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Abstract: Orange peel biochar (C)-supported cadmium sulfide composites (CdS-C) were prepared
by the combination of hydrothermal and calcination methods. The structure and morphology
were characterized in detail by X-ray diffraction (XRD) and scanning electron microscopy (SEM),
respectively. The CdS-C composite with 60% CdS exhibited the highest photocatalytic hydrogen
production rate of 7.8 mmol·g−1·h−1, approximately 3.69 times higher than that of synthesized CdS
without biochar. These results indicate that biochar derived from orange peel could be a low-cost,
renewable, environmentally friendly, and metal-free co-catalyst for CdS, enhancing its photostability.

Keywords: photocatalytic hydrogen production; biochar; CdS; hydrothermal method

1. Introduction

Among the existing renewable energy options, hydrogen is a clean, efficient, safe,
and sustainable secondary energy source. It is currently recognized as the most ideal
energy carrier and is considered the most promising new energy source of the 21st century.
Solar energy, if effectively collected, converted, and stored, can be the greenest and most
abundant energy source on Earth [1]. Among existing technologies, the use of visible light
to activate photocatalytic reactions in semiconductor materials is considered one of the
most promising and revolutionary approaches for addressing environmental pollution and
meeting the challenges posed by global energy shortages [2].

The development of non-precious metal photocatalytic materials has long been an
urgent need for fuel production and environmental treatment. Non-metallic carbon ma-
terials have proven to be a promising alternative as co-catalysts due to their low cost,
ecological compatibility, good electrical conductivity, chemical stability, and photothermal
effects [3–5]. Biomass-derived charcoal is an environmentally friendly material that is
efficient, cheap, and easy to prepare. It has received widespread attention in the fields
of materials science, chemistry, and environmental protection [6–9]. Biochar has a high
specific surface area, high porosity, and sufficient surface functional groups. Its excellent
ion exchange capacity and high stability make it a suitable material for pollution con-
trol [10]. To date, biochar materials from agricultural waste have been introduced for the
preparation of composites for the photocatalytic removal of organic pollutants from water
as well as for the production of hydrogen through water decomposition, supercapacitors,
fuel cells, CO2 adsorption, and energy storage [11–14]. More importantly, the synergistic
effect of biochar with other metals or metal oxides can enhance the adsorption capacity
of biochar-based catalysts, increase the visible light absorption, improve the separation
of photogenerated electrons and holes, and reduce the bandgap, thereby improving the
photocatalytic performance of biochar-based catalysts [15–18]. For example, biochar serves
as the charge transfer mediator between Ag3PO4 and Fe3O4 and hinders the recombination
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of electron–hole pairs (e−-h+). The efficient separation of e−-h+ pairs minimizes recombi-
nation, thereby boosting charge transfer and separation, which significantly improves the
photocatalytic ability of biochar-based catalysts [19]. Modified biochar has been used as a
substrate to anchor g–C3N4–FeVO4 heterojunctions to extend charge lifetime and enhance
the adsorption capacity of the composites. Using a g–C3N4–FeVO4-BC ternary system
effectively achieved 98.4% removal of methylparaben degradation via adsorption-assisted
photocatalysis [20].

Cadmium sulfide (CdS) is an inorganic compound with a narrow bandgap semiconduc-
tor material that absorbs most of the visible light in the spectrum. Its appropriate band edge
position provides a good visible light absorption ability and excellent photoelectric conver-
sion characteristics, making it widely used in ion detection, sensors, photocatalysis, and
other fields [21–29]. In terms of optical properties, CdS still has room for exploration. For
example, Yoichi Kobayashi et al. [30] used femtosecond transient absorption spectroscopy
to investigate the effects of surface defect states and surface capping reagents on Auger
recombination in CdS quantum dots (QDs). They claim that Auger recombination in CdS
QDs does not depend on interfacial electronic structures originating from the surface defects
and capping reagents of one monolayer level. In addition, Saptarshi Chakraborty et al. [31]
used extended X-ray absorption fine structure spectroscopy to study dopant-induced
structural perturbations and femtosecond transient absorption (TA) spectroscopy to study
ultrafast charge-carrier dynamics, demonstrating that the ionic radius and the dopant
oxidation state play a crucial role in determining the dopant anion bond lengths.

