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Abstract: Metal complexes of mesoionic carbenes (MICs) of the triazolylidene type and their deriva-
tives have gained increasing attention in the fields of electrocatalysis and photochemistry. The redox
activity of these metal complexes is critical for their applications in both the aforementioned fields.
Easy accessibility and modular synthesis open a wide field for the design of ligands, such as bidentate
ligands. The combination of an MIC with a pyridyl unit in a bidentate ligand setup increases the π

acceptor properties of the ligands while retaining their strong σ donor properties. The analogy with
the well-established 2,2′-bipyridine ligand allows conclusions to be drawn about the influence of
the mesoionic carbene (MIC) moiety in tetracarbonyl group 6 complexes in cyclic voltammetry and
(spectro)electrochemistry (SEC). However, the effects of the different connectivity in pyridyl-MIC
ligands remain underexplored. Based on our previous studies, we present a thorough investigation of
the influence of the two different pyridyl-MIC constitutional isomers on the electrochemical and the
UV-vis-NIR/IR/EPR spectroelectrochemical properties of group 6 carbonyl complexes. Moreover, the
presented complexes were investigated for the electrochemical conversion of CO2 using two different
working electrodes, providing a fundamental understanding of the influence of the electrode material
in the precatalytic activation.

Keywords: mesoionic carbenes; (spectro)electrochemistry; carbonyl ligands; group 6 carbonyls;
EPR spectroscopy

1. Introduction

In 2001, Sharpless and co-workers coined the term “click” chemistry to describe
modular reactions with a wide scope and high yields, producing only mild inoffensive
byproducts [1]. The azide–alkyne cycloaddition reaction is arguably one of the best exam-
ples of a click reaction. The thermally induced 1,3-dipolar cycloaddition between alkynes
and azides results in a mixture of two regioisomers [2]. In 2002, two groups independently
discovered the copper-catalyzed azide–alkyne cycloaddition reaction (CuAAC), generating
exclusively the 1,4-regioisomer of 1,2,3-triazole [3,4].

The methylation of 1,2,3-triazoles leads to the formation of so-called triazolium salts
in near quantitatively yields [5–7]. They represent one of the most important precursors
for triazolylidenes, a class of carbenes that are better known as abnormal N-heterocyclic
carbenes (aNHCs) or mesoionic carbenes (MICs). This classification arises from the fact that
while following octet rules, no resonance structures can be drawn for MICs without charge
separation, unlike their well-established N-heterocyclic carbene (NHC) counterparts [5,7–9].
Therefore, not surprisingly, the synthetic scope of MICs has expanded rapidly, opening up
the possibility of introducing additional donor substituents, such as pyridine, to generate
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bidentate ligands [10–16] or post-modifications to N-heterocyclic olefins (NHOs) [17,18]
and mesoionic imines (MIIs) [19,20], which are promising candidates for small molecule
activation [5].

Suntrup et al. showed in 2017 that the insertion of a pyridyl moiety into 1,2,3-triazole-
and 1,4-triazolylidene-based Re(I) carbonyl complexes drastically improves the overall
π acceptor character of the ligand, while the incorporation of an MIC unit results in a
greater σ donor strength compared to the well-established bpy ligand [21]. The robustness
toward reductive electrochemistry provided the basis for the investigation of a series of
pyridyl-MIC Re(I) complexes in the electrochemical reduction in CO2 to generate CO with
high selectivity and the study of their photophysical properties [16].

However, many of the most promising electrocatalysts explored contain expensive
and rare metals, which preclude their large-scale applications [22–27]. In recent years, great
efforts have been made to develop more earth-abundant photo- and electrocatalysts for the
activation of small molecules based on carbenes [28–39].

Group 6 metal complexes are attractive candidates because of their natural occurrence,
such as molybdenum in the active site of enzymes that convert CO2 to formate [40].

Recent reports have shown that the isoelectronic and isostructural group 6 metal
complexes of [M(bpy)(CO)4] (M = Cr, Mo, W) and [M(L)(CO)4] (L = “non-innocent” ligands)
with Mo and W are capable of electrocatalytic conversion of CO2 [28,29,33,36,37,39].

Tory et al. and Clark et al. reported the (spectro)electrochemical properties of group
6 complexes [M(bpy-R)(CO)4] (R = 5,5′ H, 5,5′ tBu) and demonstrated their activity in
CO2 reduction on a gold (Au WE) and glassy carbon working electrode (GC WE), respec-
tively [28,39]. The results indicate two important facts: first, the substitution of the bpy
moiety results in a shift of the reduction potential for the precatalytic activation, and second,
the change in the working electrode from a platinum working electrode (Pt WE) to a Au WE
shifts the onset potential for electrocatalytic CO2 reduction by +0.6 V, similar to what was
reported for the group 7 electrocatalysts [25]. Based on these results, Neri et al. investigated
the role of the electrode–catalyst interaction using vibrational sum frequency generation
spectroscopy (VSFG), providing an insight into the mechanism at the electrode surface [36].
Cyclic voltammetric measurements with a Au WE show an equilibrium between the one-
electron reduced species [Mo(bpy)(CO)4]− and [Mo(bpy)(CO)3]− after CO dissociation. In
contrast, using a Pt WE, two-electron reduction is required to generate the precatalytically
active species.

