Arene Ruthenium Complexes Specifically Inducing Apoptosis in Breast Cancer Cells
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Synthesis and Characterization of Compounds RuL1–RuL4
4.2. Cell Lines and Cell Culture
4.3. Cell Viability Assay
4.4. DAPI Staining
4.5. RNA Extraction, cDNA Synthesis and RT-PCR
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Cicco, P.; Catani, M.V.; Gasperi, V.; Sibilano, M.; Quaglietta, M.; Savini, I. Nutrition and Breast Cancer: A Literature Review on Prevention, Treatment and Recurrence. Nutrients 2019, 11, 1514. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.-W.; Mai, T.-L.; Lin, Y.-C.J.; Chen, Y.-C.; Kuo, S.-C.; Lin, C.-M.; Lee, M.-H.; Su, J.-C. Multipathway regulation induced by 4-(phenylsulfonyl)morpholine derivatives against triple-negative breast cancer. Arch. Pharm. Chem. Life Sci. 2024, 357, 2300435. [Google Scholar] [CrossRef] [PubMed]
- Ciocan-Cartita, C.A.; Jurj, A.; Zanoaga, O.; Cojocneanu, R.; Pop, L.; Moldovan, A.; Moldovan, C.; Zimta, A.A.; Raduly, L.; Pop-Bica, C.; et al. New insights in gene expression alteration as effect of doxorubicin drug resistance in triple negative breast cancer cells. J. Exp. Clin Cancer Res. 2020, 39, 241. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-Y.; Choi, J.-H.; Nam, J.-S. Targeting Cancer Stem Cells in Triple-Negative Breast Cancer. Cancers 2019, 11, 965. [Google Scholar] [CrossRef]
- Keskinkılıc, M.; Gökmen-polar, Y.; Badve, S.S. Triple Negative Breast Cancers: An Obsolete Entity ? Clin. Breast Cancer 2024, 24, 1–6. [Google Scholar] [CrossRef]
- Braicu, C.; Pileczki, V.; Pop, L.; Petric, R.C.; Chira, S.; Pointiere, E.; Achimas-Cadariu, P.; Berindan-Neagoe, I. Dual Targeted Therapy with p53 siRNA and Epigallocatechingallate in a Triple Negative Breast Cancer Cell Model. PLoS ONE 2015, 10, e0120936. [Google Scholar] [CrossRef]
- Braicu, C.; Chiorean, R.; Irimie, A.; Chira, S.; Tomuleasa, C.; Neagoe, E.; Paradiso, A.; Achimas-Cadariu, P.; Lazar, V.; Berindan-Neagoe, I. Novel insight into triple-negative breast cancers, the emerging role of angiogenesis, and antiangiogenic therapy. Expert Rev. Mol. Med. 2016, 18, e18. [Google Scholar] [CrossRef]
- Pop, L.; Braicu, C.; Budisan, L.; Morar, G.B.; Monroig-Bosque, P.C. Double gene siRNA knockdown of mutant p53 and TNF induces apoptosis in triple-negative breast cancer cells. OncoTargets Ther. 2016, 9, 6921–6933. [Google Scholar] [CrossRef]
- Ng, C.; Pathy, N.B.; Taib, N.A.; Ho, G.; Mun, S.; Rhodes, A.; Looi, L.-M.; Yip, C.-H. Do Clinical Features and Survival of Single Hormone Receptor Positive Breast Cancers Differ from Double Hormone Receptor Positive Breast Cancers ? Asian Pac. J. Cancer Prev. 2014, 15, 7959–7964. [Google Scholar] [CrossRef]
- Gamrani, S.; Boukansa, S.; Benbrahim, Z.; Mellas, N.; Alaoui, F.F.; Melhouf, M.A.; Bouchikhi, C.; Banani, A.; Boubbou, M.; Bouhafa, T.; et al. The Prognosis and Predictive Value of Estrogen Negative/Progesterone Positive (ER−/PR+) Phenotype: Experience of 1159 Primary Breast Cancer from a Single Institute. Breast J. 2022, 2022, 9238804. [Google Scholar] [CrossRef]
- Wei, S. Hormone receptors in breast cancer: An update on the uncommon subtypes. Pathol. Res. Pract. 2023, 250, 154791. [Google Scholar] [CrossRef] [PubMed]
- Kannan, N.; Radhakrishnan, V.; Sinha, A. Unveiling the anticancer activity of ruthenium and iron complexes. Inorg. Chem. Commun. 2024, 165, 112512. [Google Scholar] [CrossRef]
- Swaminathan, S.; Haribabu, J.; Kavembu, R. From concept to Cure: The Road Ahead for Ruthenium-Based Anticancer Drugs. ChemMedChem 2024, e202400435. [Google Scholar] [CrossRef] [PubMed]
