SCAPS-1D Simulation for Device Optimization to Improve Efficiency in Lead-Free CsSnI3 Perovskite Solar Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Simulation under Initial Conditions
2.2. Efficiency Variation Depending on Acceptor Density (NA) of PAL
2.3. Optimization of Each Layer’s Thickness
2.3.1. Optimization of ZnO Thickness
2.3.2. Optimization of PAL Thickness
2.3.3. Optimization of NiOx Thickness
2.4. Optimization of PAL Defect Density and Interface Defect Density
2.5. Optimization of Metal Electrode Work Function
3. Materials and Methods
3.1. Numerical Modeling
3.2. Device Structure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yao, L. New energy utilization in environmental design and realization. Energy Rep. 2022, 8, 9211–9220. [Google Scholar] [CrossRef]
- Nunes, F.C.; de Jesus Alves, L.; Bitterncourt, P.; Prasad, M.N.V. Nonfossil energy targets for environmental sustainability. In Decarbonization Strategies and Drivers to Achieve Carbon Neutrality for Sustainability; Elsevier: Amsterdam, The Netherlands, 2024; pp. 27–44. [Google Scholar]
- Ashraf, M.; Ayaz, M.; Khan, M.; Adil, S.F.; Farooq, W.; Ullah, N.; Nawaz Tahir, M. Recent trends in sustainable solar energy conversion technologies: Mechanisms, prospects, and challenges. Energy Fuels 2023, 37, 6283–6301. [Google Scholar] [CrossRef]
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Ali, B.M.; Algburi, S.; Alzoubi, H.M.; Al-Jiboory, A.K.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. The renewable energy role in the global energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Nie, T.; Fang, Z.; Ren, X.; Duan, Y.; Liu, S. Recent advances in wide-bandgap organic–inorganic halide perovskite solar cells and tandem application. Nano Micro Lett. 2023, 15, 70. [Google Scholar] [CrossRef] [PubMed]
- Bati, A.S.; Zhong, Y.L.; Burn, P.L.; Nazeeruddin, M.K.; Shaw, P.E.; Batmunkh, M. Next-generation applications for integrated perovskite solar cells. Commun. Mater. 2023, 4, 2. [Google Scholar] [CrossRef]
- Qian, J.; Xu, B.; Tian, W. A comprehensive theoretical study of halide perovskites ABX3. Org. Electron. 2016, 37, 61–73. [Google Scholar] [CrossRef]
- Shaw, B.K.; Castillo-Blas, C.; Thorne, M.F.; Gómez, M.L.R.; Forrest, T.; Lopez, M.D.; Chater, P.A.; McHugh, L.N.; Keen, D.A.; Bennett, T.D. Principles of melting in hybrid organic–inorganic perovskite and polymorphic ABX3 structures. Chem. Sci. J. 2022, 13, 2033–2042. [Google Scholar] [CrossRef]
- Jung, H.S.; Han, G.S.; Park, N.G.; Ko, M.J. Flexible perovskite solar cells. Joule 2019, 3, 1850–1880. [Google Scholar] [CrossRef]
- Xie, F.X.; Su, H.; Mao, J.; Wong, K.S.; Choy, W.C. Evolution of diffusion length and trap state induced by chloride in perovskite solar cell. J. Phys. Chem. C 2016, 120, 21248–21253. [Google Scholar] [CrossRef]
- Park, N.G. Methodologies for high efficiency perovskite solar cells. Nano Converg. 2016, 3, 15. [Google Scholar] [CrossRef]
- Lan, Z.R.; Wang, Y.D.; Shao, J.Y.; Ma, D.X.; Liu, Z.; Li, D.; Hou, Y.; Yao, J.; Zhong, Y.W. Surface Passivation with Diaminopropane Dihydroiodide for p-i-n Perovskite Solar Cells with over 25% Efficiency. Adv. Funct. Mater. 2024, 34, 2312426. [Google Scholar] [CrossRef]
- Elumalai, N.K.; Mahmud, M.A.; Wang, D.; Uddin, A. Perovskite solar cells: Progress and advancements. Energies 2016, 9, 861. [Google Scholar] [CrossRef]