Recently, we have presented a series of two 1,4-pyidyl-MIC group 6 carbonyl
complexes [M(L)(CO)4] (M = Cr, Mo, W) with two different constitutional isomers
(L: C–C = pyridyl-4-triazolylidene [41] and C–N = pyridyl-1-triazolylidene [42–44]) that
exhibit excellent photophysical and photochemical properties, making them suitable candi-
dates in photo-induced small molecule activation [43–46]. For the first time, details of the
influence of the two constitutional isomers were reported in the chemically and electrochem-
ically oxidized [Cr(L)CO)4]+ complexes, providing detailed insights into the extraordinary
σ donor properties [41]. In addition, a comprehensive study of precatalytic activation in
[Rh(Cp*)] complexes for electrochemical H+ reduction was reported, demonstrating the
capability of small molecule activation with both ligands (Scheme 1) [47].
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Based on our previous studies, we report a comprehensive electrochemical and spec-
troelectrochemical investigation of [M(C–C)(CO)4] and [M(C–N)(CO)4] [42] (M = Cr, Mo,
W) to gain a fundamental understanding of the effects of the two constitutional isomers on
their electronic structures and perform reactivity of the complexes in electrochemical CO2
reduction as a function of the electrode material.

2. Results and Discussion

The triazolium salts, [H(C–C)](BF4) [21] and [H(C–N)](Otf) [42], and the complexes,
[M(C–C)(CO)4] [41] and [M(C–N)(CO)4] [42,43], were synthesized according to a previously
reported protocol (Scheme 2).
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Scheme 2. Synthetic protocol for [M(L)CO)4] (M = Cr, Mo, W; Path A [42], Path B [42], Path C [43]).

The light-induced activation of the corresponding [M(CO)6] followed by the addition
of [H(C–C)](BF4) or [H(C–N)](OTf) and subsequent deprotonation with NEt3 leads to the
chromium and tungsten complexes, [M(C–C)(CO)4] and [M(C–N)(CO)4], after chromato-
graphic workup and recrystallization, while in the case of molybdenum, the precursor
[Mo(nbd)(CO)4] (nbd = norbornadiene) was synthesized and further converted in the
presence of a base to isolate [Mo(C–C)(CO)4] or [Mo(C–N)(CO)4], respectively.

2.1. Cyclic Voltammetry with a GC WE and EPR-SEC

The redox potentials measured from cyclic voltammetry are often, but not always, used
for gauging the donor/acceptor properties of the ligands in metal complexes. A reversible
metal-centered oxidation, as observed for [Cr(C–C)(CO)4] [41] and [Cr(C–N)(CO)4], [42]
allows us to estimate the overall σ donor strength of the ligand, while a reversible
ligand-centered reduction can be used to determine indirectly the π acceptor capacity of
the ligand.

Previous reports from our group already established a stronger σ donor strength of
the ligand in [Cr(C–C)(CO)4] compared to [Cr(C–N)(CO)4] [41,42]. The same trend in this
regard is observed for the higher homologs, [M(C–C)(CO)4] and [M(C–N)(CO)4] (M = Mo,
W). However, the oxidations of the respective complexes are irreversible as a consequence
of the kinetic lability of the CO ligands and the possibility of forming complexes with
higher coordination numbers in the oxidized complexes (Figure 1; see Supplementary
Materials S6) [48,49]. The oxidation potentials follow the trend according to the ionization
energy of the central metal atom (Cr > Mo > W) [50].



Inorganics 2024, 12, 46 4 of 18

Inorganics 2024, 12, x FOR PEER REVIEW 4 of 22 
 

 

Previous reports from our group already established a stronger 𝜎 donor strength of 
the ligand in [Cr(C–C)(CO)4] compared to [Cr(C–N)(CO)4] [41,42]. The same trend in this 
regard is observed for the higher homologs, [M(C–C)(CO)4] and [M(C–N)(CO)4] (M = Mo, 
W). However, the oxidations of the respective complexes are irreversible as a consequence 
of the kinetic lability of the CO ligands and the possibility of forming complexes with 
higher coordination numbers in the oxidized complexes (Figure 1; see Supplementary 
Materials S6) [48,49]. The oxidation potentials follow the trend according to the ionization 
energy of the central metal atom (Cr > Mo > W) [50]. 

 
Figure 1. Cyclic voltammograms of [W(C–C)(CO)4] (top) and [W(C–N)(CO)4] (bottom) in CH3CN 
and 0.1 M Bu4NPF6 at a scan rate of 100 mV/s and a glassy carbon working electrode. 

All presented complexes, on the other hand, show a reversible first reduction, 
followed by a second irreversible reduction, whereas in the series of [M(C–N)(CO)4], a 
third reduction process is observed at lower scan rates (Table 1; see Supplementary 
Materials S2) [42]. 

