Electrochemical Investigation of Lithium Perchlorate-Doped Polypyrrole Growing on Titanium Substrate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microstructure and Morphology Characterization
2.2. Electrochemical Properties
2.3. DFT Simulation Calculation of LiClO4/Ti and LiClO4-PPy/Ti
3. Experimental Section
3.1. Preparation of LiClO4-PPy/Ti
3.2. Characterization and Measurement
3.3. Theoretical Simulation Calculation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, G.Z. Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Prog. Natl. Sci. 2013, 23, 245–255. [Google Scholar] [CrossRef]
- Adalati, R.; Sharma, M.; Sharma, S.; Kumar, A.; Malik, G.; Boukherroub, R.; Chandra, R. Metal nitrides as efficient electrode material for supercapacitors: A review. J. Energy Stor. 2022, 56, 105912. [Google Scholar] [CrossRef]
- Yadav, M.S. Metal oxides nanostructure-based electrode materials for supercapacitor application. J. Nanopart. Res. 2020, 22, 367. [Google Scholar] [CrossRef]
- Parveen, N.; Ansari, S.A.; Ansari, M.Z.; Ansari, M.O. Manganese oxide as an effective electrode material for energy storage: A review. Environ. Chem. Lett. 2022, 20, 283–309. [Google Scholar] [CrossRef]
- Ansari, M.Z.; Nandi, D.K.; Janicek, P.; Ansari, S.A.; Ramesh, R.; Cheon, T.; Shong, B.; Kim, S.-H. Low-Temperature Atomic Layer Deposition of Highly Conformal Tin Nitride Thin Films for Energy Storage Devices. Acs Appl. Mater. Interface 2019, 11, 43608–43621. [Google Scholar] [CrossRef]
- Parveen, N.; Hilal, M.; Han, J.I. Newly Design Porous/Sponge Red Phosphorus@Graphene and Highly Conductive Ni2P Electrode for Asymmetric Solid State Supercapacitive Device with Excellent Performance. Nano-Micro Lett. 2020, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Karnan, M.; Hari Prakash, K.; Badhulika, S. Revealing the super capacitive performance of N-doped hierarchical porous activated carbon in aqueous, ionic liquid, and redox additive electrolytes. J. Energy Stor. 2022, 53, 105189. [Google Scholar] [CrossRef]
- Xie, Y. Electrochemical Performance of Polyaniline Support on Electrochemical Activated Carbon Fiber. J. Mater. Eng. Perform. 2022, 31, 1949–1955. [Google Scholar] [CrossRef]
- Wang, H.; Xie, Y. Hydrogen bond enforced polyaniline grown on activated carbon fibers substrate for wearable bracelet supercapacitor. J. Energy Stor. 2022, 52, 105042. [Google Scholar] [CrossRef]
- Xie, Y. Electrochemical and hydrothermal activation of carbon fiber supercapacitor electrode. Fiber Polym. 2022, 23, 10–17. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Y.; Wang, L.; Liang, J. Theoretical and Experimental Investigations of Oxygen Activation Effect of Carbon Nanofibers Interacting with Polypyrrole. Fibers 2024, 12, 4. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhang, L.; Du, T.; Ren, B.; Xu, Y.; Wang, S.; Miao, J.; Liu, Z. A review of carbon materials for supercapacitors. Mater. Des. 2022, 221, 111017. [Google Scholar] [CrossRef]
- Jáquez-Muñoz, J.M.; Gaona-Tiburcio, C.; Chacón-Nava, J.; Cabral-Miramontes, J.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Delgado, A.D.; Flores-De los Rios, J.P.; Bocchetta, P.; Almeraya-Calderón, F. Electrochemical Corrosion of Titanium and Titanium Alloys Anodized in H2SO4 and H3PO4 Solutions. Coatings 2022, 12, 325. [Google Scholar] [CrossRef]
- Ansari, S.A.; Khan, N.A.; Hasan, Z.; Shaikh, A.A.; Ferdousi, F.K.; Barai, H.R.; Lopa, N.S.; Rahman, M.M. Electrochemical synthesis of titanium nitride nanoparticles onto titanium foil for electrochemical supercapacitors with ultrafast charge/discharge. Sustain. Energy Fuels 2020, 4, 2480–2490. [Google Scholar] [CrossRef]