CdS also has disadvantages to a certain extent. Its photogenerated carriers are prone to
recombination and susceptible to photocorrosion, significantly restricting their widespread
application [32]. On the other hand, constructing heterojunctions can effectively promote
charge separation, improve photocatalytic performance, and enhance the stability of photo-
catalytic materials [33]. Therefore, how to modify CdS by incorporating other non-precious
metals or biomass charcoal is a compelling research direction. For example, by controlling
the oxidation and reduction sites of the CdS/CdSe heterostructure, Rajesh Bera et al. [34]
achieved a maximum H2 generation of 5125 µmol/g/h for a 27.5 wt% CdSe-loaded CdS
heterostructure, which was found to be 44 times higher than that of bare CdS nanorods
and 22 times higher than that of CdSe nanoparticles.

Moreover, it is important to improve the photostability of CdS. A number of methods
have been used to solve this problem, including metal ion doping [35–37], compounding
with other semiconductors [38,39], and introducing co-catalysts [40,41]. In recent years, sci-
entists have introduced the use of carbon-based materials such as biochar. Due to their high
specific surface area and sufficient surface functional groups, they are considered one of the
most effective methods to improve the performance of CdS in photocatalytic hydrogen pro-
duction [42,43]. For example, the nanocomposites of mesoporous carbon and CdS nanopar-
ticles have been shown to improve photostability and minimize photocorrosion of CdS. The
introduction of mesoporous carbon prevents the recombination of photogenerated electrons
and holes, thus avoiding photocorrosion in CdS and improving the stability and photocur-
rent response of the material [44]. Shi et al. [45] prepared a novel biochar-loaded CdS/TiO2
photocatalyst (CdS/TiO2/BC) for glucose photoreforming using a simple hydrothermal
and calcination method. The as-synthesized CdS/TiO2/BC exhibited excellent acetic
acid selectivity (63.94%) together with improved H2 generation (~12.77 mmol·g−1·h−1) in
25 mM NaOH solution, while efficient formic acid selectivity (60.29%) and H2 generation
(~10.29 mmol·g−1·h−1) were observed in 3 mM Na2CO3 solution.

In this work, a biochar-supported cadmium sulfide (CdS-C) composite photocatalyst is
prepared by a hydrothermal method combined with calcination using biochar as a support.
A series of characterization analyses are carried out on the prepared samples and the visible
light hydrogen production activity is evaluated. The optical and photoelectric properties of
as-prepared photocatalysts are also characterized here. The aim of this work is to provide
a facile pathway for constructing CdS photocatalytic systems for photocatalytic water
decomposition for hydrogen production.
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2. Results and Discussion
2.1. Synthesis and Characterizations

CdS–biochar-based composites are usually synthesized by a combined hydrothermal
and calcination method [46–52]. In contrast, in this work, orange peel biochar-supported
cadmium sulfide composites (CdS-C) were prepared by a combined hydrothermal and
calcination method without adding any activation agent.

The XRD patterns of pure CdS and the CdS-xC (x = 20, 40, 60, 80) series of composites
are shown in Figure 1, where x represents the amount of biomass char. It can be seen
that the peak positions are similar across all samples. Peaks at 26.44◦, 43.74◦, and 51.82◦

correspond to the 75-1546 cubic phase, while peaks at 24.87◦ and 28.09◦ correspond to the
77-2306 hexagonal phase of the mixed crystalline form [53–55]. After incorporating orange
peel biochar into pure CdS, the peak positions remained largely unchanged, though the
intensity varied slightly. This indicates that while the crystal structure of the CdS remained
unaltered, the crystallinity was affected to varying degrees by the addition of biochar.
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Figure 1. XRD patterns of CdS and CdS-xC (x = 20, 40, 60, 80).