- Bimli, S.; Manjunath, V.; Mulani, S.R.; Miglani, A.; Game, O.S.; Devan, R.S. Theoretical investigations of all inorganic Cs2SnI6 double perovskite solar cells for efficiency∼30%. Sol. Energy 2023, 256, 76–87. [Google Scholar] [CrossRef]
- Petrus, M.L.; Schlipf, J.; Li, C.; Gujar, T.P.; Giesbrecht, N.; Müller-Buschbaum, P.; Thelakkat, M.; Bein, T.; Hüttner, S.; Docampo, P. Capturing the sun: A review of the challenges and perspectives of perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700264. [Google Scholar] [CrossRef]
- Ansari, M.I.H.; Qurashi, A.; Nazeeruddin, M.K. Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. J. Photochem. Photobiol. C 2018, 35, 1–24. [Google Scholar] [CrossRef]
- Chung, J.-H.; Song, J.; Im, J.; Androulakis, C.; Malliakas, C.D.; Li, H.; Freeman, A.J.; Kenney, J.T.; Kanatzidis, M.G. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 2012, 134, 8579–8587. [Google Scholar] [CrossRef] [PubMed]
- Correa-Baena, J.-P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Goetz, K.P.; Taylor, A.D.; Hofstetter, Y.J.; Vaynzof, Y. Sustainability in perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 13, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sarvari, H.; Dang, H.; Singh, V.; Chen, Z. Preparation and evaluation of perovskite solar cells in the absolute atmospheric environment. In Optoelectronic Devices and Integration VI; SPIE: Bellingham, WA, USA, 2016; Volume 10019, pp. 37–43. [Google Scholar]
- Chen, H.; Xiang, S.; Li, W.; Liu, H.; Zhu, L.; Yang, S. Inorganic perovskite solar cells: A rapidly growing field. Solar RRL 2018, 2, 1700188. [Google Scholar] [CrossRef]
- Zhang, J.; Hodes, G.; Jin, Z.; Liu, S. All-inorganic CsPbX3 perovskite solar cells: Progress and prospects. Angew. Chem. Int. Ed. 2019, 58, 15596–15618. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Zhang, C.; Ma, Y.; Fan, J.; Mai, Y. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Am. Chem. Soc. 2018, 140, 3825–3828. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.K.; Li, M.; Yang, Y.G.; Hu, Y.; Ma, H.; Gao, X.Y.; Liao, L.S. High efficiency Pb–In binary metal perovskite solar cells. Adv. Mater. 2016, 28, 6695–6703. [Google Scholar] [CrossRef] [PubMed]
- Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 2012, 5, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Gamal, N.; Sedky, S.H.; Shaker, A.; Fedawy, M. Design of lead-free perovskite solar cell using Zn1−xMgxO as ETL: SCAPS device simulation. Optik 2021, 242, 167306. [Google Scholar] [CrossRef]
- Benmessaoud, R.I. Human and Eco-Toxicological Impacts of Organometallic Halide Perovskites; EPFL: Lausanne, Switzerland, 2017. [Google Scholar]
- Peng, Y.; Liu, Y. Lead–An Obstacle for Installing Perovskite Devices? Perovskite Mater. Devices 2022, 2, 629–653. [Google Scholar]
- Giustino, F.; Snaith, H.J. Toward lead-free perovskite solar cells. ACS Energy Lett. 2016, 1, 1233–1240. [Google Scholar] [CrossRef]
- Cao, J.; Yan, F. Recent progress in tin-based perovskite solar cells. Energy Environ. Sci. 2021, 14, 1286–1325. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, W.; Lu, Y. Performance simulation of lead-free perovskite solar cells. In Proceedings of the 2022 14th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Changsha, China, 15–16 January 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 789–793. [Google Scholar]
