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Abstract: Hybrid gold-based perovskite derivatives typically exhibit low optical bandgaps and
high optical absorption coefficients, rendering them promising for photovoltaic applications. In
this study, we successfully synthesized six new hybrid gold-based perovskite derivatives, namely
[(C6H8N2)(AuI4)(AuI2)](3AMPY), [(C6H14N2)(AuI4)(AuI2)](3AMP), [(C8H12N)(AuI4)](2PEAI),
[(C4H14N2O)(AuI4)2](OBA), [(C6H18N2O2)3(AuI4)4(I3)2](DDA), and [(C10H26N2O3)(AuI4)(I3)](TOTA),
through a straightforward and efficient hydrothermal method, achieving millimeter-sized single
crystals. The structural analysis of the single crystals revealed variations in crystal structures arising
from differences in constituent units and their spatial positioning relationships. First-principles
calculations ascertained their high optical absorption coefficients in the visible light spectrum and
indirect bandgap properties. Theoretical models indicated that the spectroscopic limited maximum
efficiency (SLME) values of 3AMPY, 2PEAI, DDA, and TOTA approached approximately 30% in
films of 0.5 µm thickness, signifying their potential candidacy as solar cell absorbers.

Keywords: gold-based perovskite; perovskite-derivative properties; single crystal; first-principles
calculations; solar cells

1. Introduction

Over the past twenty years, scientists have conducted intensive research to find eco-
nomically friendly clean energy materials. In this context, perovskite materials have become
a research hotspot for the next generation of energy-conversion semiconductor materials
due to their superior economic properties, small exciton binding energy, long carrier diffu-
sion length and lifetime, ease of solution processing, and tunable bandgap [1]. Based on
these advantages, perovskite materials can be applied to various optoelectronic devices,
such as solar cells [2–4], photodetectors [5], light-emitting diodes (LEDs) [6], etc. However,
the toxicity and instability of traditional lead-based perovskite materials have become the
main factors limiting their further development [7–9]. Therefore, researchers have been
committed to finding new B-site elements to replace lead and develop environmentally
friendly halide perovskite and perovskite-derivative materials [10].

Gold-based perovskite, as an environmentally friendly material, boasts good stability
and a high optical absorption coefficient, among other advantages [11]. Additionally, gold
elements in the perovskite structure can exist in multiple oxidation states, maintaining
the stability of the B-site gold element. Various gold-based perovskite derivatives can be
synthesized by substituting A-site cations and X-site halide anions. Therefore, gold-based
perovskites exhibit rich diversity, giving researchers a broad scope. Gold-based perovskites
were first reported in the early 20th century, when Gupta and colleagues first discovered
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Cs2AuIAuIIII6 [12]. Subsequently, after more than a century of development, various new
types of pure gold-based perovskites have been synthesized and extensively studied, such
as K2AuIAuIIII6, Rb2AuIAuIIIBr6 [13], LiAuI4, and RbAuCl4 [14]. Recently, Kojima et al.
found that the perovskite Cs2AuIAuIIII6 transitions from semiconductor to metallic proper-
ties under high-temperature and high-pressure conditions [15]. Theoretical calculations by
Debbichi et al. suggested that Cs2AuIAuIIII6 possesses an appropriate bandgap and high
optical absorption coefficient, potentially achieving over 20% photo-conversion efficiency
(PCE) [16]. Additionally, Li et al. predicted a series of novel gold-based perovskites as
promising solar cell absorbers, Cs2AuISbCl6, Cs2AuIInCl6, and Cs2AuIBiCl6 exhibiting a
spectroscopic limited maximum efficiency (SLME) of approximately 30% in a 0.5 mm thick
film [17].