- Liu, X.Y.; Chen, H.; Li, G.; Peng, J.H.; Zhang, Y.X. One-pot synthesis of pearl-chain-like manganese dioxide-decorated titanium grids as advanced binder-free supercapacitors electrodes. Ceram. Int. 2016, 42, 9227–9233. [Google Scholar] [CrossRef]
- Wang, L.; Ma, Y.; Yang, M.; Qi, Y. Titanium plate supported MoS2 nanosheet arrays for supercapacitor application. Appl. Surf. Sci. 2017, 396, 1466–1471. [Google Scholar] [CrossRef]
- Wei, J.; Wei, S.; Wang, G.; He, X.; Gao, B.; Zhao, C. PPy modified titanium foam electrode with high performance for supercapacitor. Eur. Polym. J. 2013, 49, 3651–3656. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, X.; Zhao, Z.-y.; Zhang, Z.; Li, J. Influence of pore size of Ti substrate on structural and capacitive properties of Ti/boron doped diamond electrode. J. Alloys Compd. 2019, 777, 84–93. [Google Scholar] [CrossRef]
- Chang, L.; Chen, B.; Qiao, H.; Huang, H.; Guo, Z.; He, Y.; Xu, R.; Xionghui, X. Study of the Effects of Pretreatment Processing on the Properties of Metal Oxide Coatings on Ti-Based Sheet. J. Electrochem. Soc. 2021, 168, 033501. [Google Scholar] [CrossRef]
- Kishimoto, A.; Yamada, Y.; Funatsu, K.; Uda, T. Suitable Electrode Materials for Titanium Sheet Deposition. Adv. Eng. Mater. 2020, 22, 1900747. [Google Scholar] [CrossRef]
- Lamberti, A. Flexible supercapacitor electrodes based on MoS2-intercalated rGO membranes on Ti mesh. Mater. Sci. Semicond. Process. 2018, 73, 106–110. [Google Scholar] [CrossRef]
- Seo, H.-S.; Bae, J.-U.; Kim, D.-H.; Park, Y.; Kim, C.-D.; Kang, I.B.; Chung, I.-J.; Choi, J.-H.; Myoung, J.-M. Reliable Bottom Gate Amorphous Indium-Gallium-Zinc Oxide Thin-Film Transistors with TiOx Passivation Layer. Electrochem. Solid State Lett. 2009, 12, H348–H351. [Google Scholar] [CrossRef]
- Reddy, P.C.H.; Amalraj, J.; Ranganatha, S.; Patil, S.S.; Chandrasekaran, S. A review on effect of conducting polymers on carbon-based electrode materials for electrochemical supercapacitors. Synth. Met. 2023, 298, 117447. [Google Scholar] [CrossRef]
- Tsekova, D.S.; Karastoyanov, V.; Peychev, D.; Valova, I. Crystallization of ferritin on biocompatible Surfaces—Bare Ti and Ti covered by polypyrrole (PPy). J. Cryst. Growth 2024, 631, 127616. [Google Scholar] [CrossRef]
- Chen, J.; He, Y.; Li, L. Real-time probing electrodeposition growth of polyaniline thin film via in-situ spectroscopic ellipsometry. Thin Solid Films 2022, 762, 139565. [Google Scholar] [CrossRef]
- Kondratiev, V.V.; Holze, R. Intrinsically conducting polymers and their combinations with redox-active molecules for rechargeable battery electrodes: An update. Chem. Pap. 2021, 75, 4981–5007. [Google Scholar] [CrossRef]
- Stejskal, J.; Sapurina, I.; Vilčáková, J.; Humpolíček, P.; Truong, T.H.; Shishov, M.A.; Trchová, M.; Kopecký, D.; Kolská, Z.; Prokeš, J.; et al. Conducting polypyrrole-coated macroporous melamine sponges: A simple toy or an advanced material? Chem. Pap. 2021, 75, 5035–5055. [Google Scholar] [CrossRef]
- Ji, S.; Yang, J.; Cao, J.; Zhao, X.; Mohammed, M.A.; He, P.; Dryfe, R.A.W.; Kinloch, I.A. A Universal Electrolyte Formulation for the Electrodeposition of Pristine Carbon and Polypyrrole Composites for Supercapacitors. Acs Appl. Mater. Interface 2020, 12, 13386–13399. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Xie, Y. Electrochemical performance of bridge molecule-reinforced activated carbon fiber-m-aminobenzenesulfonic acid-polyaniline for braidable-supercapacitor application. Chem. Eng. J. 2023, 478, 147416. [Google Scholar] [CrossRef]