- Lin, S.; Zhang, B.; Lü, T.Y.; Zheng, J.C.; Pan, H.; Chen, H.; Lin, H.; Li, X.; Zhou, J. Inorganic lead-free B-γ-CsSnI3 perovskite solar cells using diverse electron-transporting materials: A simulation study. ACS Omega 2021, 6, 26689–26698. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Long, M.; Cai, M.Q.; Yang, J. Influence of the number of layers on ultrathin CsSnI3 perovskite: From electronic structure to carrier mobility. J. Phys. D Appl. Phys. 2018, 51, 105101. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, Y.; Ju, M.G.; Garces, H.F.; Ding, T.; Pang, S.; Zeng, X.C.; Padture, N.P.; Sun, X.W. Heterojunction-depleted lead-free perovskite solar cells with coarse-grained B-γ-CsSnI3 thin films. Adv. Energy Mater. 2016, 6, 1601130. [Google Scholar] [CrossRef]
- Li, B.; Di, H.; Chang, B.; Yin, R.; Fu, L.; Zhang, Y.N.; Yin, L. Efficient passivation strategy on Sn related defects for high performance all-Inorganic CsSnI3 perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2007447. [Google Scholar] [CrossRef]
- Li, L.; Zhai, T.; Bando, Y.; Golberg, D. Recent progress of one-dimensional ZnO nanostructured solar cells. Nano Energy 2012, 1, 91–106. [Google Scholar] [CrossRef]
- Kumari, N.; Patel, S.R.; Gohel, J.V. Optical and structural properties of ZnO thin films prepared by spray pyrolysis for enhanced efficiency perovskite solar cell application. Opt. Quantum Electron. 2018, 50, 180. [Google Scholar] [CrossRef]
- Michaelson, H.B. The work function of the elements and its periodicity. J. Appl. Phys. 1977, 48, 4729–4733. [Google Scholar] [CrossRef]
- Milnes, A.G. Heterojunctions and Metal Semiconductor Junctions; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Ma, F.; Zhao, Y.; Li, J.; Zhang, X.; Gu, H.; You, J. Nickel oxide for inverted structure perovskite solar cells. J. Energy Chem. 2021, 52, 393–411. [Google Scholar] [CrossRef]
- Sajid, S.; Elseman, A.M.; Huang, H.; Ji, J.; Dou, S.; Jiang, H.; Liu, X.; Wei, D.; Cui, P.; Li, M. Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy 2018, 51, 408–424. [Google Scholar] [CrossRef]
- Fatima, Q.; Haidry, A.A.; Hussain, R.; Zhang, H. Device simulation of a thin-layer CsSnI3-based solar cell with enhanced 31.09% efficiency. Energy Fuel 2023, 37, 7411–7423. [Google Scholar] [CrossRef]
- Dunfield, S.P.; Bliss, L.; Zhang, F.; Luther, J.M.; Zhu, K.; van Hest, M.F.A.M.; Reese, M.O.; Berry, J.J. From defects to degradation: A mechanistic understanding of degradation in perovskite solar cell devices and modules. Adv. Energy Mater. 2020, 10, 1904054. [Google Scholar] [CrossRef]
- Montecucco, R.; Quadrivi, E.; Po, R.; Grancini, G. All-inorganic cesium-based hybrid perovskites for efficient and stable solar cells and modules. Adv. Energy Mater. 2021, 11, 2100672. [Google Scholar] [CrossRef]
- Li, Z.; Wang, R.; Xue, J.; Xing, X.; Yu, C.; Huang, T.; Chu, J.; Wang, K.-L.; Dong, C.; Wei, Z.; et al. Core–shell ZnO@SnO2 nanoparticles for efficient inorganic perovskite solar cells. J. Am. Chem. Soc. 2019, 141, 17610–17616. [Google Scholar] [CrossRef]
- Moustafa, M.O.; Alzoubi, T. Numerical simulation of single junction InGaN solar cell by SCAPS. Key Eng. Mater. 2019, 821, 407–413. [Google Scholar] [CrossRef]
- Nykyruy, L.; Yavorskyi, R.; Zapukhlyak, Z.; Wisz, G.; Potera, P. Evaluation of CdS/CdTe thin film solar cells: SCAPS thickness simulation and analysis of optical properties. Opt. Mater. 2019, 92, 319–329. [Google Scholar] [CrossRef]
- Landau, L.D.; Bell, J.S.; Kearsley, M.J.; Pitaevskii, L.P.; Lifshitz, E.M.; Sykes, J.B. Electrodynamics of Continuous Media; Elsevier: Amsterdam, The Netherlands, 2013; Volume 8. [Google Scholar]