Recently, there has been a growing number of reports on organic–inorganic hybrid
gold-based perovskites and their derivatives. In 2021, Fan et al. synthesized a series of
narrow-bandgap hybrid organic–inorganic gold-based perovskites and their derivatives via
a simple and efficient hydrothermal method, revealing their potential applications in the op-
toelectronic field [18]. In 2024, Walusiak et al. reported a series of organic–inorganic hybrid
gold-based perovskite derivatives and investigated their crystal structures and chemical
properties [19]. According to previous studies, these gold-based perovskite derivatives
tend to form low-dimensional structures, typically containing [AuII2] and [AuIIII4] units
composed of gold cations and iodide anions in their structures [20]. These structural units
exhibit strong intermolecular interactions, typically resulting in hybrid gold-based per-
ovskite derivatives being dark-colored narrow-bandgap semiconductors. This makes them
potential candidates for light-absorbing layer materials in solar cells, with related device
studies demonstrating their potential application as solar cell absorbers [11,21].

However, despite the potential application values of organic–inorganic hybrid per-
ovskites and their derivatives, reports on such materials are still limited, and research
on them is relatively scattered. Therefore, it is essential to expand the variety of hybrid
organic–inorganic perovskites and their derivatives further and explore their application
potential. In this paper, we report six new organic–inorganic gold-based hybrid perovskite
derivatives and have named these compounds based on the English abbreviations of
their A-site cations: [(C6H8N2)(AuI4)(AuI2)](3AMPY), [(C6H14N2)(AuI4)(AuI2)](3AMP),
[(C8H12N)(AuI4)](2PEAI), [(C4H14N2O)(AuI4)2](OBA), [(C6H18N2O2)3(AuI4)4(I3)2](DDA),
and [(C10H26N2O3)(AuI4)(I3)](TOTA). Among these six compounds, 3AMP contains [AuIIII6]
octahedra, forming a zero-dimensional perovskite-like structure. In contrast, the remain-
ing five compounds exhibit zero-dimensional non-perovskite structures. We obtained
millimeter-sized single crystals of these gold-based perovskite derivatives by optimizing
the hydrothermal reaction parameters. Then, we combined experimental characterization
with theoretical calculations to study these materials’ crystal structures, electrical properties,
thermal stability, and optical properties. The results indicated that these compounds are
narrow-bandgap materials with good thermal stability. First-principles calculations showed
that these materials exhibited strong, light absorption coefficients in the visible light region,
with SLME values reaching around 30% for 3AMPY, 2PEAI, DDA, and TOTA, suggest-
ing significant potential for applications in the field of solar cells. We believe our work
can further advance the research and application of organic–inorganic hybrid gold-based
perovskite derivatives.

2. Results and Discussions
2.1. The Synthesis Process of Single Crystals

Using a straightforward and efficient hydrothermal reaction, we successfully prepared
millimeter-scale single crystals of six organic–inorganic gold-based hybrid perovskite
derivatives. The single-crystal (SC) synthesis process is shown in Figure 1a, taking the
preparation of [(C4H14N2O) (AuI4)2] (OBA) as an example. An amount of 1 mmol of
HAuCl4·4H2O (0.412 g) was dissolved in an appropriate amount of deionized water,
stirred for 5 min to completely dissolve HAuCl4·4H2O, and then 1 mmol (0.64 µL) of 2,2′-
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oxydiethylamine (OBA) was added, causing a noticeable reaction (generation of micro-SCs.
Then, add 0.5 mL of hydroiodic acid (hydroiodic acid must be in excess to ensure the
complete reaction of the reactants). After thoroughly stirring the reaction solution, transfer
it to a reaction vessel lined with polytetrafluoroethylene and conduct a hydrothermal
reaction in a temperature-controlled oven at 90 ◦C for 24 h. Then, slowly cool the reaction
mixture to room temperature at 2 ◦C/h to obtain the SCs. As shown in Figure 1b, all SCs
were black and had polyhedral shapes, with crystal sizes in the millimeter range.
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Figure 1. (a) Single-crystal synthesis process of [(C4H14N2O) (AuI4)2] (OBA). (b) Millimeter-scale
single-crystal images of hybrid gold-based perovskite derivatives. (c) The A-site cation organics used
in the reaction.