  

Figure 1. Cyclic voltammograms of [W(C–C)(CO)4] (top) and [W(C–N)(CO)4] (bottom) in CH3CN
and 0.1 M Bu4NPF6 at a scan rate of 100 mV/s and a glassy carbon working electrode.

All presented complexes, on the other hand, show a reversible first reduction, followed
by a second irreversible reduction, whereas in the series of [M(C–N)(CO)4], a third reduction
process is observed at lower scan rates (Table 1; see Supplementary Materials S2) [42].

Table 1. Redox potentials of [M(C–C)(CO)4] and [M(C–N)(CO)4] (M = Cr, Mo, W) in CH3CN and 0.1
M NBu4PF6 at 100 mV/s vs. FcH/FcH+ (FcH = ferrocene) with a glassy carbon working electrode.

1. Red./V
Ered1

1/2 ∆Ep

2. Red./V
Ered2

p

1. Ox./V
Eox1

1/2 ∆Ep

[Cr(C–C)(CO)4] [41] −2.26 0.07 −2.80 −0.21 0.07
[Cr(C–N)(CO)4] [42] −2.16 0.07 −2.79 −0.17 0.07
[Mo(C–C)(CO)4] −2.21 0.07 −2.70 0.07 a

[Mo(C–N)(CO)4] [42] −2.10 0.08 −2.68 0.08 a

[W(C–C)(CO)4] −2.19 0.08 −2.69 0.07 a

[W(C–N)(CO)4] −2.05 0.06 −2.65 0.12 a

a = Eox1
p .

The reduction potentials Ered1
1/2 presented in Table 1 are in good agreement with

the aforementioned π acceptor properties of the constitutional isomers. In the case of
[M(C–N)(CO)4] (M = Cr, Mo, W), the first reduction is shifted to more anodic potential
compared to [M(C–C)(CO)4] (M = Cr, Mo, W), indicating the greater π acceptor ability of
the C–N linked constitutional isomer in the complexes.

To obtain detailed insights into the electronic structure of the first reduction, electron
paramagnetic resonance (spectro)electrochemistry (EPR-SEC) was performed with a Au
WE in 0.1 M Bu4NPF6/CH3CN (Figure 2 and Table 2; see Supplementary Materials S3).
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Figure 2. EPR spectrum and spin density plot (B3LYP/RIJCOSX/D3BJ/def2-TZVP, iso value = 0.006) of
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0.1 M NBu4PF6/CH3CN with a Au working electrode during the first reduction (black: experimental,
red: simulation).
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Table 2. EPR simulation data of [M(C–N)(CO)4]− (M = Cr, Mo, W) and [W(C–N)(CO)4]−.

[Cr(C–C)(CO)4]− [Mo(C–C)(CO)4]− [W(C–C)(CO)4]− [W(C–N)(CO)4]−

g 2.0030 2.0033 2.0028 2.0032

AM 5.90 1.97 13.10 2.65

AN1 17.90 10.37 10.39 16.92
AN2 17.80 4.95 5.60 14.22
AN3 11.00 16.10 5.60 6.47
AN4 9.60 9.60 4.53 5.82

AH1 11.70 12.00 4.16 16.20
AH2 9.50 11.90 20.27 13.77
AH3 3.00 10.50 20.27 13.22
AH4 2.00 14.45 15.36 7.19
AH5 - - 1.01 3.19
AH6 - - 1.01 3.19
AH7 - - 0.63 -
AH8 - - 1.81 -
AH9 - - 0.49 -
AH10 - - 0.50 -

lwpp a/mT [0 0.123] [0 0.121] [0 0.054] [0 0.161]
a The first value corresponds to the Gaussian and the second to the Lorentzian shape.

Upon a reduction in room temperature, line-rich EPR spectra at g = 2.003 are observed
for all complexes, showing hyperfine coupling to all four 14N nuclei within the central
pyridyl-MIC ligand framework (Table 2). The hyperfine coupling constants of the 14N
nuclei and the spin density plots of the respective complexes reveal a strong interaction
of the electron spin with the N2 and N3 nuclei of the reduced 1,2,3-triazolylidene (MIC)
moiety, and to a smaller extent, with the 14N nuclei of the pyridyl-N and the N1 nuclei of
the MIC unit. Only in the case of [W(C–C)]− is a strong coupling to only one 14N nucleus
observed. A plausible explanation might be the stronger delocalization of the electron
spin within the C–C isomer. The [W(C–C)]− complex shows 1H hyperfine coupling to
ten 1H nuclei. In contrast, the analog [Cr(C–C)(CO)4]− and [Mo(C–C)(CO)4]− complexes
display 1H hyperfine coupling to four 1H nuclei, which can be assigned to the pyridyl-H.
The strong interaction of the electron spin within the pyridyl moiety is also present in
[W(C–C)(CO)4]−. The complex shows a strong 1H coupling constant to four 1H nuclei,
indicating a predominant localization within the central pyridyl-MIC framework. However,
small hyperfine couplings with six additional 1H nuclei are observed. Even though the
spin density plot of [W(C–C)]− does not directly indicate the localization of the electron
spin at the different ligand fragments, the coupling to three 1H nuclei of the methyl group
at the MIC moiety and three 1H nuclei of the 2,6-diisopropylphenyl (=dipp) substituent
are reasonable.

