.; Valentine, J.S.; Cabelli, D.E. Biologically relevant mechanism for catalytic superoxide removal by simple manganese compounds. Proc. Natl. Acad. Sci. USA 2012, 109, 6892–6897. [Google Scholar] [CrossRef]
- Chen, P.; Chakraborty, S.; Mukhopadhyay, S.; Lee, E.; Paoliello, M.M.; Bowman, A.B.; Aschner, M. Manganese homeostasis in the nervous system. J. Neurochem. 2015, 134, 601–610. [Google Scholar] [CrossRef]
- Senft, L.; Moore, J.L.; Franke, A.; Fisher, K.R.; Scheitler, A.; Zahl, A.; Puchta, R.; Fehn, D.; Ison, S.; Sader, S. Quinol-containing ligands enable high superoxide dismutase activity by modulating coordination number, charge, oxidation states and stability of manganese complexes throughout redox cycling. Chem. Sci. 2021, 12, 10483–10500. [Google Scholar] [CrossRef] [PubMed]
- Dasmahapatra, U.; Maiti, B.; Alam, M.M.; Chanda, K. Anti-cancer Property and DNA Binding Interaction of First Row Transition Metal Complexes: A Decade Update. Eur. J. Med. Chem. 2024, 275, 116603. [Google Scholar] [CrossRef] [PubMed]
- Finney, L.A.; O’Halloran, T.V. Transition metal speciation in the cell: Insights from the chemistry of metal ion receptors. Science 2003, 300, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.X.; Lippard, S.J. New metal complexes as potential therapeutics. Curr. Opin. Chem. Biol. 2003, 7, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, O.M.; Moulik, S. Interactions of Mn complexes with DNA: The relevance of therapeutic applications towards cancer treatment. Dalton Trans. 2023, 52, 10639–10656. [Google Scholar] [CrossRef]
- Dai, Q.; Sun, Q.; Ouyang, X.; Liu, J.; Jin, L.; Liu, A.; He, B.; Fan, T.; Jiang, Y. Antitumor activity of s-triazine derivatives: A systematic review. Molecules 2023, 28, 4278. [Google Scholar] [CrossRef]
- Ali, M.I.; Naseer, M.M. Recent biological applications of heterocyclic hybrids containing s-triazine scaffold. RSC Adv. 2023, 13, 30462–30490. [Google Scholar] [CrossRef]
- Fang, Y.; Hillman, A.S.; Fox, J.M. Advances in the Synthesis of Bioorthogonal Reagents: S-Tetrazines, 1,2,4-Triazines, Cyclooctynes, Heterocycloheptynes, and trans-Cyclooctenes. Top. Curr. Chem. 2024, 382, 1–63. [Google Scholar] [CrossRef]
- Shawish, I.; Barakat, A.; Aldalbahi, A.; Malebari, A.M.; Nafie, M.S.; Bekhit, A.A.; Albohy, A.; Khan, A.; Ul-Haq, Z.; Haukka, M. Synthesis and antiproliferative activity of a new series of mono-and bis (dimethylpyrazolyl)-s-triazine derivatives targeting EGFR/PI3K/AKT/mTOR signaling cascades. ACS Omega 2022, 7, 24858–24870. [Google Scholar] [CrossRef]
- Nehra, B.; Rulhania, S.; Jaswal, S.; Kumar, B.; Singh, G.; Monga, V. Recent advancements in the development of bioactive pyrazoline derivatives. Eur. J. Med. Chem. 2020, 205, 112666. [Google Scholar] [CrossRef]
- Murahari, M.; Mahajan, V.; Neeladri, S.; Kumar, M.S.; Mayur, Y. Ligand based design and synthesis of pyrazole based derivatives as selective COX-2 inhibitors. Bioorg. Chem. 2019, 86, 583–597. [Google Scholar] [CrossRef] [PubMed]
- Boro, M.; Baishya, T.; Frontera, A.; Barceló-Oliver, M.; Bhattacharyya, M.K. Energetic Features of H-Bonded and π-Stacked Assemblies in Pyrazole-Based Coordination Compounds of Mn(II) and Cu(II): Experimental and Theoretical Studies. Crystals 2024, 14, 318. [Google Scholar] [CrossRef]
- Soliman, S.M.; El-Faham, A. Synthesis, characterization, and structural studies of two heteroleptic Mn (II) complexes with tridentate N, N, N-pincer type ligand. J. Coord. Chem. 2018, 71, 2373–2388. [Google Scholar] [CrossRef]
- Soliman, S.M.; Almarhoon, Z.; Sholkamy, E.N.; El-Faham, A. Bis-pyrazolyl-s-triazine Ni (II) pincer complexes as selective gram positive antibacterial agents; synthesis, structural and antimicrobial studies. J. Mol. Struct. 2019, 1195, 315–322. [Google Scholar] [CrossRef]