Subsequently, the single crystals were washed with deionized water and placed in
an 80 ◦C oven to dry to remove any surface-adhered elemental I2. Single crystals of
six compounds were obtained by replacing the organic component in the reaction system.
The organic components used in this work are shown in Figure 1c. The control-of-variables
experiment determined the above reaction parameters. According to the experience results,
a low hydrothermal reaction temperature (below 60 ◦C) will result in insufficient energy in
the reaction system, leading to the inability to generate single crystals.

Conversely, a high temperature (above 150 ◦C) can cause the decomposition of reaction
products and the generation of elemental Au byproducts, as shown in Figure S1. Therefore,
around 100 ◦C is an appropriate temperature for synthesizing single crystals in this series.
The synthesis of other crystals was also based on this temperature. Furthermore, we found
that properly reducing the cooling rate was beneficial for increasing the yield of single
crystals. To balance the yield of single crystals with the reaction duration, we finally set the
reaction conditions: reaction temperature of 90 ◦C, incubation for 24 h, and slow cooling to
room temperature at 2 ◦C/h. In our attempts to prepare thin films by redissolving those
hybrid gold-based perovskite derivatives and via spin coating, we encountered solubility
issues in most polar solvents and poor film formations, which is one of the challenges faced
by many gold–iodide compounds. We are currently exploring the relevant film preparation
technology to prepare solar cell devices in the lab.

2.2. The Analysis of Single-Crystal Structures

We conducted an X-ray single-crystal diffraction analysis on the six compounds, and
their crystal structures are illustrated in Figure 2. Among them, 3AMP, 2PEAI, OBA,
and TOTA belong to the monoclinic crystal system, exhibiting relatively good symmetry,
while 3AMPY and DDA belong to the triclinic crystal system, displaying lower symmetry.
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The specific crystal structure parameters of six kinds of gold-based perovskite derivates
are summarized in Table 1. The more specific crystallographic data are presented in
Tables S1 and S2.
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Figure 2. (a–f) The schematic diagrams of the single-crystal structures of the hybrid gold-based
perovskite derivates.

Table 1. Crystallographic parameters for hybrid gold-based perovskite derivates.

2PEAI 3AMP 3AMPY OBA DDA TOTA

Formula C8H12N
(AuI4)

C6H14N2(AuI4)
(AuI2)

C6H8N2
(AuI4)(AuI2)

C4H14N2O
(AuI4)2

(C6H18N2O2)3
(AuI4)4(I3)2

C10H26N2O3
(AuI4)(I3)

Crystal system monoclinic monoclinic triclinic monoclinic triclinic monoclinic

Space group P21/c
(14)

Cm
(8)

P1
(2)

P21/c
(14)

P1
(2)

P21/n
(14)

a, Å
6.025

(4)
19.084

(2)
8.3376

(3)
15.7263

(8)
8.1710

(5)
9.1421

(5)

b, Å
25.425

(13)
8.3142

(9)
9.3799

(3)
8.8418

(4)
10.8475

(8)
24.0782

(12)

c, Å
9.2683

(6)
13.762

(2)
14.0131

(5)
17.2007

(8)
20.3167

(14)
12.9102

(6)
α, ◦ 90 90 90.1030(10) 90 80.611(3) 90

β, ◦ 92.634
(2)

111.702
(5)

103.457
(2)

98.458
(2)

85.264
(3)

102.001
(2)