The influence of the constitutional isomers is shown in the EPR spectrum of
[W(C–C)(CO)4]− and [W(C–N)(CO)4]−. The analog tungsten C–N complex displays a
stronger coupling of the electronic spin with the four 14N nuclei in the pyridyl-MIC moiety.
Consequently, the line-rich spectrum shows an increased line broadening of the isotropic
signal. In contrast to its C–C counterpart, only six 1H hyperfine couplings are observed in
[W(C–N)(CO)4]−. This observation could indicate an increased localization of the electron
spin at the MIC moiety, consequently leading to a decreased contribution of the dipp
substituent. The stronger localization at the MIC moiety in the C–N linked isomer is further
affirmed by the stronger 1H hyperfine coupling to the methyl group. The EPR spectrum
shows 1H coupling constants of up to 7.19 MHz, while the C–C linked analog shows only
weak couplings of up to 1.81 MHz. Additionally, three strong 1H hyperfine couplings to
three pyridyl-H are observed, confirming the significant localization at the pyridyl-MIC
framework within the C–N isomer.
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Unfortunately, no clear trend regarding the influence of the central metal atom in
the series of [M(C–C)(CO)4]− and [M(C–N)(CO)4]− (M = Cr, Mo, W) could be observed,
despite all metal ions showing a coupling with the ligand-centered radical [42].

To further shine a light on the influence of the constitutional isomers in [M(C–C)(CO)4]
and [M(C–N)(CO)4] (M = Cr, Mo, W), IR-SEC with a Au WE in 0.1 M NBu4PF6/CH3CN
was conducted.

2.2. IR-Spectroelectrochemistry

In contrast to cyclic voltammetry, IR spectroscopy of the complexes, [M(C–C)(CO)4]
and [M(C–N)(CO)4] (M = Cr, Mo, W), under investigation is a common method for the
characterization of the electronic structure due to the characteristic CO stretching frequencies.

The IR spectra of [M(C–C)(CO)4] and [M(C–N)(CO)4] in CH2Cl2 show four CO stretch-
ing frequencies as a consequence of the lowering of symmetry around the metal center
(Table 3, Figure 3). Even though the number of bands observed in the IR spectra are
identical, their positions shifted, depending on the electronic nature of the ligands and the
central metal atoms.

Table 3. CO stretching frequencies of [M(C–C)] and [M(C–N)] (M = Cr, Mo, W) in CH2Cl2.

∼
υ (CO)/cm−1 ~

υaverage (CO)/cm−1

[Cr(C–C)(CO)4] [41] 1998 1890 1875 (sh) 1822 1896
[Cr(C–N)(CO)4] [42] 1998 1890 1878 (sh) 1830 1899
[Mo(C–C)(CO)4] 2004 1894 1876 (sh) 1827 1900
[Mo(C–N)(CO)4] [42] 2006 1896 1876 (sh) 1830 1902
[W(C–C)(CO)4] 1998 1882 1870 (sh) 1826 1894
[W(C–N)(CO)4] 2000 1884 1873 (sh) 1830 1897
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Figure 3. IR spectra of [M(C–C)(CO)4] [41] (left) and [M(C–N)(CO)4] [42] (right) in CH2Cl2 (M = Cr:
black, Mo: grey, W: light grey).

Concerning the net electron density of the [M(CO)4] fragment with the incorporated
pyridyl-MIC ligands, the averaged CO stretching frequencies presented in Table 3 further
confirm the greater σ donor strength of the chelating ligand observed in [M(C–C)(CO)4]
compared to [M(C–N)(CO)4].

The influence of the constitutional isomers becomes evident upon a one-electron reduc-
tion in [M(C–C)(CO)4] and [M(C–N)(CO)4] during IR-SEC (Figure 4; see Supplementary
Materials S4). Within the series of [M(C–N)(CO)4], the observation of isosbestic points dur-
ing the IR-SEC measurements is consistent with a clean conversion of the native species into
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the reduced [M(C–N)(CO)4]− complexes. The shift of the frequencies by about 20 cm−1 to
lower wavenumbers confirms the predominantly ligand-centered reduction and is in good
agreement with our calculated changes in the CO stretching frequencies of [M(C–N)(CO)4]−

(see Supplementary Materials S4) [41,42].
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Bu4NPF6 with a Au working electrode during the first reduction.

However, the picture changes upon a reduction in the other isomer. All complexes
within the series show at least two new species in the IR-SEC measurements, as indicated
by the formation of several new IR bands.