- Jakhar, P.; Shukla, M.; Singh, V. Influence of LiClO4 Concentration on 1-D Polypyrrole Nanofibers for Enhanced Performance of Glucose Biosensor. J. Electrochem. Soc. 2018, 165, G80–G89. [Google Scholar] [CrossRef]
- Santino, L.M.; Acharya, S.; D’Arcy, J.M. Low-temperature vapour phase polymerized polypyrrole nanobrushes for supercapacitors. J. Mater. Chem. A 2017, 5, 11772–11780. [Google Scholar] [CrossRef]
- Sharifi-Viand, A.; Mahjani, M.G.; Moshrefi, R.; Jafarian, M. Diffusion through the self-affine surface of polypyrrole film. Vacuum 2015, 114, 17–20. [Google Scholar] [CrossRef]
- Wysocki, B.; Maj, P.; Sitek, R.; Buhagiar, J.; Kurzydłowski, K.J.; Święszkowski, W. Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants. Appl. Sci. 2017, 7, 657. [Google Scholar] [CrossRef]
- Hasoon, S. Electrochemical polymerization and Raman study of polypyrrole and polyaniline thin films HS Abdullah. Int. J. Phys. Sci. 2012, 7, 5468–5476. [Google Scholar]
- Fernández Romero, A.J.; López Cascales, J.J.; Fernández Otero, T. Perchlorate Interchange during the Redox Process of PPy/PVS Films in an Acetonitrile Medium. A Voltammetric and EDX Study. J. Phys. Chem. B 2005, 109, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, C.; Wu, P.; Li, X.; Zhang, M.; Zhu, J. Polypyrrole capacitance characteristics with different doping ions and thicknesses. Phys. Chem. Chem. Phys. 2017, 19, 21165–21173. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, H.; Wang, Y.; Xu, S.; Liu, W.; He, D.; Liu, X.; Liu, J.; Hu, C. Electrochemical Capacitance of Spherical Nanoparticles Formed by Electrodeposition of Intrinsic Polypyrrole onto Au Electrode. Electrochim. Acta 2017, 232, 72–79. [Google Scholar] [CrossRef]
- Xie, Y.; Mu, Y. Interface Mo-N coordination bonding MoSxNy@Polyaniline for stable structured supercapacitor electrode. Electrochim. Acta 2021, 391, 138953. [Google Scholar] [CrossRef]
Substance | Cdl (mF cm−2) | Rct (Ω cm−2) | Ro (Ω cm−2) | CPE (S sn cm−2) | n |
---|---|---|---|---|---|
LiClO4/Ti | 0.0334 | 65,250 | 0.3660 | 0.00263 | 0.746 |
LiClO4-PPy/Ti | 0.1930 | 2116 | 0.2226 | 0.03427 | 0.912 |
Element | LiClO4-Ti | LiClO4-PPy-Ti |
---|---|---|
O1 | −0.78 | −0.76 |
O2 | −0.80 | −0.77 |
O3 | −0.82 | −0.78 |
O4 | −0.95 | −0.90 |
Cl | +2.45 | +2.47 |
C1 | / | +0.03 |
C2 | / | +0.04 |
N | / | (−0.58~−0.47) |
Ti | (−0.23~−0.04) | (−0.05~−0.01) |
(+0.13~+0.05) | (+0.62~+0.08) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Xu, J.; Lu, L.; Xia, C. Electrochemical Investigation of Lithium Perchlorate-Doped Polypyrrole Growing on Titanium Substrate. Inorganics 2024, 12, 125. https://doi.org/10.3390/inorganics12040125
Xie Y, Xu J, Lu L, Xia C. Electrochemical Investigation of Lithium Perchlorate-Doped Polypyrrole Growing on Titanium Substrate. Inorganics. 2024; 12(4):125. https://doi.org/10.3390/inorganics12040125
Chicago/Turabian StyleXie, Yibing, Jing Xu, Lu Lu, and Chi Xia. 2024. "Electrochemical Investigation of Lithium Perchlorate-Doped Polypyrrole Growing on Titanium Substrate" Inorganics 12, no. 4: 125. https://doi.org/10.3390/inorganics12040125
APA StyleXie, Y., Xu, J., Lu, L., & Xia, C. (2024). Electrochemical Investigation of Lithium Perchlorate-Doped Polypyrrole Growing on Titanium Substrate. Inorganics, 12(4), 125. https://doi.org/10.3390/inorganics12040125