γ−γ 90 90 115.317(10) 90 73.480(3) 90
Volume,

Å3
1418.5

(15)
2028.8

(4)
957.03

(6)
2365.7

(2)
1702.1

(2)
2779.7

(2)
Z 4 2 2 4 2 4

Radiation, Å
MoKα

(λ = 0.71073 Å)
MoKα

(λ = 0.71073 Å)
MoKα

(λ = 0.71073 Å)
MoKα

(λ = 0.71073 Å)
MoKα

(λ = 0.71073 Å)
MoKα

(λ = 0.71073 Å)
Temp., K 200.00 200.00 200.00 200.00 200.00 200.00

Analyzing the composition of each crystal structure, we found three types of structural
units, apart from the organic cations, including the [AuII2]−, [AuIIII4]−, and [I3]− units,
composed of Au+ and Au3+, and I−, as well as I− and I2, respectively. We investigated the
formation mechanisms of different structural units in gold-based perovskite derivatives
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based on the possible redox reactions between Au cations and I anions. Equations (1)–(4),
depict the chemical reaction processes as follows:

Au3+ + 2I− ↔ Au+ + I2 (1)

Au+ + 2I− ↔
[
AuII2]

− (2)

I− + I2 ↔ I−3 (3)

2
[
AuII2]

− + 2I−3 ↔ 2
[
AuIIII4]

− + 2I− (4)

As depicted in Equations (1) and (2), in the reaction system, initially, Au3+ undergoes
oxidation by I− to form Au+, followed by the reaction of one unit of Au+ with two units of
I− to generate the [AuII2]− unit [16]. Subsequently, I− reacts with oxygen in the aqueous
solution to form I2, and in the presence of excess I−, the surplus I− combines with I2 to
form the [I3

−] unit, as shown in Equation (3) [22]. Finally, as indicated in Equation (4), at
this stage, the [AuII2]− unit in the reaction system reacts with the [I3]− unit, yielding the
[AuIIII4]− unit [19].

Then, we further investigated the crystal structures of these compounds. The six
compounds were classified and analyzed based on the different structural units composing
their crystal structures: (1) 3AMP and 3AMPY; (2) DDA and TOTA; and (3) 2PEAI and
OBA. The detailed analysis is as follows:

(1) In the crystal structures of 3AMP and 3AMPY, the anions consist of [AuII2]− and
[AuIIII4]− units. Specifically, 3AMP comprises [AuII2]− and [AuIIII4]− anion units,
along with one divalent organic cation to achieve charge balance. It is notewor-
thy that in 3AMP, there exists an [AuI6] octahedron, forming a zero-dimensional
perovskite-like structure. These octahedra are connected by Au···I−-Au bonds formed
by sharing I− ions in the vertical direction, with one [AuIIII4]− unit and two [AuII2]−

units. Otherwise, 3AMPY comprises three [AuII2]− and one [AuIIII4]− anion units,
balanced by two divalent organic cations. The [AuII2]− and [AuIIII4]− anion units
exist independently, forming a zero-dimensional non-perovskite structure. This sig-
nificant structural difference arises from the distinct spatial distribution of [AuII2]−

and [AuIIII4]− ions between the two crystals. As shown in Figure 3a, in the crys-
tal structure of 3AMP, the [AuII2]− is positioned directly above the center of the
[AuIIII4]− unit. The Au···I bond lengths between adjacent [AuII2]− and [AuIIII4]− are
3.336 Å and 3.364 Å, respectively. Therefore, considering the shorter distance between
the structural units and appropriate spatial distribution, [AuII2]− and [AuIIII4]− can
form [AuI6] octahedra. In the crystal structure of 3AMPY, the Au···I bond lengths
between [AuIIII4]− and the [AuII2]− unit positioned directly above it are 3.922 Å
and 3.693 Å, respectively. The longer distances render the Au···I bonds unstable,
preventing the formation of [AuI6] octahedra. As a result, [AuII2]− and [AuIIII4]−

units exist independently without forming an octahedral structure.
(2) In the DDA and TOTA crystal structures, the anions consist of [AuIIII4]− and [I3]−