- Hossain, M.K.; Toki, G.I.; Kuddus, A.; Mohammed, M.K.; Pandey, R.; Madan, J.; Bhattarai, S.; Rahman, M.F.; Dwivedi, D.K.; Amami, M.; et al. Optimization of the architecture of lead-free CsSnCl3-perovskite solar cells for enhancement of efficiency: A combination of SCAPS-1D and wxAMPS study. Mater. Chem. Phys. 2023, 308, 128281. [Google Scholar] [CrossRef]
- Roy, P.; Sinha, N.K.; Tiwari, S.; Khare, A. Influence of defect density and layer thickness of absorption layer on the performance of tin based perovskite solar cell. IOP Conf. Ser. Mater. Sci. Eng. 2020, 798, 012020. [Google Scholar] [CrossRef]
- Pindolia, G.; Shinde, S.M.; Jha, P.K. Optimization of an inorganic lead free RbGeI3 based perovskite solar cell by SCAPS-1D simulation. Sol. Energy 2022, 236, 802–821. [Google Scholar] [CrossRef]
- Tang, W.; Liu, T.; Fenwick, O. High thermoelectric performance based on CsSnI3 thin films with improved stability. J. Mater. Chem. A 2022, 10, 7020–7028. [Google Scholar] [CrossRef]
- Ravidas, B.K.; Roy, M.K.; Samajdar, D.P. Investigation of photovoltaic performance of lead-free CsSnI3-based perovskite solar cell with different hole transport layers: First Principle Calculations and SCAPS-1D Analysis. Sol. Energy 2023, 249, 163–173. [Google Scholar] [CrossRef]
- Jiang, M.; Tang, J. Simulated development and optimized performance of narrow-bandgap CsSnI3-based all-inorganic perovskite solar cells. J. Phys. D Appl. Phys. 2021, 54, 465104. [Google Scholar] [CrossRef]
- Ma, F.J.; Liu, H.; Liao, B.; Chen, J.; Du, Z.; Samudra, G.S.; Aberle, A.G.; Hoex, B.; Peters, I.M. Impact of Auger recombination parameterisations on predicting silicon wafer solar cell performance. J. Comput. Electron. 2014, 13, 647–656. [Google Scholar] [CrossRef]
- Chantana, J.; Kawano, Y.; Nishimura, T.; Mavlonov, A.; Shen, Q.; Yoshino, K.; Iikubo, S.; Hayase, S.; Minemoto, T. Impact of Auger recombination on performance limitation of perovskite solar cell. Sol. Energy 2021, 217, 342–353. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Zyoud, A.H.; Ahmed, N.M.; Prasad, A.R.; Khan, S.N.; Abdelkader, A.F.; Shahwan, M. Numerical modeling of high conversion efficiency FTO/ZnO/CdS/CZTS/MO thin film-based solar cells: Using SCAPS-1D software. Crystals 2021, 11, 1468. [Google Scholar] [CrossRef]
- Liang, Y.; Cui, X.; Li, F.; Stampfl, C.; Ringer, S.P.; Huang, J.; Zheng, R. Interstitial Hydrogen Anions: A Cause of p-Type Conductivity in CsSnI3. J. Phys. Chem. C 2022, 126, 14843–14849. [Google Scholar] [CrossRef]
- Kumar, M.H.; Dharani, S.; Leong, W.L.; Boix, P.P.; Prabhakar, R.R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 2014, 26, 7122–7127. [Google Scholar] [CrossRef] [PubMed]
- Bramantyo, A.; Murakami, K.; Okuya, M.; Udhiarto, A.; Poespawati, N.R. Growth of Zinc Oxide Nanorods with the Thickness of Less than or Equal to 1 μm through Zinc Acetate or Zinc Nitrate for Perovskite Solar Cell Applications. J. Eng. 2019, 2019, 2793853. [Google Scholar] [CrossRef]
- Saleem, M.; Fang, L.; Wakeel, A.; Rashad, M.; Kong, C.Y. Simple preparation and characterization of nano-crystalline zinc oxide thin films by sol-gel method on glass substrate. Sci. Res. J. 2012, 2, 10–15. [Google Scholar] [CrossRef]
- Hasuike, N.; Harada, T.; Kiyohara, T.; Nishio, K.; Kisoda, K.; Harima, H. Low temperature synthesis of ZnO thin films by spin-coating technique. Phys. Status Solidi A 2011, 8, 506–508. [Google Scholar] [CrossRef]