- Refaat, H.M.; Alotaibi, A.A.; Dege, N.; El-Faham, A.; Soliman, S.M. Synthesis, Structure and biological evaluations of Zn (II) pincer complexes based on s-triazine type chelator. Molecules 2022, 27, 3625. [Google Scholar] [CrossRef]
- Refaat, H.M.; Alotaibi, A.A.; Dege, N.; El-Faham, A.; Soliman, S.M. Co (II) complexes based on the bis-pyrazol-s-triazine pincer ligand: Synthesis, X-ray structure studies, and cytotoxic evaluation. Crystals 2022, 12, 741. [Google Scholar] [CrossRef]
- Sundaraganesan, N.; Ilakiamani, S.; Subramani, P.; Joshua, B.D. Comparison of experimental and ab initio HF and DFT vibrational spectra of benzimidazole. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 67, 628–635. [Google Scholar] [CrossRef]
- Abuzeid, H.R.; EL-Mahdy, A.F.; Ahmed, M.M.; Kuo, S.-W. Triazine-functionalized covalent benzoxazine framework for direct synthesis of N-doped microporous carbon. Polym. Chem. 2019, 10, 6010–6020. [Google Scholar] [CrossRef]
- Pascal, J.-L.; Potier, J.; Zhang, C.S. Chlorine trioxide, Cl2O6, a most efficient perchlorating reagent in new syntheses of anhydrous metal perchlorates, chloryl and nitryl perchloratometalates of cobalt (II), nickel (II), and copper (II). Reactivity of chlorine trioxide with anhydrous or hydrated chlorides and nitrates. J. Chem. Soc. Dalton Trans. 1985, 297–305. [Google Scholar] [CrossRef]
- Pascal, J.-L.; Favier, F. Inorganic perchlorato complexes. Coord. Chem. Rev. 1998, 178, 865–902. [Google Scholar] [CrossRef]
- Pascal, J.; Potier, J.; Jones, D.; Roziere, J.; Michalowicz, A. Structural approach to the behavior of perchlorate as a ligand in transition-metal complexes using EXAFS, IR and Raman spectroscopy. 1. A perchlorate-bridged copper chain with short copper-copper distances in copper (II) perchlorate. Inorg. Chem. 1984, 23, 2068–2073. [Google Scholar] [CrossRef]
- Hathaway, B.J. Oxyanions. Compr. Coord. Chem. 1987, 1, 413–434. [Google Scholar]
- Soliman, S.M.; El-Faham, A. Synthesis, molecular structure and DFT studies of two heteroleptic nickel(II) s-triazine pincer type complexes. J. Mol. Struct. 2019, 1185, 461–468. [Google Scholar] [CrossRef]
- Akila, E.; Usharani, M.; Rajavel, R. Metal (II) complexes of bioinorganic and medicinal relevance: Antibacterial, Antioxidant and DNA cleavage studies of tetradentate complexes involving O, N-donor environment of 3 3′-dihydroxybenzidine-based Schiff bases. Int. J. Pharm. Pharm. Sci. 2013, 5, 573–581. [Google Scholar]
- Parekh, J.; Inamdhar, P.; Nair, R.; Baluja, S.; Chanda, S. Synthesis and antibacterial activity of some Schiff bases derived from 4-aminobenzoic acid. J. Serb. Chem. Soc. 2005, 70, 1155–1162. [Google Scholar] [CrossRef]
- Shelke, V.; Jadhav, S.; Patharkar, V.; Shankarwar, S.; Munde, A.; Chondhekar, T. Synthesis, spectroscopic characterization and thermal studies of some rare earth metal complexes of unsymmetrical tetradentate Schiff base ligand. Arab. J. Chem. 2012, 5, 501–507. [Google Scholar] [CrossRef]
- Alias, M.; Kassum, H.; Shakir, C. Synthesis, physical characterization and biological evaluation of Schiff base M (II) complexes. J. Assoc. Arab Univ. Basic Appl. Sci. 2014, 15, 28–34. [Google Scholar] [CrossRef]
- Yde, C.W.; Issinger, O.-G. Enhancing cisplatin sensitivity in MCF-7 human breast cancer cells by down-regulation of Bcl-2 and cyclin D1. Int. J. Oncol. 2006, 29, 1397–1404. [Google Scholar] [CrossRef]
- Gad, S.I.; Altowyan, M.S.; Abu-Youssef, M.A.; El-Faham, A.; Barakat, A.; Tatikonda, R.; Haukka, M.; Soliman, S.M.; Yousri, A. Synthesis, Structural Investigations, and Potential Antimicrobial and Anticancer Activity of Mononuclear Zn (II) and Cd (II) Complexes Decorated by Morpholine/Pyrazole s-Triazine Ligand. Appl. Organomet. Chem. 2024, e7772. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Bruker APEX2, SAINT, SADABS, and XSHELL, Bruker; AXS Inc.: Madison, WI, USA, 2013.