The most significant change can be assigned to the newly formed band at 2119 cm−1.
Torey et al. described a similar observation after a reduction in [Mo(bpy)(CO)4] [39]. The
IR band at 2130 cm−1 could be assigned to adsorbed CO at the Au electrode surface.
Furthermore, in-depth investigations by VSFG by Neri et al. confirmed the dissociative
EC mechanism of CO upon a reduction in a Au WE [36]. Based on these results and our
theoretical calculations (see Supplementary Materials S4), the reduced species could likely
be a mixture of the one-electron-reduced [M(C–C)(CO)4]− species, the coordinatively un-
saturated complex [M(C–C)(CO)3]−, and/or the solvent adduct [M(C–C)(CH3CN)(CO)3]−,
formed after subsequent CO dissociation.

In addition, a comparison of the IR spectra before and after electrolysis in the OT-
TLE cell clearly indicates the partial decomposition of [M(C–C)(CO)4] after reduction,
whereas only minor decomposition products are observed in the series of [M(C–N)(CO)4]
after prolonged electrolysis [42]. These results provide useful information on the stabi-
lization of the ligand-centered radical based on the different linkage in the two constitu-
tional isomers, as the CO cleavage observed in [M(C–C)(CO)4] gives access to an open
coordination site for potential electrocatalytic applications, such as electrochemical CO2
reduction [28,29,33,36,37,39].

To confirm the reversibility in the series of [M(C–N)(CO)4] and the EC mecha-
nism observed for [M(C–C)(CO)4] upon reduction, UV/vis/NIR-SEC measurements
were performed.

2.3. UV/vis/NIR-Spectroelectrochemistry

UV/vis/NIR-SEC is a commonly employed technique to test either pure electrochemi-
cal reversibility or reversibility following an EC mechanism [51].

All presented complexes display electronic transitions in the visible to near UV region
(300–550 nm), which can be assigned to metal-to-ligand charge transfers (MLCTs) with
an additional contribution of the axial CO ligands in the ground state and excited state
(see Supplementary Materials S6.20–S6.40) [41,42]. Within the series of [M(C–C)(CO)4], the
MLCT transitions are blue-shifted compared to [M(C–N)(CO)4], which is in good agreement
with the previously described π acceptor properties of the C–N linked constitutional
isomer. However, a significant contribution of the aromatic substituent is observed in
[M(C–N)(CO)4] (see Supplementary Materials S6.40) [42].
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The electrochemical reduction in [M(C–C)(CO)4] leads to broad transitions in the
visible and NIR region (650–2100 nm; Figure 5 and Supplementary Materials S30 and
S31). According to TD-DFT calculations, these bands can be assigned to an intra-ligand
charge transfer (ILCT) from the reduced C–C linked ligand to the 2,6-diisopropylphenyl
substituent and a ligand-to-ligand charge transfer (LLCT) from the reduced ligand to the
axial CO ligands. The absorption bands in the 380–400 nm range are best described as metal
ligand-to-ligand charge transfer (MLLCT) from the [M(CO)4] fragment to the pyridyl-MIC
ligand and all four CO ligands.
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[W(C–N)(CO)4] (right, inset: 750–2090 nm) in CH3CN/0.1 M Bu4NPF6 during the first reduction
with a Au working electrode.

Upon a reduction in [M(C–N)(CO)4], weak bands are observed in the visible and
NIR region (700–2100 nm), which can be assigned to ILCTs and LLCTs from the reduced
ligand to the axial CO ligands, the pyridyl-MIC moiety, and the aromatic substituent (see
Supplementary Materials S6.40). Additionally, more discrete transitions are observed in
the 550–700 nm region, indicating a more localized ligand-centered radical, which is in
good agreement with the aforementioned EPR-SEC results. The electronic transitions in
this range are best described as a mixture of ILCTs, MLLCTs, and LLCTs.

The partial degradation of [M(C–C)(CO)4]− by an EC mechanism is confirmed by
the decrease in absorption maxima during electrolysis in the OTTLE cell in the visible
and NIR region and further supported by comparing the UV/vis/NIR spectra before
and after UV/vis/NIR-SEC (see Supplementary Materials S5.10–S5.30). Only in the case
of [Mo(C–C)(CO)4] could the UV/vis/NIR spectrum of the starting complex be recov-
ered completely. A similar observation was already described by Tory et al., who pro-
posed the recoordination of the CO ligand to the metal center within the experimental
setup [39]. In contrast, no degradation within the series of [M(C–N)(CO)4] is detected, con-
firming the complete reversibility of the first ligand-centered reduction (see Supplementary
Materials S5.40).

Based on our UV/vis/NIR- and IR-SEC measurements, we can conclude that the
C–N linkage in [M(C–N)(CO)4] results in an increased stabilization of the ligand-centered
radical, while a reduction in the C–C pyridyl-MIC ligand shows an EC mechanism, leading
to CO dissociation (Scheme 3).

An associative mechanism for the CO dissociation is unlikely, as it would generate
21 VE species of the already electron-rich [M(C–C)(CO)4] complex. Therefore, we propose a
dissociative mechanism after the first reduction, leading to 17 VE species [M(C–C)(CO)3]−.
However, the intermediate is coordinatively unsaturated and thus accessible to solvent
coordination, generating the complex [M(C–C)(CH3CN)(CO)3]−.
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Based on the previously described reversibility of [Mo(C–C)(CO)4] in UV/vis/NIR-
SEC, a stepwise mechanism following the oxidation of the proposed intermediates could
lead to the regeneration of the parent complex [39].