units. Specifically, DDA is balanced by two [AuIIII4]− and one [I3]− anion units along
with two divalent organic cations, while TOTA is balanced by one [AuIIII4]− and one
[I3]− anion units along with one divalent organic cation. As shown in Figure 4a,b, the
length of the [I3]− structural unit is 5.876 Å. In both structures, the distance between
the adjacent [AuIIII4]− units is much greater than the length of [I3]−, allowing for the
incorporation of [I3]− units. Consistent with previous studies, the presence of [I3]−

units in hybrid gold-based perovskite derivatives facilitates charge transport. [23]
Moreover, the closer the distance between [I3]− and [AuIIII4]− units, the faster the
carrier migration along [I3]−, resulting in better conductivity. This suggests that
DDA and TOTA are expected to exhibit superior conductivity due to their favorable
arrangement for charge transport.
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(3) In the crystal structures of 2PEAI and OBA, the anions consist of [AuIIII4]− units.
Specifically, 2PEAI is balanced by one [AuIIII4]− anion unit and one monovalent
organic cation, while OBA is balanced by two [AuIIII4]− anion units and one divalent
organic cation. Due to the absence of [AuII2]− units, the [AuIIII4]− units in these
two crystals cannot form octahedra, resulting in zero-dimensional non-perovskite
structures. Additionally, as shown in Figure 4c,d, because of the excessively short
distances between the adjacent [AuIIII4]− units, measured at 5.304 Å and 3.496 Å,
respectively, [I3]− units cannot be accommodated in the structure. As a result, the
anions consist solely of [AuIIII4]− units.
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and OBA (d).

In summary, the differences in crystal structures of these compounds arise from
variations in the types of constituent units and their spatial positioning relationship.

Raman spectroscopy is one of the most effective methods for studying the gold valence
transitions of various organic–inorganic perovskite derivatives. To further demonstrate
the accuracy of the valence state of Au elements in our crystal structure, we obtained the
Raman spectra of these compounds through testing, as shown in Figure 5. Analyzing
the Raman spectra, we found peaks corresponding to Au-I bonds near 130 cm−1 for all
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compounds, consistent with the literature reports [23]. Further analysis, as shown in
Figure 2a,b, revealed that 3AMP and 3AMPY contain [AuIIII4]− and [AuII2]− units, where
the Au-I bond length in the [AuIIII4]− units is longer than that in the [AuII2]− units (see
Figure S2). By comparing the longer Au-I bond in the [AuIIII4]− units (around 2.62 Å)
with that in the [AuII2]− units (around 2.55 Å), we attributed the lower-lying modes, A1
(127.9 cm−1) and A2 (131.2 cm−1), to the [AuIIII4]− units. Furthermore, the higher modes,
B1 (130.4 cm−1) and B2 (133.8 cm−1) are indicative of [AuII2]− units [24]. Additionally,
in 2PEAI, OBA, DDA, and TOTA, the Au ions and I ions form single [AuIIII4]− units
(Figure 2c–f), corresponding to individual Au-I modes (A3, A4, A5, and A6). The results of
Raman spectroscopy testing corresponded well with our crystal structure, demonstrating
the accuracy of the valence state of Au elements in the crystal structure.
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2.3. The Characterization of Optical Properties and Thermal Stability

To ascertain the purity of the synthesized samples of the six compounds, we ground
the single crystals into powder for X-ray diffraction experiments. The powder XRD peaks
obtained from the experiment were compared with the theoretical simulated peaks of the
single-crystal structures, as shown in Figure 6. The correspondence between the simulated
diffraction peaks of the crystal structures and the experimentally obtained diffraction peaks
confirmed the high purity of the synthesized materials. This assured the reliability of the
subsequent optical, electrical, and thermal stability tests.

Thermal stability is crucial for viable applications in optoelectronics, and a TGA/DTG
(Thermogravimetric Analysis/Derivative Thermogravimetry) analysis was conducted on
hybrid gold-based perovskite-derivative powders to understand their thermal decomposi-
tion pathways. Table 2 records their decomposition temperatures, and the TGA curves are
shown in Figure S3.
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Table 2. The decomposition temperatures of hybrid gold-based perovskite derivatives.