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 1977, 44, 129–138. [Google Scholar] [CrossRef]
- Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer model energies and energy frameworks: Extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575–587. [Google Scholar] [CrossRef]
- Wayne, P. CLSI Document M100-S22; Performance Standards for Antimicrobial Susceptibility Testing. Twentieth Informational Supplement; Clinical and Laboratory Standards Institute (CLSI): Berwyn, PA, USA, 2012.
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Riyadh, S.M.; Gomha, S.M.; Mahmmoud, E.A.; Elaasser, M.M. Synthesis and anticancer activities of thiazoles, 1, 3-thiazines, and thiazolidine using chitosan-grafted-poly (vinylpyridine) as basic catalyst. Heterocycles 2015, 91, 1227. [Google Scholar] [CrossRef]
- Abdelsalam, E.A.; Abd El-Hafeez, A.A.; Eldehna, W.M.; El Hassab, M.A.; Marzouk, H.M.M.; Elaasser, M.M.; Abou Taleb, N.A.; Amin, K.M.; Abdel-Aziz, H.A.; Ghosh, P. Discovery of novel thiazolyl-pyrazolines as dual EGFR and VEGFR-2 inhibitors endowed with in vitro antitumor activity towards non-small lung cancer. J. Enzym. Inhib. Med. Chem. 2022, 37, 2265–2282. [Google Scholar] [CrossRef]
- Yen, G.C.; Duh, P.D. Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J. Agric. Food Chem. 1994, 42, 629–632. [Google Scholar] [CrossRef]
- Frisch, M. Gaussian 09, Revision d. 01; Gaussian Inc.: Wallingford, CT, USA, 2009; Volume 201. [Google Scholar]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
Bond Distances | |||
Mn1-O1 | 2.196(4) | Mn1-N7 | 2.296(5) |
Mn1-O2 | 2.155(5) | Cl1-O5 | 1.398(8) |
Mn1-Br1 | 2.6018(10) | Cl1-O4 | 1.258(9) |
Mn1-N1 | 2.304(5) | Cl1-O6 | 1.343(10) |
Mn1-N3 | 2.221(5) | Cl-O7 | 1.389(13) |
Bond Angles | |||
O1-Mn1-Br1 | 85.57(12) | O2-Mn1-N3 | 101.70(19) |
O1-Mn1-N1 | 87.42(19) | O2-Mn1-N7 | 90.8(2) |
O1-Mn1-N3 | 84.06(17) | N3-Mn1-Br1 | 169.27(13) |
O1-Mn1-N7 | 96.95(18) | N3-Mn1-N1 | 69.39(18) |
N1-Mn1-Br1 | 112.90(13) | N3-Mn1-N7 | 69.23(19) |
O2-Mn1-O1 | 171.7(2) | N7-Mn1-Br1 | 109.45(14) |
O2-Mn1-Br1 | 88.90(14) | N7-Mn1-N1 | 137.64(19) |
O2-Mn1-N1 | 89.0(2) |
D-H…A | D-H(Å) | H…A(Å) | D…A(Å) | D-H…A(°) | Symm. Code |
---|---|---|---|---|---|
O1-H1A…O5 | 0.85 | 2.10 | 2.876(10) | 152.3 | |
O1-H1B…Br1 | 0.85 | 2.58 | 3.338(4) | 148.4 | +x, 1/2 − y, 1/2 + z |
O2-H2A…O5 | 0.890(10) | 2.48(17) | 3.047(12) | 122(15) | +x, +y, −1 + z |
O2-H2B…Br1 | 0.888(10) | 2.45(2) | 3.314(5) | 164(6) | +x, 1/2 − y, −1/2 + z |
Contact | Contact Distance (Å) | Contact | Contact Distance (Å) |
---|---|---|---|
Br1…H1B | 2.472 | H2A…O5 | 2.437 |
Br1…H2B | 2.360 | H11…O7 | 2.545 |
Br1…H3 | 2.843 | C7…O6 | 3.182 |
H1A…O5 | 1.980 | C8…O6 | 3.196 |
H2A…O4 | 2.533 | C8…O4 | 3.022 |
Complex | [M(II)-L]2+ | MBPT | M(II) | Eint b |