Furthermore, the irreversibility of [M(C–C)(CO)4] suggests the formation of multiple
species after UV/vis/NIR- and IR-SEC (see Supplementary Materials S4.20–S4.40). The
newly generated IR bands after IR-SEC at 1888 cm−1 and 1776 cm−1 (M = W), as well as the
IR bands at 1907 cm−1 and 1781 cm−1 (M = Mo), are in good accordance with the previously
reported photo-induced formation of the axial solvent adduct [M(C–C)(CH3CN)ax(CO)3]
after CO dissociation, supporting the proposed EC mechanism [45].

Interestingly, the IR bands of the decomposition products at 1938 cm−1 and 1799 cm−1

in [W(C–C)(CO)4] and 1946 cm−1 and 1810 cm−1 in [Mo(C–C)(CO)4], respectively, are
well-described as the trans-positioned pyridyl [M(C–C)(CH3CN)trans-N(CO)3] and MIC
[M(C–C)(CH3CN)trans-C(CO)3] solvato complexes, indicating a fluxional reorganization of
the CO ligands after electrochemically induced CO dissociation [45].

Inspired by these results, we reinvestigated all the presented complexes by cyclic
voltammetry using a Au WE and an electrochemical reduction in CO2 with a GC and Au
WE, respectively.

2.4. Cyclic Voltammetry with a Au WE and Electrochemical CO2 Reduction

The cyclic voltammograms of [M(C–C)(CO)4] and [M(C–N)(CO)4] (M = Cr, Mo, W) with
a Au WE show the same electrochemical redox processes observed with a GC WE (Figure 6;
see Supplementary Materials S2). The second reduction shifts to more cathodic potential,
while in the potential range from −1.5 V to ± 0.0 V, only minor changes are observed.

The separation of the first reduction from the second reduction leads to a reversible
first reduction in all presented complexes, as indicated by the ic

ia
current ratio of ≈ 1, the

peak-to-peak separation of ∆E = 0.07 V, and the absence of oxidative processes between
−1.5 V and ± 0.0 V (Figure 6; see Supplementary Materials S2). The reversibility of the first
reduction in the series of [M(C–C)(CO)4] (M = Cr, Mo, W) is a direct consequence of the
applied scan rate of 100 mV/s, leading to a fast electron transfer processes instead of an EC
mechanism, accompanied by CO dissociation, which is observed during electrolysis in the
OTTLE cell in the IR- and UV/vis/NIR-SEC measurements.
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0.1 M Bu4NPF6 with a scan rate of 100 mV/s and a Au electrode.

The second reduction appears completely irreversible in the series of [M(C–C)(CO)4]
and [M(C–N)(CO)4] and is further confirmed by the appearance of additional oxidation
processes in the range from −1.5 V to ± 0.0 V.

Earlier reports by Hartl and co-workers on [Mo(CO)4(bpy)] showed a reversible first
reduction, generating the monoanionic [Mo(CO)4(bpy)]− species using a Au WE [39]. The
second irreversible reduction results in the formation of the coordinatively unsaturated
[Mo(CO)3(bpy)]2− complex after CO dissociation. On sweeping back to cathodic potentials,
the rapid recoordination of the CO ligand is proposed, as indicated by the near recovery of
the first reversible reduction in [Mo(CO)4(bpy)]−.

As judged by the cyclic voltammetry for [M(C–C)(CO)4] and [M(C–N)(CO)4], no such
intermediate could be detected after the second reduction with a Au WE, even at lower
scan rates of 25 mV/s (see Supplementary Materials S2). Notably, lowering the scan rate
leads to the complete disappearance of the oxidative processes between –1.5 V and ± 0.0 V.
Reversible coordination of one of the pyridyl-MIC moieties after the second reduction can,
therefore, not be ruled out due to its electron-rich nature [52–55].

In the presence of CO2 under non-protic conditions, the influence of the metal center,
the electrode material, and the constitutional isomers reveal their full potential in the
electrochemical activation of CO2 (Figure 7; see Supplementary Materials S7).

In the series of [M(C–C)(CO)4], only the chromium complex shows a catalytic current
with a GC WE after the first catalytic cycle, while no catalytic current is observed for the
higher homologs. Instead, an overpotential ( η = ∼280 mV) [56] is observed after the
second reduction, which could be a consequence of adduct formation with CO2, leading to
the deactivation of the catalysts, as previously reported by Kubiak and co-workers [37].

The second catalytic cycle in [Cr(C–C)(CO)4] shows similar reactivity and is de-
scribed by higher homologs. To verify whether the catalyst is a real homogenous catalyst
or deposited on the electrode surface, a rinse test was performed (see Supplementary
Materials S58) [57].

As judged by the experimental data, no heterogenous reactivity can be detected, which
supports the CO2 adduct formation within the series of [M(C–C)(CO)4].