Compound 3AMP 3AMPY 2PEAI OBA DDA TOTA

Temperature (◦C) 82 98 104 102 94 110

The thermal decomposition processes of the six compounds can be described using
two modes:

(1) For 3AMP, 2PEAI, 3AMPY, DDA, and TOTA, the thermal decomposition process can
be divided into two steps:

a. The first decomposition occurs around 100 ◦C, resulting in a weight loss of
approximately 35%, corresponding to the organic cations.

b. The second stage of decomposition begins at around 230 ◦C, corresponding to
the loss of I2. The final products are AuI and Au.

(2) For OBA, the thermal decomposition process can be divided into three steps:

a. At around 100 ◦C, approximately 20% of the weight is lost, corresponding to
the weight percentage of organic cations.

b. At around 180 ◦C, the second stage of decomposition begins, with the loss of
mass corresponding to I2. At this point, the products are AuI3 and Au.

c. Around 240 ◦C, the final decomposition reaction occurs, with AuI3 decom-
posing into Au and AuI. After this, the thermogravimetric curve stabilizes,
indicating that the final decomposition products are AuI and Au.

Overall, due to the poor thermal stability of organic ions, all hybrid gold-based
perovskite derivatives begin to decompose at around 100 ◦C. Their thermal stability is
comparable to that of the widely used CH3NH3PbI3 [25]. Considering that the operating
temperatures of most optoelectronic devices are below 50 ◦C, it is evident that the thermal
stability of these compounds is sufficient to support the device applications.
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To investigate the optical properties of these compounds, we confirmed their light
absorption ranges through ultraviolet-visible spectroscopy, as shown in Figure 7a. It can
be observed that all compounds exhibited broad light absorption ranges, consistent with
their black crystal morphology characteristics, indicating their excellent light absorption
performance. Among these compounds, 3AMPY, 3AMP, OBA, and TOTA exhibited the
broadest absorption peaks, reaching 1160 nm, 1150 nm, 1150 nm, and 1130 nm, respectively,
while the absorption peaks of 2PEAI and DDA were relatively narrower, at 1090 nm and
1000 nm, respectively. According to the formula Eg = 1240/λg (where λg is the absorption
threshold), the wider the absorption wavelength range, the smaller the bandgap. Therefore,
all six abovementioned compounds exhibited relatively narrow bandgaps, around 1.10 eV.
These materials featured broad absorption peaks ranging from visible light to near-infrared,
demonstrating their potential applications in photodetection.
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(b–g) the bandgap values calculated with the Tauc plot formula.

According to the results obtained from PBE calculations (Figure 8), all the materials
were indirect bandgap semiconductors. Then, we calculated the precise bandgaps of
these gold-based perovskite derivatives using the Tauc plot formula for indirect bandgaps.
The specific bandgap plot is shown in Figure 7b–g, where the bandgap values for OBA,
DDA, TOTA, 2PEAI,3AMPY, and 3AMP are 1.08 eV, 1.24 eV, 1.10 eV, 1.14 eV, 1.07 eV, and
1.08 eV, respectively. The bandgap values of the hybrid gold-based perovskite derivatives
were comparable to those reported in the literature, such as those for [NH3(CH2)7NH3]2
[(AuI2)(AuI4)(I3)2] (1.12 eV) and [NH3(CH2)8NH3]2[(AuI2)(AuI4)(I3)2] (1.18 eV) [18]. The
smaller bandgaps are consistent with the characteristics of similar gold-based perovskite
derivatives, further demonstrating the enormous potential of these compounds in narrow-
bandgap optoelectronic device applications [19].
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2.4. First-Principles Calculations