---|---|---|---|---|
[Mn(MBPT)Br(H2O)2]ClO4; 1 | −1105.0853 | −1001.6449 | −103.0413 | −250.4392 |
[Co(MBPT)(H2O)2Cl]Cl; 2 | −1146.1391 | −1001.5828 | −144.0981 | −287.5251 |
[Co(MBPT)(NO3)2]; 3 | −1146.2080 | −1001.6447 | −144.0981 | −291.9177 |
[Co(MBPT)(H2O)3](ClO4)2. H2O; 4 | −1146.2086 | −1001.6433 | −144.0981 | −293.1727 |
[Co(MBPT)(H2O)3](NO3)2.H2O; 5 | −1146.2108 | −1001.6463 | −144.0981 | −292.6707 |
[Ni(MBPT)(H2O)2 Cl]Cl; 6 | −1170.4113 | −1001.6402 | −168.2207 | −345.3815 |
[Ni(MBPT)(H2O)3](NO3)2.1/2 H2O; 7 | −1170.4110 | −1001.6221 | −168.2207 | −356.5826 |
[Ni(MBPT)(H2O)3](ClO4)2. H2O; 8 | −1170.4284 | −1001.6424 | −168.2207 | −354.7314 |
[Zn(MBPT)(H2O)Cl] ClO4; 9 | −1066.6811 | −1001.6460 | −64.5754 | −288.4663 |
[Zn(MBPT)(NO3)2]; 10 | −1066.6785 | −1001.6447 | −64.5754 | −287.6506 |
CCDC | 2155139 |
---|---|
Empirical formula | C14H21N7O7MnClBr |
F.Wt | 569.68 g/mol |
T | 296(2) K |
λ | 0.71073 Å |
Crystal system | Monoclinic |
Space group | P21 |
Unit cell dimensions | a = 8.3217(4) Å |
b = 33.3369(16) Å | |
c = 8.2814(4) Å | |
β = 97.981(2)° | |
V | 2275.17(19) Å3 |
Z | 4 |
ρcalc. | 1.663 g/cm3 |
μ | 2.503 mm−1 |
2Θ range | 5.092 to 56.54° |
Reflections collected | 42,472 |
Independent reflections | 5596 [Rint = 0.0671, Rsigma = 0.0520] |
Goodness-of-fit on F2 | 1.12 |
Final R indexes [I ≥ 2σ (I)] | R1 a = 0.0774, wR2 b = 0.1820 |
Final R indexes (all data) | R1 a = 0.1024, wR2 b = 0.1930 |
Largest diff. peak and hole | 1.38 and −1.31 e Å−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khattab, S.M.; Altowyan, M.S.; El-Faham, A.; Barakat, A.; Haukka, M.; Abu-Youssef, M.A.M.; Soliman, S.M. A New Bromo-Mn(II) Complex with 1,3,5-Triazine Derivative: Synthesis, Crystal Structure, DFT and Biological Studies. Inorganics 2024, 12, 284. https://doi.org/10.3390/inorganics12110284
Khattab SM, Altowyan MS, El-Faham A, Barakat A, Haukka M, Abu-Youssef MAM, Soliman SM. A New Bromo-Mn(II) Complex with 1,3,5-Triazine Derivative: Synthesis, Crystal Structure, DFT and Biological Studies. Inorganics. 2024; 12(11):284. https://doi.org/10.3390/inorganics12110284
Chicago/Turabian StyleKhattab, Sara M., Mezna Saleh Altowyan, Ayman El-Faham, Assem Barakat, Matti Haukka, Morsy A. M. Abu-Youssef, and Saied M. Soliman. 2024. "A New Bromo-Mn(II) Complex with 1,3,5-Triazine Derivative: Synthesis, Crystal Structure, DFT and Biological Studies" Inorganics 12, no. 11: 284. https://doi.org/10.3390/inorganics12110284
APA StyleKhattab, S. M., Altowyan, M. S., El-Faham, A., Barakat, A., Haukka, M., Abu-Youssef, M. A. M., & Soliman, S. M. (2024). A New Bromo-Mn(II) Complex with 1,3,5-Triazine Derivative: Synthesis, Crystal Structure, DFT and Biological Studies. Inorganics, 12(11), 284. https://doi.org/10.3390/inorganics12110284