In contrast, in the series of [M(C–N)(CO)4], a catalytic current at high potentials
Ecat

p > −3.0 V is detected (see Supplementary Materials S7), which underlines that the fine-
tuning of the ligand can have a major impact on catalytic performance. Unfortunately, high
applied potentials for the electrocatalytic transformation of CO2 prevented us from further
product analysis. Hence, we focused on the influence of the electrode material to shift
the onset potential for the electrochemical conversion of CO2 with a Au WE (Figure 7; see
Supplementary Materials S7).
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Figure 7. Cyclic voltammograms of [W(C–C)(CO)4] (left) and [W(C–N)(CO)4] (right) (1 mM, black)
and in the presence of CO2 (red) at 100 mV/s in CH3CN/0.1 M Bu4NPF6 with a GC WE (top) and a
Au WE (bottom).

According to our IR-SEC measurements, the first reduction in [M(C–C)(CO)4] with a
Au WE leads to CO dissociation, creating an open coordination site for binding CO2. How-
ever, the weaker π acceptor properties of the C–C linked pyridyl-MIC ligand compared
to its bpy counterpart shifts the onset potential to higher cathodic potential, preventing
us from investigating the catalytic conversion under the experimental conditions, giving
access to precatalytic activation (see Supplementary Materials S7).

To our surprise, the electrochemical conversion of CO2 with the greater π acceptor
ligand in [M(C–N)(CO)4] results in a catalytic current close to the potential window of a
saturated CO2/CH3CN solution, which is in conflict with our previously described IR-SEC
measurements. A plausible explanation could be the formation of traces of [M(C–N)(CO)3]−

at the electrode surface, capable of electrocatalytically reducing CO2, as previously de-
scribed by Cowan and co-workers [36].

Analysis of the results in the electrochemical conversion of CO2 with [M(C–C)(CO)4]
and [M(C–N)(CO)4] using a Au WE show that the onset potential can be shifted drastically,
up to +730 mV vs. a GC WE by the right choice of ligand and electrode material, as shown
in the case of [W(C–N)(CO)4].

3. Conclusions

The influence of the constitutional isomers on the redox and the spectroscopic proper-
ties of group 6 carbonyl complexes was investigated by cyclic voltammetry, EPR-, IR- and
UV/vis/NIR-SEC. According to cyclic voltammetry, the different linkage of the constitu-
tional isomers results in a greater σ donor strength of the C–C linked pyridyl-MIC ligand
and a lower π acceptor ability compared to its C–N counterpart, which could be further
confirmed by IR spectroscopy. The changes in the electronic structure have a tremendous
influence on the redox properties of [M(C–C)(CO)4] and [M(C–N)(CO)4]. Based on our EPR-
SEC measurements, the first ligand-centered reduction leads to an increased delocalization
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of the electron spin within the C–C linked isomer. This observation was further supported
by UV/vis/NIR-SEC measurements and TD-DFT calculations of the singly-reduced species,
indicating an enhanced localization of the charge distribution in [M(C–N)(CO)4]−. Upon
reduction, IR-SEC measurements of [M(C–C)(CO)4] show an EC mechanism, leading to CO
dissociation using a Au WE, while in the case of [M(C–N)(CO)4], a complete electrochem-
ically reversible one-electron reduction was observed. Additionally, UV/vis/NIR-SEC
measurements were performed to confirm the pure reversibility of the first ligand-centered
reduction or reversibility following an EC mechanism. In the case of [Mo(C–C)(CO)4], the
initial spectra could be fully recovered, indicating reversible binding of CO following an
EC mechanism. Based on these results, all presented complexes were further tested for the
electrochemical conversion of CO2 using a GC and a Au WE. Performing an electrochemical
CO2 reduction with a GC WE indicates that all complexes of the series [M(C–N)(CO)4] are
capable of electrochemically converting CO2 at high potentials, while the [M(C–C)(CO)4]
complexes tend to generate CO2 adducts after the second reduction. A change in electrode
material leads to a shift of the onset potential of about +730 mV. However, the catalytic
performance close to the potential window of the CO2-saturated 0.1 M CH3CN/Bu4NPF6
precluded further analysis of the product formation. Qualitatively, all presented complexes
are capable of activating CO2 by changing the working electrode from GC to Au. In this
study, we were able to demonstrate that minor changes in the ligand framework, metal
center, and experimental setup can have a tremendous influence on the electrochemical,
spectroelectrochemical, and electrocatalytic performance in such systems.

4. Experimental Section

The synthesis of the complexes [M(C–C)(CO)4] and [M(C–N)(CO)4] (M = Cr, Mo, W)
was performed according to the previously reported literature procedures [41–43,45].

4.1. General Procedures, Materials, and Instrumentation

Caution! Compounds containing azides are potentially explosive. Although we
never experienced any problems during synthesis or analysis, all compounds should be
synthesized in small quantities and handled with great care!