For elucidating the electronic structures and semiconductor properties of hybrid gold-
based perovskite derivatives, we employed the Vienna Ab initio Simulation Package (VASP)
with the Perdew–Burke–Ernzerhof (PBE) function to compute the band structures and
density of the states (DOS) [26,27]. As shown in Figure 8, the bandgap values obtained
from the theoretical calculations for 3AMP, 3AMPY, 2PEAI, OBA, DDA, and TOTA were
1.04 eV, 1.03 eV, 1.03 eV, 0.92 eV, 1.17 eV, and 1.03 eV, respectively. These values were very
close to the experimental values, demonstrating the accuracy of our computational results.
For 3AMP, 3AMPY, 2PEAI, and DDA, the valence band maximum and conduction band
minimum were not located in the same Brillouin zone, displaying typical characteristics
of indirect bandgap semiconductors. Notably, OBA and TOTA exhibited valence-band-
maximum and conduction-band-minimum positions in Brillouin zones that were very
close, indicating slight indirect bandgap properties. Through analysis, it was observed
that the valence band maximum and conduction band minimum of all six materials were
primarily composed of I-2p orbitals (shown in purple) and a small amount of Au-5d orbitals
(shown in yellow). This indicates that the narrow bandgap characteristics of these materials
originate from contributions of I-2p orbitals and partial Au-5d orbitals, which is consistent
with previous reports. This suggests that the strong intermolecular interactions between
the structural units composed of gold and iodine ions lead to the narrow bandgap of
gold-based perovskite derivatives [21].

Then, the PBE method was utilized to calculate the optical absorption coefficients of
these hybrid gold-based perovskite derivatives and evaluate their potential as absorber
layers in solar cells. As shown in Figure 9a,b, all compounds exhibited excellent light
absorption performance, with absorption coefficients in the visible region reaching the
order of 105 cm−1. Subsequently, SLME (Shockley–Queisser Limit Maximum Efficiency)
calculations were performed to explore their potential as absorber layers in solar cells. The
results, as shown in Figure 9c,d, indicated that when the film thickness was 500 nm, the
SLME of DDA, 2PEAI, 3AMPY, and TOTA reached 32.06%, 31.89%, 30.56%, and 30.00%,
respectively. These values exceeded the theoretical maximum efficiency of mainstream
hybrid perovskite materials [28], demonstrating the tremendous potential of these com-
pounds in photovoltaic applications. The great SLME values were mainly attributed to their
appropriate bandgaps (around 1.10 eV) and high optical absorption coefficients. However,
OBA and 3AMP exhibited relatively lower SLME values, at 18.52% and 15.26%, respec-
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tively. This was due to their lower optical absorption coefficients. Recently, experimental
values for methylammonium-formamidinium-based perovskite cells exceeded 20%, with
the highest recorded value reaching 26.00%, approaching its theoretical maximum limit
efficiency [29,30]. Although SLME does not consider factors such as carrier mobility and
intrinsic defects in actual thin films, our work still reveals the application potential of these
hybrid gold-based perovskite derivatives, laying the foundation for future research on their
practical applications.
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3. Materials and Methods
3.1. Materials

All initial precursor materials and solvents were procured from commercial
sources and employed without subsequent purification processes: gold (III) chloride
hydrate (98.0%), 3-(Aminomethyl)piperidine (99.0%), 3-(Aminomethyl)pyridine (98.0%),
2-Phenylethylamine (99.0%), 2-2′Oxybis(ethylamine) dihydrochloride (98.0%), 1,8-Diamino-
3,6-dioxaoctane (98.0%), and 4,7,10-Trioxa-1,13-tridecanediamine (98.0%), were purchased
from Innochem. The hydroiodic acid (57 wt% in H2O) solution was purchased from Aladdin.

3.2. Synthesis of Single Crystals

Millimeter-scale single crystals of gold-based perovskite derivatives can be obtained
by the hydrothermal method under the appropriate parameters, the detailed steps of which
are discussed in Section 2.