- Tang, K.; Huang, S.; Gu, S.; Zhu, S.; Ye, J.; Xu, Z.; Zheng, Y. The roles of buffer layer thickness on the properties of the ZnO epitaxial films. Appl. Surf. Sci. 2016, 388, 557–564. [Google Scholar] [CrossRef]
- Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan, J.; et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 6730–6733. [Google Scholar] [CrossRef] [PubMed]
- Odari, V.; Musembi, R.; Mwabora, J. Device simulation of Sb2S3 solar cells by SCAPS-1D software. Afr. J. Phys. Sci. 2019, 3, 39–54. [Google Scholar]
- Zhang, T.; Zeng, G.; Ye, F.; Zhao, X.; Yang, X. Efficient Non-Fullerene Organic Photovoltaic Modules Incorporating As-Cast and Thickness-Insensitive Photoactive Layers. Adv. Energy Mater. 2018, 8, 1801387. [Google Scholar] [CrossRef]
- Mohammed, M.K.; Abdalhadi, S.M.; Kumar, A.; Doshi, O.P.; Al-Mousoi, A.K.; Hussein, H.T.; Alnayli, R.S.; Madan, J.; Tawfeek, A.M.; Rahman, M.F.; et al. Designing a Novel Hole-Transporting Layer for FAPbI3-Based Perovskite Solar Cells. Energy Fuels 2023, 37, 19870–19881. [Google Scholar] [CrossRef]
- Uddin, M.S.; Al Mashud, M.A.; Toki, G.F.; Pandey, R.; Zulfiqar, M.; Saidani, O.; Chandran, K.; Ouladsmane, M.; Hossain, M.K. Lead-free Ge-based perovskite solar cell incorporating TiO2 and Cu2O charge transport layers harnessing over 25% efficiency. J. Opt. 2023, 1–17. [Google Scholar] [CrossRef]
- Pindolia, G.; Shinde, S.M.; Jha, P.K. Non-leaded, KSnI3 based perovskite solar cell: A DFT study along with SCAPS simulation. Mater. Chem. 2023, 297, 127426. [Google Scholar] [CrossRef]
- Hossain, M.K.; Toki, G.I.; Alam, I.; Pandey, R.; Samajdar, D.P.; Rahman, M.F.; Islam, M.R.; Rubel, M.H.K.; Bencherif, H.; Madan, J.; et al. Numerical simulation and optimization of a CsPbI3-based perovskite solar cell to enhance the power conversion efficiency. New J. Sci. 2023, 47, 4801–4817. [Google Scholar] [CrossRef]
- Bhattarai, S.; Pandey, R.; Madan, J.; Ansari, M.Z.; Hossain, M.K.; Amami, M.; Ahammad, S.H.; Rashed, A.N.Z. Chlorine-doped perovskite materials for highly efficient perovskite solar cell design offering an efficiency of nearly 29%. Prog. Photovolt. Res. Appl. 2024, 32, 25–34. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, G. The effect of absorber thickness on the planar Sb2S3 thin film solar cell: Trade-off between light absorption and charge separation. Sol. Energy 2020, 201, 323–329. [Google Scholar] [CrossRef]
- Kundara, R.; Baghel, S. Device modelling of lead free (CH3NH3) 2CuX4 based perovskite solar cells using SCAPS simulation. Opt. Quantum Electron. 2023, 55, 968. [Google Scholar] [CrossRef]
- Sunny, A.; Rahman, S.; Khatun, M.; Ahmed, S.R.A. Numerical study of high performance HTL-free CH3NH3SnI3-based perovskite solar cell by SCAPS-1D. AIP Adv. 2021, 11, 065102. [Google Scholar] [CrossRef]
- Rahman, M.A. Performance analysis of WSe2-based bifacial solar cells with different electron transport and hole transport materials by SCAPS-1D. Heliyon 2022, 8, e09800. [Google Scholar] [CrossRef]
- Rajagopal, A.; Yao, K.; Jen, A.K.Y. Toward perovskite solar cell commercialization: A perspective and research roadmap based on interfacial engineering. Adv. Mater. 2018, 30, e1800455. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Tress, W.; Abate, A.; Hagfeldt, A. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997. [Google Scholar] [CrossRef] [PubMed]