Unless otherwise noted, all reactions were carried out using standard Schlenk-line
techniques under an inert atmosphere of argon (Linde Argon 4.8, purity 99.998%) or in a
glovebox (Glovebox Systemtechnik, GS095218).

Commercially available chemicals were used without further purification. The solvents
used for metal complex synthesis and catalysis were available from MBRAUN MB-SPS-800
solvent System and degassed by standard techniques prior to use. The identity and purity
of the compounds were established via 1H and 13C NMR spectroscopy, elemental analysis,
and mass spectrometry.

Solvents for cyclic voltammetry and UV/vis- and EPR-spectroelectrochemical mea-
surements were dried and distilled under argon and degassed by common techniques prior
to use. Column chromatography was performed over silica 60 M (0.04–0.063 mm).

1H and 13C{1H} NMR spectra were recorded on a Bruker Advance 400 spectrometer at
19–22 ◦C. Chemical shifts are reported in ppm referenced to the residual solvent peaks [58].

The following abbreviations are used to represent the multiplicity of the signals: s
(singlet), d (doublet), t (triplet), q (quartet), p (pentet), and sept (septet).

Mass spectrometry was performed on an Agilent 6210 ESI-TOF.
Elemental analyses were performed with an Elementar Micro Cube elemental analyzer.
The light-induced syntheses were performed with a LOT-QuantumDesign Arc Lamp

(150 W, Xe OF).

4.2. Electrochemistry

Cyclic voltammograms were recorded with a PalmSens4 potentiostat or PAR VersaStat
(Ametek), respectively, with a conventional three-electrode configuration consisting of a
glassy carbon working electrode or gold working electrode, a platinum auxiliary electrode,
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and a coiled silver wire as a pseudoreference electrode. The ferrocene/ferrocenium couple
was used as an internal reference. All measurements were performed at room temperature
at a scan rate between 25 and 1000 mVs−1. The experiments were carried out in absolute
Acetonitrile containing 0.1 M Bu4NPF6 (Sigma Aldrich, ≥99.0%, electrochemical grade) as
the supporting electrolyte.

4.3. Spectroelectrochemistry

UV/vis spectra were recorded with an Avantes spectrometer consisting of a light
source (AvaLight-DH-S-Bal), a UV/vis detector (AvaSpec-ULS2048), and an NIR detector
(AvaSpeC-NIR256-TEC). IR spectra were recorded with a BRUKER Vertex 70 FT-IR or Nico-
let 6700 FT-IR spectrometer, respectively. UV/vis-spectroelectrochemical measurements
were carried out in an optically transparent thin-layer electrochemical (OTTLE) [59,60] cell
(CaF2 windows) with a gold-mesh working electrode, a platinum-mesh counter electrode,
and a silver-foil pseudoreference. EPR spectra at the X-band frequency (ca. 9.5 GHz) were
obtained with a Magnettech MS-5000 benchtop EPR spectrometer equipped with a rectan-
gular TE 102 cavity and a TC HO4 temperature controller. The measurements were carried
out in synthetic quartz glass tubes. For EPR spectroelectrochemistry, a three-electrode setup
was employed using two Teflon-coated platinum wires (0.005 in. bare and 0.008 in. coated)
as the working and counter electrodes and a Teflon-coated silver wire (0.005 in. bare and
0.007 in coated) as the pseudoreference electrode. The experiments were carried out in
absolute Acetonitrile containing 0.1 M Bu4NPF6 as the supporting electrolyte. The same
solvents used for CV measurements were used for each compound.

4.4. Calculations

The program package ORCA 4.1 was used for all DFT calculations [61]. Starting
from the molecular structure obtained from X-ray diffraction, geometry optimizations
were carried out using the B3LYP [62,63] function, and no symmetry restrictions were
imposed during the optimization. For tungsten, relativistic effects in zero-order regular
approximation (ZORA) were included [64]. All calculations were performed with an
empirical Van der Waals correction (D3) [65–68]. The restricted and unrestricted DFT
methods were employed for closed and open shell molecules, respectively, unless stated
otherwise. Convergence criteria were set to the default for geometry optimization (OPT)
and tight for SCF calculations (TIGHTSCF). Triple-ζ valence basis sets (def2-TZVP) [69]
were employed for all atoms. Calculations were performed using a resolution of the
identity approximation [70–76] with matching auxiliary basis sets [77,78] for geometry
optimizations and numerical frequency calculations, and a RIJCOSX (combination of the
resolution of the identity and chain of spheres algorithms) approximation was used for
single-point calculations using the B3LYP function. Low-lying excitation energies were
calculated with time-dependent DFT (TD-DFT). Solvent effects were taken into account
with the conductor-like polarizable continuum model, CPCM [79]. Spin densities were
calculated according to the Mulliken population analysis [80]. The absence of imaginary
frequency, spin densities, molecular orbitals, and difference densities were visualized with
a modified Chemcraft 1.8 program [81,82]. All molecular orbitals are illustrated with an iso
value of 0.052. All calculated TD-DFT spectra are Gaussian-broadened with a bandwidth
of 25 at half height unless otherwise noted.
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