- Ganeshpandian, M.; Loganathan, R.; Suresh, E.; Riyasdeen, A.; Akbarsha, M.A.; Palaniandavar, M. New ruthenium(II) arene complexes of anthracenyl-appended diazacycloalkanes: Effect of ligand intercalation and hydrophobicity on DNA and protein binding and cleavage and cytotoxicity. Dalton Trans. 2014, 43, 1203–1219. [Google Scholar] [CrossRef]
- Kasim, M.; Subarkhan, M.; Ramesh, R. Ruthenium(II) arene complexes containing benzhydrazone ligands: Synthesis, structure and antiproliferative activity. Inorg. Chem. Front. 2016, 3, 1245–1255. [Google Scholar] [CrossRef]
- Biancalana, L.; Pratesi, A.; Chiellini, F.; Zacchini, S.; Funaioli, T.; Gabbiani, C.; Marchetti, F. Ruthenium Arene Complexes with Triphenylphosphane Ligands: Cytotoxic Activity Towards Pancreatic Cancer Cells, Interaction with Model Proteins, and Critical Effect of Ethacrynic Acid Substitution. New J. Chem. 2017, 41, 14574–14588. [Google Scholar] [CrossRef]
- Mannancherril, V.; Therrien, B. Strategies toward the enhanced permeability and retention effect by increasing the molecular weight of arene ruthenium metallaassemblies. Inorg. Chem. 2018, 57, 3626–3633. [Google Scholar] [CrossRef]
- Montani, M.; Badillo, G.V.; Hysi, A.; Lupidi, G.; Pettinari, R.; Gambini, V.; Tilio, M.; Marchetti, F.; Pettinari, C.; Ferraro, S.; et al. The water soluble ruthenium(II) organometallic compound [Ru(p-cymene)(bis(3,5-dimethylpyrazol-1-yl)methane)Cl]Cl suppresses triple negative breast cancer growth by inhibiting tumor infiltration of regulatory T cells. Pharmacol. Res. 2016, 107, 282–290. [Google Scholar] [CrossRef]
- Nayeem, N.; Sauma, S.; Ahad, A.; Rameau, R.; Kebadze, S.; Bazett, M.; Park, B.J.; Casaccia, P.; Prabha, S.; Hubbard, K.; et al. Insights into Mechanisms and Promising Triple Negative Breast Cancer Therapeutic Potential for a Water-Soluble Ruthenium Compound. ACS Pharmacol. Transl. Sci. 2024, 7, 1364–1376. [Google Scholar] [CrossRef]
- Mello-andrade, F.; Guedes, A.P.M.; Pires, W.C.; Velozo-s, V.S.; Delmond, K.A.; Mendes, D.; Molina, M.S.; Matuda, L.; Montes de Sousa, M.A.; Melo-Reis, P.; et al. Ru(II)/amino acid complexes inhibit the progression of breast cancer cells through multiple mechanism-induced apoptosis. J. Inorg. Biochem. 2022, 226, 111625. [Google Scholar] [CrossRef]
- Grozav, A.; Balacescu, O.; Balacescu, L.; Cheminel, T.; Berindan-Neagoe, I.; Therrien, B. Synthesis, Anticancer Activity, and Genome Profiling of Thiazolo Arene Ruthenium Complexes. J. Med. Chem. 2015, 58, 8475–8490. [Google Scholar] [CrossRef] [PubMed]
- Grozav, A.; Miclaus, V.; Vostinaru, O.; Ghibu, S.; Berce, C.; Rotar, I.; Mogosan, C.; Therrien, B.; Loghin, F.; Popa, D.-S. Acute toxicity evaluation of a thiazolo arene ruthenium(II) complex in rats. Regul. Toxicol. Pharmacol. 2016, 80, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Ignat, A.; Lovasz, T.; Vasilescu, M.; Fischer-fodor, E.; Tatomir, C.B.; Cristea, C.; Silaghi-Dumitrescu, L.; Zaharia, V. Heterocycles 27. Microwave Assisted Synthesis and Antitumour Activity of Novel Phenothiazinyl-Thiazolyl-Hydrazine Derivatives. Arch. Pharm. Chem. Life Sci. 2012, 345, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Patra, M.; Joshi, T.; Pierroz, V.; Ingram, K.; Kaiser, M.; Ferrari, S.; Spingler, B.; Keiser, J.; Gasser, G. DMSO-Mediated ligand dissociation: Renaissance for Biological Activity of N-Heterocyclic-[Ru(η6-arene)Cl2] Drug Candidates. Chem. Eur. J. 2013, 19, 14768–14772. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.J.; Kuhn, M.; Stark, M.; Chaffron, S.; Creevey, C.; Muller, J.; Doerks, T.; Julien, P.; Roth, A.; Simonovic, M.; et al. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009, 37, D412–D416. [Google Scholar] [CrossRef]
- GraphPad Prism Version 6.0 for Windows. GraphPad Software: Boston, MA, USA. Available online: www.graphpad.com (accessed on 1 November 2022).