- Jan, S.T.; Noman, M. Influence of layer thickness, defect density, doping concentration, interface defects, work function, working temperature and reflecting coating on lead-free perovskite solar cell. Sol. Energy 2022, 237, 29–43. [Google Scholar]
- Talbi, A.; Khaaissa, Y.; Nouneh, K.; Feddi, E.M.; El Haouari, M. Effects of temperature, thickness, electron density and defect density on ZnS based solar cells: SCAPS-1D simulation. Mater. Today Proc. 2022, 66, 116–121. [Google Scholar] [CrossRef]
- Samiee, M.; Konduri, S.; Ganapathy, B.; Kottokkaran, R.; Abbas, H.A.; Kitahara, A.; Joshi, P.; Zhang, L.; Noack, M.; Dalal, V. Defect density and dielectric constant in perovskite solar cells. Appl. Phys. Lett. 2014, 105, 153502. [Google Scholar] [CrossRef]
- Son, H.; Jeong, B.-S. Optimization of the Power Conversion Efficiency of CsPbIxBr3−x-Based Perovskite Photovoltaic Solar Cells Using ZnO and NiOx as an Inorganic Charge Transport Layer. Appl. Sci. 2022, 12, 8987. [Google Scholar] [CrossRef]
- Khatoon, S.; Chakraborty, V.; Yadav, S.K.; Diwakar, S.; Singh, J.; Singh, R.B. Simulation study of CsPbIxBr1−x and MAPbI3 heterojunction solar cell using SCAPS-1D. Sol. Energy 2023, 254, 137–157. [Google Scholar] [CrossRef]
- Sumona, F.B.; Kashif, M.; Danladi, E.; Tighezza, A.M.; Al-Mahmud, N.; Toki, G.F.; Pandey, R.; Hossain, M.K. Optimization of Perovskite-KSnI3 Solar Cell by Using Different Hole and Electron Transport Layers: A Numerical SCAPS-1D Simulation. Energy Fuels 2023, 37, 19207–19219. [Google Scholar] [CrossRef]
- Jamal, M.S.; Shahahmadi, S.A.; Wadi, M.A.A.; Chelvanathan, P.; Asim, N.; Misran, H.; Hossain, M.I.; Amin, N.; Sopian, K.; Akhtaruzzaman, M. Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation. Optik 2019, 182, 1204–1210. [Google Scholar] [CrossRef]
- Danladi, E.; Egbugha, A.C.; Obasi, R.C.; Tasie, N.N.; Achem, C.U.; Haruna, I.S.; Ezeh, L.O. Defect and doping concentration study with series and shunt resistance influence on graphene modified perovskite solar cell: A numerical investigation in SCAPS-1D framework. J. Indian Chem. Soc. 2023, 100, 101001. [Google Scholar] [CrossRef]
- Houck, D.W.; Siegler, T.D.; Korgel, B.A. Predictive modeling of CuInSe2 nanocrystal photovoltaics: The importance of band alignment and carrier diffusion. ACS Appl. Energy Mater. 2019, 2, 1494–1504. [Google Scholar] [CrossRef]
- Mouhib, H.; Wahmane, Y.A.; Atourki, L.; Elfanaoui, A.; Ihlal, A.; Bouabid, K. Numerical investigation of eco-friendly MASnI3 perovskite-based solar cell: Effect of defect density and hole transport layer. Model. Simul. Mater. Sci. Eng. 2022, 30, 035011. [Google Scholar] [CrossRef]
- Noman, M.; Shahzaib, M.; Jan, S.T.; Shah, S.N.; Khan, A.D. 26.48% efficient and stable FAPbI3 perovskite solar cells employing SrCu2O2 as hole transport layer. RSC Adv. 2023, 13, 1892–1905. [Google Scholar] [CrossRef]
- Gan, Y.; Bi, X.; Liu, Y.; Qin, B.; Li, Q.; Jiang, Q.; Mo, P. Numerical investigation energy conversion performance of tin-based perovskite solar cells using cell capacitance simulator. Energies 2020, 13, 5907. [Google Scholar] [CrossRef]
- Jayan, K.D.; Sebastian, V. Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM, and back metal contacts. Sol. Energy 2021, 217, 40–48. [Google Scholar] [CrossRef]
- Wang, B.; Kerr, L.L. Nanostructured TiO2 and ZnO solar cells using CdS as sensitizer: Stability investigation. In Proceedings of the 2010 35th IEEE Photovoltaic Specialists Conference (PVSC), Honolulu, HI, USA, 20–25 June 2010; pp. 001819–001922. [Google Scholar]