The specific surface area of photocatalytic materials is crucial as it influences their
physical adsorption properties [56]. Figure 2a shows the adsorption–desorption isotherm
of N2 on the CdS material, and Figure 2b shows the adsorption–desorption isotherm of N2
on the CdS-60C material. The addition of orange peel biochar caused slight modifications
on the surface of the CdS-C composite materials. This may be attributed to the alkaline
etching treatment, which increased the pore density of the biochar, thereby enhancing the
specific surface area of the composite material. This increase provides more attachment sites
for CdS and enhances the reactivity in photocatalytic hydrogen production. The specific
surface area and pore structure data for CdS and the CdS-xC materials are provided in the
Supporting Information (Table S1), with CdS-60C exhibiting the largest specific surface
area of 6.96 m2/g. The pore size distribution of CdS-60C is illustrated in Supplementary
Figure S1. The reason may be that alkaline etching treatment increased the pores of the
orange peel biochar itself, increased the specific surface area of the material, provided
more attachment points for CdS, and improved the reactivity of photocatalytic hydrogen
production. The specific surface area of CdS and CdS-xC and the pore structure data of the
materials are shown in Supplementary Table S1. The CdS-60C material had the relatively
largest specific surface area of 6.96 m2/g. The pore size distribution map of CdS-60C is
shown in Supplementary Figure S1.
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Figure 2. N2 adsorption–desorption isotherms of CdS (a) and N2 adsorption–desorption isotherms of
CdS-60C (b).

The UV–visible diffuse reflectance spectral images of CdS and 20%, 40%, 60%, and 80%
orange peel biomass char-loaded CdS materials are shown in Figure 3a. The spectra show
slight differences in absorption characteristics among the various composites. Pure CdS
exhibits a strong absorption band edge at about 550 nm, which is related to the intrinsic
band gap absorption. Furthermore, Figure 3b shows the band gaps (Eg) of the CdS-60C
composite and pure CdS, which are about 1.95 eV and 2.21 eV, respectively [57]. In the
CdS-xC system, increasing the biochar content from orange peel narrowed the composite
material’s band gap, resulting in stronger visible light absorption compared to pure CdS,
with the absorption peak shifting towards the red and becoming more pronounced. This
redshift and enhancement in visible light absorption are primarily due to the incorporation
of orange peel biochar, which alters the material’s appearance by darkening its color, thereby
enhancing its visible light absorption efficiency. Generally, as the biochar ratio increases,
the material’s visible light absorption band widens, and the band edge experiences a
redshift. This suggests that biochar is an effective support for CdS, significantly enhancing
visible light absorption, reducing the band gap, and markedly improving the photocatalytic
hydrogen production performance. Orange peel biochar shows a broader visible light
absorption band, as shown in Figure S2 in the Supporting Information.
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Figure 3. UV–Vis DRS spectra (a) and K-M plots (b) of CdS and CdS-xC composite materials.

To further analyze the materials, the CdS-60C composite was observed by transmission
electron microscopy (TEM). Figure 4 presents TEM images of CdS-60C. It is obvious that
the orange peel biochar exhibits a multi-layered sheet structure with many small pores
on its surface, which provides a very good site for the growth of CdS (Figure 4a,b). The
CdS is distributed on the orange peel biochar, and they show very good binding properties
(Figure 4c,d). The crystal structure characteristics of the CdS-60C sample were further
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examined using high-resolution TEM (HRTEM) (Figure 4f–h). The lattice spacings of
the CdS-60C material are 0.335 nm and 0.356 nm, corresponding to the (002) and (100)
crystal planes of cubic phase CdS, respectively. Moreover, the uniform distribution of CdS
nanoparticles on the orange peel biochar can reduce the aggregation of nanoparticles and
provide more reactive sites, which can enhance the photocatalytic performance.
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In order to explore the mechanism of the improved efficiency of CdS-60C’s photo-
catalytic hydrogen production, photoluminescence spectroscopy was used to investigate
photogenerated electron–hole generation and transport in the composites. As shown in
Figure 5, pure CdS exhibits a broad green emission band and a strong red emission band,
with an excitation wavelength of 450 nm. However, the luminescence intensity of CdS-60C
decreases sharply compared with pure CdS, which suggests that the successful interfacial
contact can effectively transport the photogenerated carriers and hinder the recombination
of electron–hole pairs in CdS.
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material. The speed of separation and transfer of photoelectron–hole pairs of a material
can be obtained from the side by measuring the transient photocurrent of the material. The
transient photocurrent response curves of CdS and CdS-60C are shown in Figure 6. It can
be seen from the image that the photocurrent of the CdS-60C composite material increases
significantly compared with pure CdS. Obviously, biochar acts as a temporary receiver
of photogenerated electrons and can quickly absorb a large number of photogenerated
electrons generated on the CdS surface. At the same time, biochar can also effectively
inhibit the rapid recombination of photogenerated electron–hole pairs, so that under the
same external conditions, CdS-60C has a stronger photocurrent; thus, the material has
better photocatalytic activity.
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Electrochemical impedance spectroscopy (EIS) was used to further confirm that CdS-
60C has a faster electron transfer rate. As shown in Figure 7, from the curve we can see that
the curvature radius of the CdS-60C material is lower than that of pure CdS, which indicates
that the resistance of the CdS-60C material is lower. These results fully demonstrate the
advantages of orange peel biochar in charge loading transfer and recombination delay and
explain the improved photocatalytic activity of CdS-60C.
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2.2. Hydrogen Production Testing of Materials