Cell Line Name | Compound | IC50 [µM] |
---|---|---|
MDA-MB-231 | RuL1 | 1.496 |
RuL2 | 0.449 | |
RuL3 | 14.125 | |
RuL4 | 0.229 | |
Hs578T | RuL1 | 1.186 |
RuL2 | 0.705 | |
RuL3 | 0.095 | |
RuL4 | 0.228 | |
MCF-7 | RuL1 | 14.514 |
RuL2 | 0.654 | |
RuL3 | 0.019 | |
RuL4 | 0.247 | |
fR2 | RuL1 | 0.51 |
RuL2 | 0.144 | |
RuL3 | 1.26 | |
RuL4 | 12.55 |
Cell Line | Compound | Gene | FC | p-Value |
---|---|---|---|---|
fR2 | RuL1 | CASP8 | −2.36 | 0.0032 |
p53 | −1.72 | 0.0025 | ||
TNFSF10 | −2.21 | 0.0043 | ||
RuL2 | BAK | 1.48 | 0.048 | |
CASP8 | −1.84 | 5.12 | ||
p53 | −1.35 | 0.0080 | ||
MCF-7 | RuL1 | BAK | 4.04 | 0.019 |
FAS | 3.43 | 0.0091 | ||
NAIP | 2.27 | 0.0013 | ||
CASP8 | 4.51 | 0.0099 | ||
TNF | 18.51 | 0.0036 | ||
XIAP | 2.11 | 0.011 | ||
BAD | 2.27 | 0.021 | ||
RuL2 | BAK | 4.04 | 0.011 | |
FAS | 20.28 | 0.0043 | ||
NAIP | 3.98 | 0.0057 | ||
CASP8 | 2.4 | 0.0069 | ||
TNF | 24.93 | 0.0069 | ||
p53 | 1.56 | 0.16 | ||
XIAP | 2.13 | 0.0019 | ||
FADD | 1.91 | 0.10 | ||
BAD | 7.22 | 0.0044 | ||
Hs578T | RuL1 | BAK | 3.09 | 0.0044 |
CASP8 | 2.02 | 0.019 | ||
TNF | 2.12 | 1.77 | ||
XIAP | 1.65 | 0.0056 | ||
FADD | 2.41 | 0.0091 | ||
BAD | 2.24 | 0.027 | ||
TNFSF10 | −5.5 | 0.035 | ||
RuL2 | BAK | 5.79 | 8.86 | |
NAIP | 3.15 | 0.022 | ||
CASP8 | 3.37 | 0.0011 | ||
TNF | 12.36 | 0.00011 | ||
p53 | 1.89 | 0.0034 | ||
NOD1 | 2.31 | 0.0060 | ||
XIAP | 4.44 | 3.61 | ||
FADD | 5.34 | 0.0015 | ||
BAD | 2.92 | 0.0068 | ||
MDA-MB-231 | RuL1 | NOD1 | 1.44 | 0.030 |
p53 | −2.09 | 0.0021 | ||
RuL2 | p53 | −1.58 | 0.0056 | |
XIAP | −1.72 | 0.0047 | ||
TNFSF10 | −2.32 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grozav, A.; Cheminel, T.; Jurj, A.; Zanoaga, O.; Raduly, L.; Braicu, C.; Berindan-Neagoe, I.; Crisan, O.; Gaina, L.; Therrien, B. Arene Ruthenium Complexes Specifically Inducing Apoptosis in Breast Cancer Cells. Inorganics 2024, 12, 287. https://doi.org/10.3390/inorganics12110287
Grozav A, Cheminel T, Jurj A, Zanoaga O, Raduly L, Braicu C, Berindan-Neagoe I, Crisan O, Gaina L, Therrien B. Arene Ruthenium Complexes Specifically Inducing Apoptosis in Breast Cancer Cells. Inorganics. 2024; 12(11):287. https://doi.org/10.3390/inorganics12110287
Chicago/Turabian StyleGrozav, Adriana, Thomas Cheminel, Ancuta Jurj, Oana Zanoaga, Lajos Raduly, Cornelia Braicu, Ioana Berindan-Neagoe, Ovidiu Crisan, Luiza Gaina, and Bruno Therrien. 2024. "Arene Ruthenium Complexes Specifically Inducing Apoptosis in Breast Cancer Cells" Inorganics 12, no. 11: 287. https://doi.org/10.3390/inorganics12110287
APA StyleGrozav, A., Cheminel, T., Jurj, A., Zanoaga, O., Raduly, L., Braicu, C., Berindan-Neagoe, I., Crisan, O., Gaina, L., & Therrien, B. (2024). Arene Ruthenium Complexes Specifically Inducing Apoptosis in Breast Cancer Cells. Inorganics, 12(11), 287. https://doi.org/10.3390/inorganics12110287