3.3. Characterizations

X-ray diffraction (XRD). XRD patterns of the films were obtained from an X-ray diffrac-
tometer (Miniflex 600, Rigaku, Japan) with Cu Kα radiation. Analysis of Single Crystal
Structures. The SCs’ structures were determined using a Bruker SMART APEX-II diffrac-
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tometer equipped with a CCD detector (graphite-monochromatized Mo-Kα radiation,
λ = 0.70 Å) at 200K. Data integration and cell refinement were performed using APEX3
software 1.5. The structure was analyzed by direct methods and refined using the SHELXTL
97 software 2.0 package. All nonhydrogen atoms of the structure were refined with
anisotropic thermal parameters, and the refinements converged for Fo2 >2σIJFo2. All
the calculations were performed using the SHELXTL crystallographic software 2.0 package.
Symmetry analysis on the model using PLATON revealed that no noticeable space group
change was needed. In the refinement, the commands EDAP and EXYZ were used to
restrain some of the related bond lengths and bond angles. Raman spectroscopy. Ra-
man spectroscopy measurements were performed on a laser Raman microscopy system
(RAMAN 11, Nanophoton, Japan) at 300 K. The excitation laser wavelength was 532 nm,
the energy was 2.67mW, and the detection range was 100 µm × 100 µm (the delay was
2 µm). UV−vis−NIR Absorption and Reflection Spectra Measurements. The UV−vis−NIR
absorption and reflection spectra of powders were measured using a spectrophotometer
(Cary 5000, Agilent, Malaysia) over the spectral range of 200–1400 nm. Thermogravimetric
Analysis (TGA) Measurements. Thermogravimetric analysis (TGA) was conducted em-
ploying a TGA/DSC1/1600HT apparatus (Mettler Toledo, Switzerland). The specimens
were positioned within platinum crucibles and subjected to incremental heating from
an ambient temperature to 600 ◦C at a rate of 5 ◦C min−1 under a continuous nitrogen
flow. Computational Methods. The first-principles density functional theory (DFT) simula-
tions were performed with the Vienna ab initio simulation package (VASP) to study the
geometric and electronic structures of the Au-based perovskites series. We adopted the
Perdew–Burke–Ernzerhof (PBE) function in the generalized gradient approximation (GGA)
to optimize their geometrical structure. For geometric optimization, the Monkhorst–Pack
k-point grid was configured as 2*9*3, while for self-consistent calculations, it was adjusted
to 4*6*7. Our investigations adopted the PBE function to calculate the band structures. Pro-
jector augmented wave pseudopotentials with a cut-off energy of 520 eV were employed.

4. Conclusions

In response to the limited research on the synthesis and application potential of
gold-based perovskite derivatives, we efficiently synthesized single crystals of six such
derivatives through parameter optimization. Through chemical reaction studies and crys-
tal structure analyses, we elucidated the formation of various structural units in these
derivatives, deepening our understanding of their compositions. Thermogravimetric test-
ing demonstrated their good thermal stability, with decomposition temperatures around
100 ◦C, akin to that of CH3NH3PbI3. Integration of experimental characterization with the-
oretical calculations revealed optical bandgaps of 1.10 eV and high absorption coefficients
across all materials. Notably, SLME calculations indicated that DDA, 2PEAI, 3AMPY, and
TOTA achieved SLME values of around 30%, underscoring their potential in photovoltaic
applications. This study establishes a robust framework for employing hybrid gold-based
perovskite derivatives in photodetectors and photovoltaics.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/inorganics12060157/s1, Figure S1. The elemental gold produced by the
decomposition of products at high temperatures under an optical microscope (100×); Figure S2. (a,b)
The length of the Au-I bonds in the 3AMP and 3AMPY structures; Figure S3. (a–f) The thermo-
gravimetric analysis (TGA) curves of gold-based perovskite derivatives; Table S1. Crystal structure
information of 2PEAI, 3AMP, and 3AMPY; Table S2. Crystal structure information of OBA, DDA,
and TOTA.
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