Under equivalent sunlight irradiation, the production distribution diagram of photo-
catalytic hydrogen production by CdS and CdS-xC in each period is illustrated in Figure 8.
Each material in the system underwent photocatalysis to produce hydrogen for 4 h under
identical lighting conditions. Among them, the hydrogen production rate of pure CdS
was 2.11 mmol·g−1·h−1. Notably, the material with the highest hydrogen rate in this
system was CdS-60C, achieving 7.8 mmol·g−1·h−1 under visible light conditions, which is
3.69 times higher than the pure CdS hydrogen production rate. Furthermore, compared
with pure CdS, the hydrogen production rates of the composite materials with varying
proportions of biochar in the system increased to different degrees. Specifically, their
hydrogen production rates were 2.8 mmol·g−1·h−1, 4.3 mmol·g−1·h−1, 7.8 mmol·g−1·h−1,
and 4.1 mmol·g−1·h−1, respectively, representing increases of 1.33, 2.04, 3.69, and 1.94 times
compared with the blank control group. Besides, the comparison of the photocatalytic
H2 production performance of other het-erojunction and CdS reported previously in the
literature is shown in Table S3 [58–67], demonstrating that cDS-60C has the advantage in
pure water systems.
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2.3. Cyclic Stability Testing of Materials for Photocatalytic Hydrogen Production

To assess the stability of the photocatalyst, a photocatalytic hydrogen production cycle
test was conducted on CdS-60C. As depicted in Figure 9a, after three consecutive cycles of
photocatalytic hydrogen production over 12 h, the hydrogen production rate of CdS-60C
remained at 25.2 mmol·g−1·h−1, representing 83% of the initial hydrogen production
rate. It is worth noting that due to the consumption of sacrificial agents in each cycle,
the rate of H2 release tended to decrease. However, upon replacing the sacrificial agent,
the photocatalytic hydrogen evolution activity of the CdS-60C composite was restored,
indicating its good photostability. After the cycling experiments, the XRD patterns of
the regenerated samples were almost the same as those of the fresh ones. As shown in
Figure 9b, after three cycles, the crystal structure of CdS did not change, but the intensity
of some characteristic peaks weakened, which indicated that the prepared photocatalysts
had good stability and recyclability. The slight decrease in photocatalytic efficiency may be
caused by partial loss of the photocatalyst during washing.
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2.4. Reaction Mechanism of Photocatalytic Decomposition of Water for Hydrogen Production

Through the summary of the above experiments and characterizations, it becomes
evident that the addition of orange peel biochar not only altered the color appearance of
CdS but also influenced its photocatalytic hydrogen production rate and cycle stability.
The potential mechanism of the photocatalytic hydrogen evolution reaction of the CdS-60C
composite is depicted in Figure 10. Upon exposure to light, CdS is excited by visible light,
generating electrons and holes. These electrons can transfer from CdS to biochar, where
hydrogen ions in the water can accept the electrons and undergo reduction to release
hydrogen, thus enhancing the photocatalytic hydrogen evolution performance. The results
of the transient photocurrent response, PL spectra, and EIS experiments further support
these findings. Additionally, biochar exhibits a strong photothermal effect due to its effi-
cient absorption of near-infrared light, thereby kinetically promoting the photocatalytic
hydrogen production reaction by increasing the local temperature. Moreover, under simu-
lated sunlight irradiation, the principal reactions of CdS-60C heterojunction photocatalytic
decomposition of aqueous hydrogen in solution are as follows:

CdS/C + hv → CdS
(
e−CB + h+VB

)
/C

(
e−CB + h+VB

)
(1)

CdS
(
h+VB

)
+ C

(
e−CB

)
→ CdS/C

(
e−CB + h+VB

)
(2)

2H+ + 2e−CB → H2 ↑ (3)
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3. Experimental
3.1. Preparation of Biochar Material from Orange Peels

The schematic diagram of the preparation of the orange peel biocarbon material is
shown in Figure 11. Firstly, citrus peels were collected and dried thoroughly in the sunlight
on a sunny day. The dried orange peels were thoroughly crushed with a grinder to produce
an orange-colored fine powder after processing. Secondly, the powder made from the
obtained batch of orange peels was evenly spread into a quartz boat. The quartz boat
containing the orange peel powder was placed in a programmable heating tube furnace,
with the temperature set at 500 ◦C, a heating rate of 5 ◦C/min, and a constant temperature
time of two hours at 500 ◦C. Finally, according to the program, it naturally cooled to room
temperature. During the heating period, high-purity nitrogen was continuously passed
into the tube furnace as a protective carrier gas, which was used to avoid the occurrence
of combustion or even explosion of the orange peel powder when it met with oxygen at
high temperatures.
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The next process was alkaline etching of the orange peel biomass charcoal. The first
step was to prepare a potassium hydroxide solution. Here, 11.222 g of potassium hydroxide
solid (0.2 mol) was weighed and dissolved in 200 mL of deionized water to obtain a dilute
solution of potassium hydroxide (KOH) at a concentration of 1 mol/L. Secondly, the orange
peel biochar made in the previous step was sufficiently ground, and 8 g was taken and
poured into the solution, while the speed of the magnetometer stirrer was adjusted to
360 r/min for constant stirring of the mixture for 24 h. The purpose of this step was to
carry out sufficient alkali etching of the orange peel biomass charcoal, such that a lot of
fine pores could be etched on the surface of the orange peel biochar. After the etching
was completed, the KOH solution was poured off and the orange peel biomass char was
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rinsed with deionized water until the soaking solution was neutral, and then the cleaned
orange peel biomass char was freeze-dried. After freeze-drying, the orange peel biomass
charcoal was ground again, and the orange peel biochar obtained after sufficient grinding
was collected for use in the subsequent steps.

3.2. Preparation of CdS Blank Control Material

First, 70 mL of deionized water, 3 mmol of Cd(CH3COO)2-2H2O, and 4 mmol of
thiourea were weighed. A stirrer and the weighed deionized water, Cd(CH3COO)2-2H2O,
and thiourea were added into a 200 mL beaker; the magnetic stirrer was turned on with
the rotational speed adjusted to 450 r/min, and the stirring process lasted 6 h. The stirring
process was carried out in the same order. After the stirring was completed, the solution
was poured into a reactor liner made of polytetrafluoroethylene (PTFE), the reactor liner
was covered and put into the steel sleeve of the reactor, and the lid of the steel sleeve was
tightened to ensure that it had been fully sealed. The reaction kettle was placed in the oven
at a temperature of 170 ◦C, and the reaction time was set to 20 h. After the reaction was
completed, the orange-yellow product obtained in the reaction kettle was transferred to a
centrifuge tube and washed at least three times with 99.5% ethanol and ultrapure water;
then, the product was placed in an oven, and the drying temperature was set at 60 ◦C for
10 h. After the materials were thoroughly dried, the materials were fully ground and the
the powdered samples were collected, sealed, and stored away from light for subsequent
photocatalytic hydrogen production performance testing and characterization analysis.