- Umar, A.; Tiwari, P.; Srivastava, V.; Lohia, V.; Dwivedi, D.K.; Qasem, H.; Akbar, S.; Algadi, H.; Baskoutas, S. Modeling and Simulation of Tin Sulfide (SnS)-Based Solar Cell Using ZnO as Transparent Conductive Oxide (TCO) and NiO as Hole Transport Layer (HTL). Micromachines 2022, 13, 2073. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.; Chauhan, R.; Lohia, P. Highly efficient cesium-based halide perovskite solar cell using SCAPS-1D software: Theoretical study. J. Opt. 2023, 52, 1218–1225. [Google Scholar] [CrossRef]
- Mostefaoui, M.; Mazari, H.; Khelifi, S.; Bouraiou, A.; Dabou, R. Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Procedia 2015, 74, 736–744. [Google Scholar] [CrossRef]
- Kendall, J.D.; Boothroyd, A.R. A Two-Dimensional Analytical Solution of the Poisson and Current Continuity Equations for the Short-Channel MOSFET, 2nd ed.; Solid State Electron: Ottawa, ON, Canada, 1990; Volume 33, pp. 531–551. [Google Scholar]
- Enebe, G.C. Modeling and Simulation of Nanostructured Copper Oxides Solar Cells for Photovoltaic Application. Master’s Thesis, University of Johannesburg, Johannesburg, South Africa, 15 October 2019. [Google Scholar]
- Helander, M.G.; Greiner, M.T.; Wang, Z.B.; Tang, W.M.; Lu, Z.H. Work function of fluorine doped tin oxide. J. Vac. Sci. Technol. 2011, 29, 011019. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Alam, I. Numerical simulation of CIGS, CISSe and CZTS-based solar cells with In2S3 as buffer layer and Au as back contact using SCAPS 1D. Eng. Res. Express 2020, 2, 035015. [Google Scholar] [CrossRef]
- Ahmmed, S.; Aktar, A.; Rahman, M.F.; Hossain, J.; Ismail, A.B.M. A numerical simulation of high efficiency CdS/CdTe based solar cell using NiO HTL and ZnO TCO. Optik 2020, 223, 165625. [Google Scholar] [CrossRef]
- Seyed-Talebi, S.M.; Mahmoudi, M.; Lee, C.H. A comprehensive study of CsSnI3-based perovskite solar cells with different hole transporting layers and back contacts. Micromachines 2023, 14, 1562. [Google Scholar] [CrossRef] [PubMed]
- Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zhou, Y.; Xing, G.; Xu, Q.; Garces, H.F.; Solanki, A.; Goh, T.W.; Padture, N.P.; Sum, T.C. Long minority-carrier diffusion length and low surface-recombination velocity in inorganic lead-free CsSnI3 perovskite crystal for solar cells. Adv. Funct. Mater. 2017, 27, 1604818. [Google Scholar] [CrossRef]
- Kerara, M.; Naas, A.; Reggab, K. Comparative study on perovskite solar cells using P_ZnO, Al_ZnO and In_ZnO as ETMs by SCAPS-1D. J. Eng. Exact Sci. 2024, 10, 17387. [Google Scholar] [CrossRef]
- Hossain, M.K.; Uddin, M.S.; Toki, G.F.I.; Mohammed, M.K.A.; Pandey, R.; Madan, J.; Rahman, M.F.; Islam, M.R.; Bhattarai, S.; Bencherif, H.; et al. Achieving above 24% efficiency with non-toxic CsSnI3 perovskite solar cells by harnessing the potential of the absorber and charge transport layers. RSC Adv. 2023, 13, 23514–23537. [Google Scholar] [CrossRef] [PubMed]
- Pindolia, G.; Shinde, S.M. Unleaded all-inorganic KSnI3 perovskite solar cell: A computational study. Optik 2023, 295, 171470. [Google Scholar] [CrossRef]
- Quintana, M.; Edvinsson, T.; Hagfeldt, A.; Boschloo, G. Comparison of dye-sensitized ZnO and TiO2 solar cells: Studies of charge transport and carrier lifetime. J. Phys. Chem. C 2007, 111, 1035–1041. [Google Scholar] [CrossRef]
- Ramelan, A.H.; Wahyuningsih, S.; Munawaroh, H.; Narayan, R. ZnO wide bandgap semiconductors preparation for optoelectronic devices. IOP Conf. Ser. Mater. Sci. Eng. 2017, 176, 012008. [Google Scholar] [CrossRef]
- Yin, W.-J.; Yang, J.-H.; Kang, J.; Yan, Y.; Wei, S.-H. Halide perovskite materials for solar cells: A theoretical review. J. Mater. Chem. A 2015, 3, 8926–8942. [Google Scholar] [CrossRef]
- Lenka, T.R.; Soibam, A.C.; Dey, K.; Maung, T.; Lin, F. Numerical analysis of high-efficiency lead-free perovskite solar cell with NiO as hole transport material and PCBM as electron transport material. CSI Trans. ICT 2020, 8, 111–116. [Google Scholar] [CrossRef]
- Diekmann, J.; Caprioglio, P.; Rothhardt, D.; Arvind, M.; Unold, T.; Kirchartz, T.; Neher, D.; Stolterfoht, M. Pathways towards 30% efficient single-junction perovskite solar cells. Sol. RRL 2021, 2100219. [Google Scholar] [CrossRef]
- Widianto, E.; Driyo, C.; Sudarsono, S.; Shobih, S.; Nursam, N.M.; Hanna, M.Y.; Absor, M.A.U.; Triyana, K.; Santoso, I. Unraveling the Performance of All-Inorganic Lead-Free CsSnI3-Based Perovskite Photovoltaic with Graphene Oxide Hole Transport Layer. Adv. Theory Simul. 2024, 7, 2300610. [Google Scholar] [CrossRef]
Parameter | FTO [106] | ZnO [107] | CsSnI3 [108] | NiOx [109] |
---|---|---|---|---|
Thickness (nm) | 500 | 100 | 1000 | 30 |
Bandgap (eV) | 3.2 | 3.3 | 1.4 | 3.6 |
Electron affinity (eV) | 4.4 | 4.0 | 3.6 | 1.8 |
Dielectric permittivity (relative) | 9 | 8.656 | 9.93 | 10.7 |
CB effective density of states (cm−3) | 2.2 × 1018 | 2.2 × 1018 | 1.0 × 1018 | 2.8 × 1019 |
VB effective density of states (cm−3) | 1.8 × 1019 | 1.8 × 1019 | 1.0 × 1019 | 1.8 × 1019 |
Electron thermal velocity (cm/s) | 1.0 × 107 | 1.0 × 107 | 1.0 × 107 | 1.0 × 107 |
Hole thermal velocity (cm/s) | 1.0 × 107 | 1.0 × 107 | 1.0 × 107 | 1.0 × 107 |
Electron mobility (cm2/Vs) | 20 | 100 | 1500 | 12 |
Hole mobility (cm2/Vs) | 10 | 25 | 585 | 2.8 |
Shallow uniform donor density ND (cm−3) | 1.0 × 1018 | 1.0 × 1018 | - | - |
Shallow uniform acceptor density NA (cm−3) | - | - | 1.0 × 1020 | 1.0 × 1015 |
Defect density Nt (cm−3) | 1.0 × 1015 | 1.0 × 1015 | 1.0 × 1015 | 1.0 × 1015 |
Parameter | ETL/PAL | PAL/HTL |
---|---|---|
Defect density | Neutral | Neutral |
Capture cross-section for electrons (cm−3) | 10−19 | 10−19 |
Capture cross-section for holes (cm−3) | 10−19 | 10−19 |
Reference for the defect energy level Et | EV | EV |
Energetic distribution | Gaussian | Gaussian |
Total density (cm−3) | 1.0 × 1011 | 1.0 × 1011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.-J.; Son, H.; Jeong, B.-S. SCAPS-1D Simulation for Device Optimization to Improve Efficiency in Lead-Free CsSnI3 Perovskite Solar Cells. Inorganics 2024, 12, 123. https://doi.org/10.3390/inorganics12040123
Park H-J, Son H, Jeong B-S. SCAPS-1D Simulation for Device Optimization to Improve Efficiency in Lead-Free CsSnI3 Perovskite Solar Cells. Inorganics. 2024; 12(4):123. https://doi.org/10.3390/inorganics12040123
Chicago/Turabian StylePark, Hyun-Jae, Hyojung Son, and Byoung-Seong Jeong. 2024. "SCAPS-1D Simulation for Device Optimization to Improve Efficiency in Lead-Free CsSnI3 Perovskite Solar Cells" Inorganics 12, no. 4: 123. https://doi.org/10.3390/inorganics12040123
APA StylePark, H. -J., Son, H., & Jeong, B. -S. (2024). SCAPS-1D Simulation for Device Optimization to Improve Efficiency in Lead-Free CsSnI3 Perovskite Solar Cells. Inorganics, 12(4), 123. https://doi.org/10.3390/inorganics12040123