3.3. Preparation of CdS-C Composites

The weighing and operation of the sulfur and cadmium sources were the same as in
Section 3.2. In order to obtain the theoretical content of CdS in the composite, i.e., 20%,
40%, 60%, and 80%, calculated based on the theoretical yield, the corresponding amount
of biochar used was 57.79 mg, 115.48 mg, 173.37 mg, and 231.16 mg, respectively. The
weighed biochar was added to the beaker along with the sulfur source and cadmium source
and stirred. After the stirring was completed, the solution was transferred to a reaction
kettle, sealed, and placed in an oven with the temperature set at 170 ◦C and the reaction
time at 20 h. The obtained samples based on the theoretical content of CdS in the composite
were marked as CdS-20C, CdS-40C, CdS-60C, and CdS-80C, respectively.

3.4. Characterizations

The crystal structure was analyzed using X-ray diffraction (XRD) (Rigaku Co., Tokyo,
Japan) with Cu Kα radiation at a running voltage of 36 kV and a 20 mA current. The
sample morphology, elemental mapping, and lattice fringes were examined using transmis-
sion electron microscopy (TEM) (JEM-2100, Tokyo, Japan). UV–visible diffuse reflectance
spectroscopy (UV-2401PC, Shimadzu, Tokyo, Japan) was used to record the light absorp-
tion spectra. The Brunauer–Emmett–Teller (BET) (Micromeritics, Norcross, GA, USA)
specific surface area of the samples was determined using a Micromeritics ASAP 2460
nitrogen adsorption–desorption machine. The photoelectrochemical measurements, in-
cluding photocurrent response (i-t) and electrochemical impedance (EIS), were taken using
an electrochemical workstation (CHI-760D, Huake Putian Technology, Beijing, China).
The photoluminescence (PL) spectra were recorded on an F97 Pro spectrophotometer
(Lengguang Tech., Shanghai, China).

3.5. Photocatalytic Hydrogen Evolution

The photocatalytic hydrogen production activity through water splitting was as-
sessed in a professional system (LabSolar-IIAG, Perfectlight, Beijing, China). In the typical
progress, 0.1 mol Na2SO3 and 0.05 mol Na2S.9H2O were dissolved in a reactor filled with
100 mL ultrapure water to form a homogeneous solution. Then, 20 mg of photocatalyst was
uniformly dispersed in the solution and with stirring maintained. Before the measurement,
the reactor needed to be degassed for half an hour to ensure that the pressure was less than
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−0.12 MPa. During the photocatalytic hydrogen evolution reaction, the suspension was
carried out under a 300 Wxenon lamp (CEL-HFX300, Aulight, Beijing, China) with a UV-IR
cut-420 filter and cooled to 10 ◦C with condensed water. Finally, an online GC-9750 gas
chromatograph (GC, China Fuli, nitrogen as carrier gas and 5A molecular sieve column)
was used to collect and detect the amount of H2 precipitated at 1-h intervals.

4. Conclusions

In summary, orange peel biochar-supported cadmium sulfide composites (CdS-C)
with prominent light absorption performance were prepared using a combined hydrother-
mal and calcination method. Orange peel biochar incorporation not only increased the
photocatalytic H2 production rates but also greatly reduced the agglomeration of the ma-
terial itself and improved the cycling stability. The large surface area of the biochar also
provided ample space for reactions to occur. It was found that the hydrogen production
efficiency of the CdS-C series materials was significantly improved compared to that of CdS
without biochar. In particular, CdS-C with 60% CdS in the composite exhibited the highest
photocatalytic activity at 7.8 mmol·g−1·h−1, which is about 3.69 times that of pure CdS.
It was still stable after three consecutive cycles, indicating that the biochar improved the
photostability of the CdS. Semiconductor-loaded biocarbon-based structures have excellent
photocatalytic hydrogen production efficiency, paving the way for important potential
applications in visible light hydrogen evolution.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics12060156/s1, Figure S1. Aperture distribution of
CdS-60C; Figure S2. UV-vis DRS spectra of the orange peels biochar. Table S1. Specific surface area
and pore structure data of CdS and CdS-xC (x = 20, 40, 60, 80). Table S2. Hydrogen production rates
of CdS and CdS(x = 20,40,60,80) normalized by BET surface. Table S3. Comparison of photocatalytic
H2 production with other photocatalysts.
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